Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm
In this paper, we propose a real-time image superpixel segmentation method with 50 frames/s by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. In order to decrease the computational costs of superpixel algorithms, we adopt a fast two-step framework. In the f...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 25; číslo 12; s. 5933 - 5942 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.12.2016
|
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a real-time image superpixel segmentation method with 50 frames/s by using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. In order to decrease the computational costs of superpixel algorithms, we adopt a fast two-step framework. In the first clustering stage, the DBSCAN algorithm with color-similarity and geometric restrictions is used to rapidly cluster the pixels, and then, small clusters are merged into superpixels by their neighborhood through a distance measurement defined by color and spatial features in the second merging stage. A robust and simple distance function is defined for obtaining better superpixels in these two steps. The experimental results demonstrate that our real-time superpixel algorithm (50 frames/s) by the DBSCAN clustering outperforms the state-of-the-art superpixel segmentation methods in terms of both accuracy and efficiency. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1057-7149 1941-0042 1941-0042 |
| DOI: | 10.1109/TIP.2016.2616302 |