An unsupervised statistical representation learning method for human activity recognition

With the evolution of smart devices like smartphones, smartwatches, and other wearable devices, motion sensors have been integrated into these devices to collect data and analyze human activities. Consequently, sensor-based Human Activity Recognition (HAR) has emerged as a significant research area...

Full description

Saved in:
Bibliographic Details
Published in:Signal, image and video processing Vol. 18; no. 10; pp. 7041 - 7052
Main Authors: Abdi, Mohammad Foad, BabaAli, Bagher, Momeni, Saleh
Format: Journal Article
Language:English
Published: London Springer London 01.09.2024
Springer Nature B.V
Subjects:
ISSN:1863-1703, 1863-1711
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the evolution of smart devices like smartphones, smartwatches, and other wearable devices, motion sensors have been integrated into these devices to collect data and analyze human activities. Consequently, sensor-based Human Activity Recognition (HAR) has emerged as a significant research area in the fields of ubiquitous computing and wearable computing. This paper presents a novel approach that employs Latent Dirichlet Allocation (LDA) to extract meaningful representations from activity signals. The method involves transforming the activity signal, which is a sequence of samples, into a sequence of discrete symbols using vector quantization. Subsequently, LDA is utilized to embed the symbol sequence into a fixed-length representation vector. Finally, a classifier is employed to classify the obtained representation vector. The effectiveness of the proposed method is evaluated using the UNIMIB-SHAR dataset. Experimental results demonstrate its competitive performance in terms of accuracy and F1-score metrics when compared to existing methods. Moreover, our method boasts a more lightweight architecture and incurs lower computational costs compared to deep learning-based approaches. The findings of this study contribute to the advancement of HAR and hold practical implications for HAR systems.
AbstractList With the evolution of smart devices like smartphones, smartwatches, and other wearable devices, motion sensors have been integrated into these devices to collect data and analyze human activities. Consequently, sensor-based Human Activity Recognition (HAR) has emerged as a significant research area in the fields of ubiquitous computing and wearable computing. This paper presents a novel approach that employs Latent Dirichlet Allocation (LDA) to extract meaningful representations from activity signals. The method involves transforming the activity signal, which is a sequence of samples, into a sequence of discrete symbols using vector quantization. Subsequently, LDA is utilized to embed the symbol sequence into a fixed-length representation vector. Finally, a classifier is employed to classify the obtained representation vector. The effectiveness of the proposed method is evaluated using the UNIMIB-SHAR dataset. Experimental results demonstrate its competitive performance in terms of accuracy and F1-score metrics when compared to existing methods. Moreover, our method boasts a more lightweight architecture and incurs lower computational costs compared to deep learning-based approaches. The findings of this study contribute to the advancement of HAR and hold practical implications for HAR systems.
Author Momeni, Saleh
BabaAli, Bagher
Abdi, Mohammad Foad
Author_xml – sequence: 1
  givenname: Mohammad Foad
  surname: Abdi
  fullname: Abdi, Mohammad Foad
  organization: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran
– sequence: 2
  givenname: Bagher
  surname: BabaAli
  fullname: BabaAli, Bagher
  email: babaali@ut.ac.ir
  organization: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran
– sequence: 3
  givenname: Saleh
  surname: Momeni
  fullname: Momeni, Saleh
  organization: School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran
BookMark eNp9kE1LAzEQhoNUsNb-AU8LnlfztZvssRS_oOBFD55Cmp20KdtsTbJC--vduqLgoXOZYXif-Xgv0ci3HhC6JviWYCzuIiGixDmmPMeMCZ4fztCYyJLlRBAy-q0xu0DTGDe4D0aFLOUYvc981vnY7SB8ugh1FpNOLiZndJMF2AWI4I-t1mcN6OCdX2VbSOu2zmwbsnW31T7TJrlPl_Y9YdqVd0f5FTq3uokw_ckT9PZw_zp_yhcvj8_z2SI3jFQp12ClliAqU4uiKkBrQo3FuCw4NVRaSi3nkgLWpuBW0toSuhRG8qURUMCSTdDNMHcX2o8OYlKbtgu-X6kYLcqq5EVZ9Co5qExoYwxglXHDWylo1yiC1dFLNXipei_Vt5fq0KP0H7oLbqvD_jTEBij2Yr-C8HfVCeoL7fCL7A
CitedBy_id crossref_primary_10_1109_JSEN_2025_3593466
crossref_primary_10_1007_s10462_025_11275_x
Cites_doi 10.1109/SURV.2012.110112.00192
10.1145/3090076
10.1145/3551486
10.1109/JSEN.2022.3149337
10.1145/3596234
10.1145/2499621
10.1109/TBME.2014.2307069
10.1016/j.asoc.2021.107728
10.1016/j.pmcj.2016.09.009
10.1109/TSMCC.2012.2198883
10.1007/s11548-021-02493-z
10.3390/app7101101
10.3390/s16010115
10.1007/s11042-018-6894-4
10.3390/s22041476
10.1109/JSEN.2020.3015521
10.1109/TIE.2022.3161812
10.1109/83.541428
10.1016/j.neucom.2015.07.085
10.1016/j.patrec.2018.02.010
10.1145/1964897.1964918
10.1109/34.954607
10.1145/3517246
10.1109/TETCI.2021.3136642
10.1109/ACCESS.2020.3037715
10.1016/j.patcog.2007.04.015
10.1109/ICIEV.2016.7760005
10.1145/3267242.3267287
10.1109/WACV.2013.6474999
10.1145/2968219.2971416
10.1007/978-3-642-35395-6_30
10.24963/ijcai.2019/779
10.1145/3460421.3480419
10.3389/fnins.2023.1233037
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s11760-024-03374-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 7052
ExternalDocumentID 10_1007_s11760_024_03374_z
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-aef8a8e79cd7595eaa12cf006542c28f22f4482e0ac54f82df12b7c84bc7e5eb3
IEDL.DBID P5Z
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001260374600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-1703
IngestDate Sat Oct 11 06:56:10 EDT 2025
Sat Nov 29 05:31:03 EST 2025
Tue Nov 18 21:02:34 EST 2025
Fri Feb 21 02:38:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Feature embedding
Latent Dirichlet allocation (LDA)
Human activity recognition
Unsupervised representation learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-aef8a8e79cd7595eaa12cf006542c28f22f4482e0ac54f82df12b7c84bc7e5eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256964565
PQPubID 2044169
PageCount 12
ParticipantIDs proquest_journals_3256964565
crossref_citationtrail_10_1007_s11760_024_03374_z
crossref_primary_10_1007_s11760_024_03374_z
springer_journals_10_1007_s11760_024_03374_z
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Blei, Ng, Jordan (CR9) 2003; 3
Paysan, Haug, Bajka, Oelhafen, Buhmann (CR6) 2021; 16
Bulling, Blanke, Schiele (CR1) 2014; 46
Shuai Shao, Guan, Missier, Plötz (CR31) 2023; 7
CR18
CR16
CR11
CR33
Chen, Hoey, Nugent, Cook, Zhiwen (CR12) 2012; 42
Tang, Zhang, Min, He (CR44) 2022; 70
CR30
Gersho, Gray (CR34) 2012
Gao, Zhang, Teng, He, Hao (CR40) 2021; 111
Lai, Liaw, Liu (CR35) 2008; 41
Noor, Salcic, Kevin, Wang (CR19) 2017; 38
Ordóñez, Roggen (CR37) 2016; 16
Micucci, Mobilio, Napoletano (CR10) 2017; 7
Tang, Zhang, Teng, Min, Song (CR41) 2022; 6
Hsieh, Tsai (CR36) 1996; 5
Chen, Zhang, Yao, Guo, Zhiwen, Liu (CR13) 2021; 54
Kwapisz, Weiss, Moore (CR15) 2011; 12
Huang, Zhang, Wang, Hao, Song (CR42) 2022; 22
CR4
Cheng, Zhang, Tang, Liu, Hao, He (CR7) 2022; 22
CR29
CR28
CR26
Reyes-Ortiz, Oneto, Samà, Parra, Anguita (CR17) 2016; 171
CR24
CR23
Jelodar, Wang, Yuan, Feng, Jiang, Li, Zhao (CR38) 2019; 78
CR21
CR43
Ordóñez, Roggen (CR25) 2016; 16
Wang, Chen, Hao, Peng, Lisha (CR14) 2019; 119
Picard, Vyzas, Healey (CR22) 2001; 23
Lara, Labrador (CR3) 2012; 15
Jain, Tang, Min, Kawsar, Mathur (CR5) 2022; 6
Tang, Teng, Zhang, Min, He (CR39) 2020; 21
Gupta, Dallas (CR20) 2014; 61
Demrozi, Pravadelli, Bihorac, Rashidi (CR2) 2020; 8
Rong, Chen, Miao, Tang (CR32) 2023; 37
Zhang, Li, Zhang, Shahabi, Xia, Deng, Alshurafa (CR8) 2022; 22
Guan, Plötz (CR27) 2017; 1
J Wang (3374_CR14) 2019; 119
3374_CR30
A Gersho (3374_CR34) 2012
Y Tang (3374_CR41) 2022; 6
MHM Noor (3374_CR19) 2017; 38
RW Picard (3374_CR22) 2001; 23
OD Lara (3374_CR3) 2012; 15
FJ Ordóñez (3374_CR25) 2016; 16
C-H Hsieh (3374_CR36) 1996; 5
D Micucci (3374_CR10) 2017; 7
Yu Guan (3374_CR27) 2017; 1
W Huang (3374_CR42) 2022; 22
3374_CR18
F Demrozi (3374_CR2) 2020; 8
A Bulling (3374_CR1) 2014; 46
W Gao (3374_CR40) 2021; 111
D Paysan (3374_CR6) 2021; 16
K Chen (3374_CR13) 2021; 54
3374_CR11
3374_CR33
3374_CR16
L Chen (3374_CR12) 2012; 42
Y Tang (3374_CR44) 2022; 70
DM Blei (3374_CR9) 2003; 3
Y Tang (3374_CR39) 2020; 21
X Cheng (3374_CR7) 2022; 22
FJ Ordóñez (3374_CR37) 2016; 16
H Rong (3374_CR32) 2023; 37
Yu Shuai Shao (3374_CR31) 2023; 7
H Jelodar (3374_CR38) 2019; 78
3374_CR29
Y Jain (3374_CR5) 2022; 6
J-L Reyes-Ortiz (3374_CR17) 2016; 171
3374_CR24
S Zhang (3374_CR8) 2022; 22
3374_CR23
P Gupta (3374_CR20) 2014; 61
3374_CR21
JZC Lai (3374_CR35) 2008; 41
3374_CR43
JR Kwapisz (3374_CR15) 2011; 12
3374_CR28
3374_CR4
3374_CR26
References_xml – volume: 15
  start-page: 1192
  issue: 3
  year: 2012
  end-page: 1209
  ident: CR3
  article-title: A survey on human activity recognition using wearable sensors
  publication-title: IEEE Commun. Surveys Tutor.
  doi: 10.1109/SURV.2012.110112.00192
– volume: 1
  start-page: 1
  issue: 2
  year: 2017
  end-page: 28
  ident: CR27
  article-title: Ensembles of deep LSTM learners for activity recognition using wearables
  publication-title: Proc. ACM Interact. Mobile Wear. Ubiq. Technol.
  doi: 10.1145/3090076
– ident: CR18
– ident: CR43
– year: 2012
  ident: CR34
  publication-title: Vector Quantization and Signal Compression
– volume: 22
  start-page: 1
  issue: 1
  year: 2022
  end-page: 23
  ident: CR42
  article-title: Deep ensemble learning for human activity recognition using wearable sensors via filter activation
  publication-title: ACM Trans. Embed. Comput. Syst.
  doi: 10.1145/3551486
– ident: CR4
– volume: 22
  start-page: 5889
  issue: 6
  year: 2022
  end-page: 5901
  ident: CR7
  article-title: Real-time human activity recognition using conditionally parametrized convolutions on mobile and wearable devices
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3149337
– ident: CR16
– volume: 7
  start-page: 1
  issue: 2
  year: 2023
  end-page: 21
  ident: CR31
  article-title: Convboost: boosting convnets for sensor-based activity recognition
  publication-title: Proc. ACM Interact. Mobile Wear. Ubiq. Technol.
  doi: 10.1145/3596234
– ident: CR30
– volume: 46
  start-page: 1
  issue: 3
  year: 2014
  end-page: 33
  ident: CR1
  article-title: A tutorial on human activity recognition using body-worn inertial sensors
  publication-title: ACM Comput. Surveys (CSUR)
  doi: 10.1145/2499621
– volume: 61
  start-page: 1780
  issue: 6
  year: 2014
  end-page: 1786
  ident: CR20
  article-title: Feature selection and activity recognition system using a single triaxial accelerometer
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2307069
– ident: CR33
– volume: 3
  start-page: 993
  issue: Jan
  year: 2003
  end-page: 1022
  ident: CR9
  article-title: Latent Dirichlet allocation
  publication-title: J. Mach. Learn. Res.
– volume: 111
  start-page: 107728
  year: 2021
  ident: CR40
  article-title: DanHAR: dual attention network for multimodal human activity recognition using wearable sensors
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107728
– volume: 38
  start-page: 41
  year: 2017
  end-page: 59
  ident: CR19
  article-title: Adaptive sliding window segmentation for physical activity recognition using a single tri-axial accelerometer
  publication-title: Pervasive Mobile Comput.
  doi: 10.1016/j.pmcj.2016.09.009
– ident: CR29
– volume: 42
  start-page: 790
  issue: 6
  year: 2012
  end-page: 808
  ident: CR12
  article-title: Sensor-based activity recognition
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2012.2198883
– volume: 54
  start-page: 1
  issue: 4
  year: 2021
  end-page: 40
  ident: CR13
  article-title: Deep learning for sensor-based human activity recognition: overview, challenges, and opportunities
  publication-title: ACM Comput. Surveys (CSUR)
– volume: 16
  start-page: 2037
  year: 2021
  end-page: 2044
  ident: CR6
  article-title: Self-supervised representation learning for surgical activity recognition
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-021-02493-z
– ident: CR23
– volume: 7
  start-page: 1101
  issue: 10
  year: 2017
  ident: CR10
  article-title: Unimib shar: a dataset for human activity recognition using acceleration data from smartphones
  publication-title: Appl. Sci.
  doi: 10.3390/app7101101
– ident: CR21
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: CR37
  article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– volume: 78
  start-page: 15169
  year: 2019
  end-page: 15211
  ident: CR38
  article-title: Latent Dirichlet Allocation (LDA) and topic modeling: models, applications, a survey
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-6894-4
– volume: 22
  start-page: 1476
  issue: 4
  year: 2022
  ident: CR8
  article-title: Deep learning in human activity recognition with wearable sensors: a review on advances
  publication-title: Sensors
  doi: 10.3390/s22041476
– volume: 21
  start-page: 581
  issue: 1
  year: 2020
  end-page: 592
  ident: CR39
  article-title: Layer-wise training convolutional neural networks with smaller filters for human activity recognition using wearable sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3015521
– volume: 70
  start-page: 2106
  issue: 2
  year: 2022
  end-page: 2116
  ident: CR44
  article-title: Multiscale deep feature learning for human activity recognition using wearable sensors
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2022.3161812
– volume: 5
  start-page: 1579
  issue: 11
  year: 1996
  end-page: 1582
  ident: CR36
  article-title: Lossless compression of VQ index with search-order coding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.541428
– ident: CR11
– volume: 171
  start-page: 754
  year: 2016
  end-page: 767
  ident: CR17
  article-title: Transition-aware human activity recognition using smartphones
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.085
– volume: 119
  start-page: 3
  year: 2019
  end-page: 11
  ident: CR14
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  end-page: 82
  ident: CR15
  article-title: Activity recognition using cell phone accelerometers
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1964897.1964918
– volume: 23
  start-page: 1175
  issue: 10
  year: 2001
  end-page: 1191
  ident: CR22
  article-title: Toward machine emotional intelligence: analysis of affective physiological state
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.954607
– volume: 6
  start-page: 1
  issue: 1
  year: 2022
  end-page: 28
  ident: CR5
  article-title: Collossl: collaborative self-supervised learning for human activity recognition
  publication-title: Proc. ACM Interact. Mobile Wear. Ubiq. Technol.
  doi: 10.1145/3517246
– ident: CR28
– volume: 6
  start-page: 1167
  issue: 5
  year: 2022
  end-page: 1176
  ident: CR41
  article-title: Triple cross-domain attention on human activity recognition using wearable sensors
  publication-title: IEEE Trans. Emerg. Topics Comput. Intell.
  doi: 10.1109/TETCI.2021.3136642
– volume: 8
  start-page: 210816
  year: 2020
  end-page: 210836
  ident: CR2
  article-title: Human activity recognition using inertial, physiological and environmental sensors: a comprehensive survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037715
– ident: CR26
– ident: CR24
– volume: 37
  start-page: 6012
  year: 2023
  end-page: 6020
  ident: CR32
  article-title: Swl-adapt: an unsupervised domain adaptation model with sample weight learning for cross-user wearable human activity recognition
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 41
  start-page: 315
  issue: 1
  year: 2008
  end-page: 319
  ident: CR35
  article-title: A fast VQ codebook generation algorithm using codeword displacement
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2007.04.015
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: CR25
  article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– ident: 3374_CR18
  doi: 10.1109/ICIEV.2016.7760005
– volume: 3
  start-page: 993
  issue: Jan
  year: 2003
  ident: 3374_CR9
  publication-title: J. Mach. Learn. Res.
– volume-title: Vector Quantization and Signal Compression
  year: 2012
  ident: 3374_CR34
– volume: 78
  start-page: 15169
  year: 2019
  ident: 3374_CR38
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-6894-4
– ident: 3374_CR28
  doi: 10.1145/3267242.3267287
– volume: 37
  start-page: 6012
  year: 2023
  ident: 3374_CR32
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 1
  start-page: 1
  issue: 2
  year: 2017
  ident: 3374_CR27
  publication-title: Proc. ACM Interact. Mobile Wear. Ubiq. Technol.
  doi: 10.1145/3090076
– ident: 3374_CR23
  doi: 10.1109/WACV.2013.6474999
– volume: 8
  start-page: 210816
  year: 2020
  ident: 3374_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3037715
– ident: 3374_CR21
  doi: 10.1145/2968219.2971416
– ident: 3374_CR33
– ident: 3374_CR16
  doi: 10.1007/978-3-642-35395-6_30
– ident: 3374_CR29
  doi: 10.24963/ijcai.2019/779
– volume: 22
  start-page: 1476
  issue: 4
  year: 2022
  ident: 3374_CR8
  publication-title: Sensors
  doi: 10.3390/s22041476
– volume: 42
  start-page: 790
  issue: 6
  year: 2012
  ident: 3374_CR12
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2012.2198883
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: 3374_CR25
  publication-title: Sensors
  doi: 10.3390/s16010115
– volume: 16
  start-page: 2037
  year: 2021
  ident: 3374_CR6
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-021-02493-z
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: 3374_CR37
  publication-title: Sensors
  doi: 10.3390/s16010115
– ident: 3374_CR26
– ident: 3374_CR30
  doi: 10.1145/3460421.3480419
– volume: 21
  start-page: 581
  issue: 1
  year: 2020
  ident: 3374_CR39
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3015521
– volume: 12
  start-page: 74
  issue: 2
  year: 2011
  ident: 3374_CR15
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1964897.1964918
– ident: 3374_CR24
– volume: 22
  start-page: 1
  issue: 1
  year: 2022
  ident: 3374_CR42
  publication-title: ACM Trans. Embed. Comput. Syst.
  doi: 10.1145/3551486
– volume: 6
  start-page: 1167
  issue: 5
  year: 2022
  ident: 3374_CR41
  publication-title: IEEE Trans. Emerg. Topics Comput. Intell.
  doi: 10.1109/TETCI.2021.3136642
– volume: 7
  start-page: 1
  issue: 2
  year: 2023
  ident: 3374_CR31
  publication-title: Proc. ACM Interact. Mobile Wear. Ubiq. Technol.
  doi: 10.1145/3596234
– ident: 3374_CR4
– volume: 41
  start-page: 315
  issue: 1
  year: 2008
  ident: 3374_CR35
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2007.04.015
– ident: 3374_CR11
– volume: 54
  start-page: 1
  issue: 4
  year: 2021
  ident: 3374_CR13
  publication-title: ACM Comput. Surveys (CSUR)
– volume: 15
  start-page: 1192
  issue: 3
  year: 2012
  ident: 3374_CR3
  publication-title: IEEE Commun. Surveys Tutor.
  doi: 10.1109/SURV.2012.110112.00192
– volume: 6
  start-page: 1
  issue: 1
  year: 2022
  ident: 3374_CR5
  publication-title: Proc. ACM Interact. Mobile Wear. Ubiq. Technol.
  doi: 10.1145/3517246
– volume: 171
  start-page: 754
  year: 2016
  ident: 3374_CR17
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.085
– volume: 23
  start-page: 1175
  issue: 10
  year: 2001
  ident: 3374_CR22
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.954607
– volume: 22
  start-page: 5889
  issue: 6
  year: 2022
  ident: 3374_CR7
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3149337
– volume: 7
  start-page: 1101
  issue: 10
  year: 2017
  ident: 3374_CR10
  publication-title: Appl. Sci.
  doi: 10.3390/app7101101
– volume: 111
  start-page: 107728
  year: 2021
  ident: 3374_CR40
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107728
– volume: 70
  start-page: 2106
  issue: 2
  year: 2022
  ident: 3374_CR44
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2022.3161812
– ident: 3374_CR43
  doi: 10.3389/fnins.2023.1233037
– volume: 119
  start-page: 3
  year: 2019
  ident: 3374_CR14
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– volume: 5
  start-page: 1579
  issue: 11
  year: 1996
  ident: 3374_CR36
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.541428
– volume: 46
  start-page: 1
  issue: 3
  year: 2014
  ident: 3374_CR1
  publication-title: ACM Comput. Surveys (CSUR)
  doi: 10.1145/2499621
– volume: 61
  start-page: 1780
  issue: 6
  year: 2014
  ident: 3374_CR20
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2307069
– volume: 38
  start-page: 41
  year: 2017
  ident: 3374_CR19
  publication-title: Pervasive Mobile Comput.
  doi: 10.1016/j.pmcj.2016.09.009
SSID ssj0000327868
Score 2.323877
Snippet With the evolution of smart devices like smartphones, smartwatches, and other wearable devices, motion sensors have been integrated into these devices to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7041
SubjectTerms Accuracy
Algorithms
Computer Imaging
Computer Science
Computing costs
Datasets
Decision trees
Deep learning
Engineering
Fourier transforms
Human activity recognition
Human motion
Image Processing and Computer Vision
Machine learning
Motion sensors
Multimedia Information Systems
Neural networks
Original Paper
Pattern Recognition and Graphics
Performance evaluation
Regression analysis
Representations
Sensors
Signal,Image and Speech Processing
Smartwatches
Support vector machines
Ubiquitous computing
Vision
Wearable technology
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYCBQgFRKMgDG1hK7CR2xgpRMaAK8VGVKXIcmwWlVdMy9NdjO0kDCJBgjnOK7mzfXez3HsC5CONIKj_FaZSm2PQbKRaCEqw10zxVgZaO1Gd0y4ZDPh7HdxUorKhvu9dHkm6nbsBuPos8bHIK9ihlAV6uw4ZJd9wKNtw_jFZ_VjxKGC8xcDyy_JserdAy35v5nJGaMvPLyahLOIP2_z51F3aqAhP1yxmxB2sq70C7Fm9A1VruwPYHJsJ9eO7naJEXi6ndOgqVIQs0chzOxpYjvqxBSjmqhCZeUKk-jUzZi5zUH7IgCatFgVbXkib5ATwNrh-vbnCluoClWY5zLJTmgisWy4yFcaiE8InUDoRKJOGaEG1aOqI8IcNAc5Jpn6RM8iCVTIWmNz-EVj7J1REgmpkkKCOemZibso0LrRj1aeZLEQvOaBf82vOJrCjJrTLGa9KQKVtPJsaTifNksuzCxeqdaUnI8evoXh3QpFqcRUJNmRdHtpTtwmUdwObxz9aO_zb8BLaImwP2RloPWvPZQp3Cpnwz8ZuduUn7Dkyc6Zg
  priority: 102
  providerName: Springer Nature
Title An unsupervised statistical representation learning method for human activity recognition
URI https://link.springer.com/article/10.1007/s11760-024-03374-z
https://www.proquest.com/docview/3256964565
Volume 18
WOSCitedRecordID wos001260374600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFL3iNcDAG1EolQc2sEjsJnYmBKgVEqiqClSFJXIcmwWlpaUMfD2247SABAtLFsdWlGP7Xj_OOQDHIkpiqcIMZ3GWYbPeyLAQlGCtmeaZamrpRH36t6zT4YNB0vUbbhN_rbKaE91EnQ-l3SM_oyY2J7HNP85Hr9i6RtnTVW-hsQjLViXBWjd0o6fZHktACeMlG47HVokzoJ43U7LnQhYH2AQpHFDKmvjje2yaJ5w_zkhd6Glv_PejN2HdJ53oouwlW7Cgim1Y-yJFuAOPFwWaFpPpyM4dE5UjyzRyIs6molO-rFhKBfJOE8-otJ9GJu9FzusPWZaENaNAs3tJw2IXHtqt-6tr7G0XsDTj8Q0LpbngiiUyZ1ESKSFCIrVjoRJJuCZEmzUdUYGQUVNzkuuQZEzyZiaZiszifA-WimGh9gHR3ERBGfPcgG7yNi60YjSkeShFIjijNQirH55Kr0lurTFe0rmasgUpNSClDqT0owYnszqjUpHjz7frFTKpH52TdA5LDU4rbOfFv7d28Hdrh7BKXHeyV9DqsPQ2nqojWJHvBq9xA5YvW51urwGLNww3XE81z95d_xN9TvA6
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB3BggQ9lPJRdQttfYATWCR2EjsHVCFaBNrtigMgOAXHsblU2YVlQeVH8RsZO8kuIMGNQ8-JLSV-nhl_vPcA1lWcJtqEOc2TPKe43sipUpxRa4WVuYms9qI-p13R68mzs_RoCh4aLoy7VtnERB-oi752e-TbHHNzmrj64-fgijrXKHe62lhoVLDomH93uGQb7hz-wvHdYGz_9_HeAa1dBahGuN1QZaxU0ohUFyJOY6NUyLT1JEummbSMWVyyMBMoHUdWssKGLBdaRrkWJsa1J_Y7DTMRl8LNq46g4z2dgDMhK_adTJzyZ8Brnk7F1gtFElBMijTgXET0_nkunBS4L85kfarbX_jfftIn-FgX1WS3mgWLMGXKJfjwRGpxGc53SzIqh6OBi41DUxDHpPIi1djQK3s2LKyS1E4al6Sy1yZY1xPvZUgcC8SZbZDxvat-uQIn7_Jtn6FV9kvzBQgvMMvrRBYIaqxLpbJG8JAXoVapQny0IWwGONO15rqz_vibTdSiHSgyBEXmQZHdt2Fz3GZQKY68-fZag4Ssjj7DbAKDNmw1WJo8fr23r2_39gPmDo7_dLPuYa-zCvPMQ9ldt1uD1s31yHyDWX2LY3f93c8LAhfvjbFHiwVLXg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBpYAoqw_cwGpiJ7FzREAFAlWVWAQny3FsLiitaMuBr8d2krYgQEKc41iRZ-yZiee9B3Ak4zRROsxwlmQZtvVGhqWkBBvDDM90ZJQn9Xm4YZ0Of3xMu1Moft_tXl9JlpgGx9JUDFv93LQmwLeQJQG28QUHlLIIv8_CfOQa6V29fvsw_ssSUMJ4iYfjiePiDGiFnPl-ms_RaZJyfrkl9cGnvfr_z16DlSrxRKelp6zDjC4asFqLOqBqjzdgeYqhcAOeTgs0KgajvjtSBjpHDoDkuZ3tXJ4QswYvFagSoHhGpSo1sukw8hKAyIEnnEYFGrcr9YpNuG9f3J1d4kqNASu7TYdYasMl1yxVOYvTWEsZEmU8OJUowg0hxpZ6RAdSxZHhJDchyZjiUaaYjm3NvgVzRa_Q24BoboOjSnhufcGmc1wazWhI81DJVHJGmxDWVhCqoip3ihkvYkKy7FZS2JUUfiXFexOOx-_0S6KOX0fv1cYV1aYdCGrTvzRxKW4TTmpjTh7_PNvO34YfwmL3vC1urjrXu7BEvDu4prU9mBu-jvQ-LKg3a8rXA-_LH6yr9WA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+unsupervised+statistical+representation+learning+method+for+human+activity+recognition&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Abdi%2C+Mohammad+Foad&rft.au=BabaAli%2C+Bagher&rft.au=Momeni%2C+Saleh&rft.date=2024-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=18&rft.issue=10&rft.spage=7041&rft.epage=7052&rft_id=info:doi/10.1007%2Fs11760-024-03374-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon