Neighborhood search-based job scheduling for IoT big data real-time processing in distributed edge-cloud computing environment
Cloud-edge collaboration architecture, which combines edge processing and centralized cloud processing, is suitable for placement and caching of streaming media. A cache-aware scheduling model based on neighborhood search is proposed. The model is divided into four sub-problems: job classification,...
Saved in:
| Published in: | The Journal of supercomputing Vol. 77; no. 2; pp. 1853 - 1878 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.02.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cloud-edge collaboration architecture, which combines edge processing and centralized cloud processing, is suitable for placement and caching of streaming media. A cache-aware scheduling model based on neighborhood search is proposed. The model is divided into four sub-problems: job classification, node resource allocation, node clustering, and cache-aware job scheduling. Firstly, jobs are categorized into three categories, and then different resources are allocated to nodes according to different job execution conditions. Secondly, the nodes with similar capabilities are clustered, and the jobs are cached by delay-waiting. For jobs that do not satisfy the data locality, the jobs are scheduled to the nodes with similar capabilities according to the neighborhood search results. Meanwhile, a cache-aware scheduling algorithm based on neighborhood search is proposed. Experiments show that the proposed algorithm can effectively minimize the delay of content transmission and the cost of content placement, the job execution time is shortened and the processing capacity of the cloud data center is improved. |
|---|---|
| AbstractList | Cloud-edge collaboration architecture, which combines edge processing and centralized cloud processing, is suitable for placement and caching of streaming media. A cache-aware scheduling model based on neighborhood search is proposed. The model is divided into four sub-problems: job classification, node resource allocation, node clustering, and cache-aware job scheduling. Firstly, jobs are categorized into three categories, and then different resources are allocated to nodes according to different job execution conditions. Secondly, the nodes with similar capabilities are clustered, and the jobs are cached by delay-waiting. For jobs that do not satisfy the data locality, the jobs are scheduled to the nodes with similar capabilities according to the neighborhood search results. Meanwhile, a cache-aware scheduling algorithm based on neighborhood search is proposed. Experiments show that the proposed algorithm can effectively minimize the delay of content transmission and the cost of content placement, the job execution time is shortened and the processing capacity of the cloud data center is improved. |
| Author | Zhang, YiHan Li, Chunlin Luo, Youlong |
| Author_xml | – sequence: 1 givenname: Chunlin surname: Li fullname: Li, Chunlin organization: Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Department of Computer Science, Wuhan University of Technology – sequence: 2 givenname: YiHan surname: Zhang fullname: Zhang, YiHan organization: Department of Computer Science, Wuhan University of Technology – sequence: 3 givenname: Youlong surname: Luo fullname: Luo, Youlong email: luoyoulong2005@126.com organization: Department of Computer Science, Wuhan University of Technology |
| BookMark | eNp9kEtLZDEUhMOgMO3jD7gKuM6YV9_Hcmh0FBrd6DrkcXI7ze2kJ8kV3Mxvn9u2ILhwdRanvqqiztBJTBEQumL0F6O0vSmMcd4SyimhQkhBmh9owZatIFR28gQtaD-_uqXkP9FZKVtKqRStWKB_jxCGjUl5k5LDBXS2G2J0AYe3yeBiN-CmMcQB-5TxQ3rGJgzY6apxBj2SGnaA9zlZKOWgChG7UGoOZqqzB7gBiB3T5LBNu_1UDxqIryGnuINYL9Cp12OBy497jl7ubp9X92T99Odh9XtNrGB9JRo0k9qJxnWu6zzjVpjea92a1gMw7Xpv-8Y4KvuGL4X10ntwkgOzwBtmxDm6PvrOVf9OUKrapinHOVJx2dG2a6Wks4ofVTanUjJ4tc9hp_ObYlQddlbHndW8s3rfWTUz1H2BbKi6hhRr1mH8HhVHtMw5cYD82eob6j-NcJei |
| CitedBy_id | crossref_primary_10_1109_JIOT_2024_3408166 crossref_primary_10_1186_s13638_023_02253_4 crossref_primary_10_1016_j_hcc_2024_100268 crossref_primary_10_1186_s13677_022_00304_7 crossref_primary_10_1007_s10462_025_11208_8 crossref_primary_10_1016_j_future_2022_11_031 crossref_primary_10_1007_s42979_025_03757_0 |
| Cites_doi | 10.1002/jgt.3190130610 10.1145/1218063.1217968 10.1109/TSC.2018.2866421 10.1109/SNSP.2018.00096 10.1007/978-981-10-0129-1_4 10.1142/S0129626415500097 10.1109/OJCOMS.2020.2978585 10.1109/TSC.2015.2428251 10.1109/MNET.001.1800486 10.1109/TCC.2015.2474403 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00153 10.1109/ICNP.2019.8888037 10.1109/CAC48633.2019.8996876 10.1016/j.jss.2016.07.006 10.1049/iet-ipr.2017.0892 10.1007/s10586-016-0677-3 10.1016/j.future.2019.05.026 10.1109/TASE.2017.2693688 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-020-03343-6 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 1878 |
| ExternalDocumentID | 10_1007_s11227_020_03343_6 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-aea14ad36d8d88f12c3b9faa7b7fee1ad9fc96bd0496253cf4ffed42e1ce261b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535666200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 00:43:27 EDT 2025 Tue Nov 18 21:32:48 EST 2025 Sat Nov 29 04:27:39 EST 2025 Fri Feb 21 02:49:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Neighborhood search Distributed edge-cloud Job scheduling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-aea14ad36d8d88f12c3b9faa7b7fee1ad9fc96bd0496253cf4ffed42e1ce261b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2480787440 |
| PQPubID | 2043774 |
| PageCount | 26 |
| ParticipantIDs | proquest_journals_2480787440 crossref_primary_10_1007_s11227_020_03343_6 crossref_citationtrail_10_1007_s11227_020_03343_6 springer_journals_10_1007_s11227_020_03343_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ChenCHLinJWKuoSYMapReduce scheduling for deadline-constrained jobs in heterogeneous cloud computing systemsIEEE Trans Cloud Comput20186112714010.1109/TCC.2015.2474403 ChunlinLiHezhiSunChenYiYoulongLuoEdge cloud resource expansion and shrinkage based on workload for minimizing the costFuture Gener Comput Syst201910132734010.1016/j.future.2019.05.026 AkhavanbitaghsirSKhonsariACooperative caching for content dissemination in vehicular networksInt J Commun Syst2018313122 Mathiya BJ, Desai VL (2016) Apache Hadoop Yarn MapReduce job classification based on cpu utilization and performance evaluation on multi-cluster heterogeneous environment. In: Proceedings of 9th International Conference on ICT for Sustainable Development. Springer, Singapore, pp 35–44 Zhang H, Chen S, Zou P, Xiong G, Zhao H, Zhang Y (2019) Research and application of industrial equipment management service system based on cloud-edge collaboration. In: 2019 Chinese Automation Congress (CAC), Hangzhou. IEEE, pp 5451–5456 HaoYJiangYChenTCaoDChenMiTaskOffloading: intelligent task offloading for a cloud-edge collaborative systemIEEE Netw2019335828810.1109/MNET.001.1800486 Kang L, Tang B, Zhang L, Tang L (2019) Mobility-aware and data caching-based task scheduling strategy in mobile edge computing. In: 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, pp 1071–1077 ChenHZhuXLiuGUncertainty-aware online scheduling for real-time workflows in cloud service environmentIEEE Trans Serv Comput201810.1109/TSC.2018.2866421 ZhangPYZhouMCDynamic cloud task scheduling based on a two-stage strategyIEEE Trans Autom Sci Eng201815277278310.1109/TASE.2017.2693688 LimBKimJWChungYDCATS: cache-aware task scheduling for hadoop-based systemsCluster Comput201720111510.1007/s10586-016-0677-3 YingCSunLChongHImproved side information generation algorithm based on naive bayesian theory for distributed video codingIET Image Process201812335436010.1049/iet-ipr.2017.0892 Alibaba cloud. IT services. [2020-1-2]. https://www.aliyun.com/ysc/1895756.html Gao Z et al (2019) A light-weight trust mechanism for cloud-edge collaboration framework. In: 2019 IEEE 27th International Conference on Network Protocols (ICNP), Chicago. IEEE, pp 1–6 Online Github Intel-Hadoop. HiBench. [2019-07-1]. https://github.com/intel-Hadoop/HiBench MccuaigWShepherdBDomination in graphs with minimum degree twoJ Graph Theory2010136749762102589610.1002/jgt.3190130610 AhaniGYuanDOptimal scheduling of content caching subject to deadlineIEEE Open J Commun Soc2020129330710.1109/OJCOMS.2020.2978585 GopalanNPSureshSModified delay scheduling: a heuristic approach for hadoop scheduling to improve fairness and response timeParallel Process Lett2015250415501559343820810.1142/S0129626415500097 Online Github Google. Youtube-8m. [2019-07-01]. https://github.com/google/youtube-8m ChoJKoHKoIAdaptive service selection according to the service density in multiple Qos aspectsIEEE Trans Serv Comput20169688389410.1109/TSC.2015.2428251 KeshanchiBSouriANavimipourNJAn improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testingJ Syst Softw2017124212110.1016/j.jss.2016.07.006 Liang W, Huang J (2018) Research on streaming media adaptive congestion control technology. In: 2018 International Conference on Sensor Networks and Signal Processing (SNSP), Xi’an. IEEE, pp 482–485 ZhangXHuBJiangJAn optimized algorithm for reduce task schedulingJ Comput201494794802 YuHZhengDZhaoBYUnderstanding user behavior in large-scale video-on-demand systemsACM SIGOPS Operat Syst Rev200640433334410.1145/1218063.1217968 CH Chen (3343_CR9) 2018; 6 S Akhavanbitaghsir (3343_CR12) 2018; 31 Li Chunlin (3343_CR23) 2019; 101 B Keshanchi (3343_CR6) 2017; 124 H Chen (3343_CR7) 2018 3343_CR11 3343_CR22 3343_CR21 X Zhang (3343_CR17) 2014; 9 G Ahani (3343_CR10) 2020; 1 C Ying (3343_CR15) 2018; 12 3343_CR1 3343_CR2 PY Zhang (3343_CR8) 2018; 15 B Lim (3343_CR14) 2017; 20 3343_CR19 Y Hao (3343_CR3) 2019; 33 3343_CR4 NP Gopalan (3343_CR13) 2015; 25 J Cho (3343_CR5) 2016; 9 3343_CR16 H Yu (3343_CR20) 2006; 40 W Mccuaig (3343_CR18) 2010; 13 |
| References_xml | – reference: AhaniGYuanDOptimal scheduling of content caching subject to deadlineIEEE Open J Commun Soc2020129330710.1109/OJCOMS.2020.2978585 – reference: Gao Z et al (2019) A light-weight trust mechanism for cloud-edge collaboration framework. In: 2019 IEEE 27th International Conference on Network Protocols (ICNP), Chicago. IEEE, pp 1–6 – reference: ChenCHLinJWKuoSYMapReduce scheduling for deadline-constrained jobs in heterogeneous cloud computing systemsIEEE Trans Cloud Comput20186112714010.1109/TCC.2015.2474403 – reference: Mathiya BJ, Desai VL (2016) Apache Hadoop Yarn MapReduce job classification based on cpu utilization and performance evaluation on multi-cluster heterogeneous environment. In: Proceedings of 9th International Conference on ICT for Sustainable Development. Springer, Singapore, pp 35–44 – reference: ZhangPYZhouMCDynamic cloud task scheduling based on a two-stage strategyIEEE Trans Autom Sci Eng201815277278310.1109/TASE.2017.2693688 – reference: Kang L, Tang B, Zhang L, Tang L (2019) Mobility-aware and data caching-based task scheduling strategy in mobile edge computing. In: 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, pp 1071–1077 – reference: ChoJKoHKoIAdaptive service selection according to the service density in multiple Qos aspectsIEEE Trans Serv Comput20169688389410.1109/TSC.2015.2428251 – reference: KeshanchiBSouriANavimipourNJAn improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testingJ Syst Softw2017124212110.1016/j.jss.2016.07.006 – reference: ChenHZhuXLiuGUncertainty-aware online scheduling for real-time workflows in cloud service environmentIEEE Trans Serv Comput201810.1109/TSC.2018.2866421 – reference: ZhangXHuBJiangJAn optimized algorithm for reduce task schedulingJ Comput201494794802 – reference: Zhang H, Chen S, Zou P, Xiong G, Zhao H, Zhang Y (2019) Research and application of industrial equipment management service system based on cloud-edge collaboration. In: 2019 Chinese Automation Congress (CAC), Hangzhou. IEEE, pp 5451–5456 – reference: MccuaigWShepherdBDomination in graphs with minimum degree twoJ Graph Theory2010136749762102589610.1002/jgt.3190130610 – reference: LimBKimJWChungYDCATS: cache-aware task scheduling for hadoop-based systemsCluster Comput201720111510.1007/s10586-016-0677-3 – reference: Online Github Google. Youtube-8m. [2019-07-01]. https://github.com/google/youtube-8m – reference: Alibaba cloud. IT services. [2020-1-2]. https://www.aliyun.com/ysc/1895756.html – reference: HaoYJiangYChenTCaoDChenMiTaskOffloading: intelligent task offloading for a cloud-edge collaborative systemIEEE Netw2019335828810.1109/MNET.001.1800486 – reference: GopalanNPSureshSModified delay scheduling: a heuristic approach for hadoop scheduling to improve fairness and response timeParallel Process Lett2015250415501559343820810.1142/S0129626415500097 – reference: YingCSunLChongHImproved side information generation algorithm based on naive bayesian theory for distributed video codingIET Image Process201812335436010.1049/iet-ipr.2017.0892 – reference: YuHZhengDZhaoBYUnderstanding user behavior in large-scale video-on-demand systemsACM SIGOPS Operat Syst Rev200640433334410.1145/1218063.1217968 – reference: Online Github Intel-Hadoop. HiBench. [2019-07-1]. https://github.com/intel-Hadoop/HiBench – reference: ChunlinLiHezhiSunChenYiYoulongLuoEdge cloud resource expansion and shrinkage based on workload for minimizing the costFuture Gener Comput Syst201910132734010.1016/j.future.2019.05.026 – reference: AkhavanbitaghsirSKhonsariACooperative caching for content dissemination in vehicular networksInt J Commun Syst2018313122 – reference: Liang W, Huang J (2018) Research on streaming media adaptive congestion control technology. In: 2018 International Conference on Sensor Networks and Signal Processing (SNSP), Xi’an. IEEE, pp 482–485 – volume: 13 start-page: 749 issue: 6 year: 2010 ident: 3343_CR18 publication-title: J Graph Theory doi: 10.1002/jgt.3190130610 – volume: 40 start-page: 333 issue: 4 year: 2006 ident: 3343_CR20 publication-title: ACM SIGOPS Operat Syst Rev doi: 10.1145/1218063.1217968 – year: 2018 ident: 3343_CR7 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2018.2866421 – ident: 3343_CR4 doi: 10.1109/SNSP.2018.00096 – ident: 3343_CR16 doi: 10.1007/978-981-10-0129-1_4 – volume: 25 start-page: 1550 issue: 04 year: 2015 ident: 3343_CR13 publication-title: Parallel Process Lett doi: 10.1142/S0129626415500097 – ident: 3343_CR19 – volume: 1 start-page: 293 year: 2020 ident: 3343_CR10 publication-title: IEEE Open J Commun Soc doi: 10.1109/OJCOMS.2020.2978585 – volume: 9 start-page: 883 issue: 6 year: 2016 ident: 3343_CR5 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2015.2428251 – volume: 33 start-page: 82 issue: 5 year: 2019 ident: 3343_CR3 publication-title: IEEE Netw doi: 10.1109/MNET.001.1800486 – volume: 6 start-page: 127 issue: 1 year: 2018 ident: 3343_CR9 publication-title: IEEE Trans Cloud Comput doi: 10.1109/TCC.2015.2474403 – ident: 3343_CR11 doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00153 – ident: 3343_CR1 doi: 10.1109/ICNP.2019.8888037 – volume: 31 start-page: 1 issue: 3 year: 2018 ident: 3343_CR12 publication-title: Int J Commun Syst – ident: 3343_CR2 doi: 10.1109/CAC48633.2019.8996876 – volume: 9 start-page: 794 issue: 4 year: 2014 ident: 3343_CR17 publication-title: J Comput – volume: 124 start-page: 1 issue: 2 year: 2017 ident: 3343_CR6 publication-title: J Syst Softw doi: 10.1016/j.jss.2016.07.006 – volume: 12 start-page: 354 issue: 3 year: 2018 ident: 3343_CR15 publication-title: IET Image Process doi: 10.1049/iet-ipr.2017.0892 – ident: 3343_CR22 – volume: 20 start-page: 1 issue: 1 year: 2017 ident: 3343_CR14 publication-title: Cluster Comput doi: 10.1007/s10586-016-0677-3 – ident: 3343_CR21 – volume: 101 start-page: 327 year: 2019 ident: 3343_CR23 publication-title: Future Gener Comput Syst doi: 10.1016/j.future.2019.05.026 – volume: 15 start-page: 772 issue: 2 year: 2018 ident: 3343_CR8 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2017.2693688 |
| SSID | ssj0004373 |
| Score | 2.285739 |
| Snippet | Cloud-edge collaboration architecture, which combines edge processing and centralized cloud processing, is suitable for placement and caching of streaming... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1853 |
| SubjectTerms | Algorithms Caching Cloud computing Clustering Compilers Computer Science Data centers Interpreters Job classification Neighborhoods Nodes Placement Processor Architectures Programming Languages Resource allocation Scheduling Searching Streaming media |
| Title | Neighborhood search-based job scheduling for IoT big data real-time processing in distributed edge-cloud computing environment |
| URI | https://link.springer.com/article/10.1007/s11227-020-03343-6 https://www.proquest.com/docview/2480787440 |
| Volume | 77 |
| WOSCitedRecordID | wos000535666200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66evDiW1xdJQdvGmibtE2OIi56WQRX2VvJU1aWdtmHR3-7mT6sigp67jQtmUxmJpnvG4TOpNDKR6kBYZRrwqRLiJTeHkXgaCQcZ0rLstlEOhjw0Ujc1aCweVPt3lxJljt1C3YLoyglkO4ElDJKklW0FgPbDOTo948tGpJW98rCS_KYRTVU5vsxPrujNsb8ci1aepv-1v_-cxtt1tElvqyWww5asfku2mo6N-DakPfQ6wBORL36gdQYV6udgEMz-LlQ2Ge83gMBUB37mBbfFkOsxk8YqkmxDzInBDrS42mFMQCpcY4NMPBC8yw_BpzRET0plgbr8tsg8wFSt48e-tfDqxtSd2Ig2pvogkgrQyYNTQw3nLsw0lQJJ2WqUmdtKI1wWiTK-HTD51NUO-acNSyyobY-RVP0AHXyIreHCCfAB08FpSYUzDrNLWdGcx9VSipNHHdR2Cgk0zVNOXTLmGQtwTJMcOYnOCsnOEu66Pz9nWlF0vGrdK_Rc1Yb7DyLAFoPrQCCLrpo9No-_nm0o7-JH6ONCKpiyrrvHuosZkt7gtb1y2I8n52WC_kNZZvu1w |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SXBhPMV45sANIq1N1iVHhEBDjAqJgXar0jzQ0NQhNjjy24n7oIAACc510yqOYzvx5w_gUEmd-ii1RTkTmnLlIqqUt0fZciyUTvBUq5xsohPHYjCQ1yUobFJVu1dXkvlOXYPdgjDsUEx3WoxxRqNZmOdIs4M5-s1djYZkxb2y9JKizcMSKvP9GJ_dUR1jfrkWzb3NeeN__7kCy2V0SU6K5bAKMzZbg0bF3EBKQ16H1xhPRL36sakxKVY7RYdmyMM4JT7j9R4IgerEx7TkYtwn6fCeYDUp8UHmiCIjPXksMAYoNcyIwQ68SJ7lx8AzOqpH42dDdP5tlPkAqduA2_Oz_mmXlkwMVHsTnVJlVcCVYZERRggXhJql0inVSTvO2kAZ6bSMUuPTDZ9PMe24c9bw0Aba-hQtZZswl40zuwUkwn7wTDJmAsmt08IKbrTwUaViyrTbTQgqhSS6bFOObBmjpG6wjBOc-AlO8glOoiYcvb_zWDTp-FV6t9JzUhrsJAkRWo9UAK0mHFd6rR__PNr238QPYLHbv-olvYv4cgeWQqyQyWvAd2Fu-vRs92BBv0yHk6f9fFG_AZ-z8bs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58IV58i_WZgzcN7W7SbXIUtViUIr7obcnmIZWyLVo9-tvN7MOtooJ43tnskmSYmWS-7wM4UFInPkttUM6Eply5iCrl_VE2HAulEzzRKhObaHW7oteTVxMo_qzbvbySzDENyNKUjusj4-oV8C0IwxbF0qfBGGc0moZZ7isZbOq6vrmvkJEsv2OW3lI0eVjAZr4f43NoqvLNL1ekWeRpL_3_n5dhscg6yXG-TVZgyqarsFQqOpDCwdfgrYsnpX5bINkxyb2AYqAz5HGYEF8J-8iEAHbic13SGd6SpP9AsMuU-ORzQFGpnoxy7AFa9VNikJkXRbX8GHh2R_Vg-GKIzr6NNhNQu3W4a5_dnpzTQqGBau-6Y6qsCrgyLDLCCOGCULNEOqVaSctZGygjnZZRYnwZ4ussph13zhoe2kBbX7olbANm0mFqN4FEyBPPJGMmkNw6LazgRgufbSqmTLNZg6BcnFgX9OWoojGIK-JlnODYT3CcTXAc1eDw451RTt7xq_VOueZx4cjPcYiQe5QIaNTgqFzj6vHPo239zXwf5q9O2_Flp3uxDQshNs5kreE7MDN-erG7MKdfx_3np71sf78Dpd36nw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neighborhood+search-based+job+scheduling+for+IoT+big+data+real-time+processing+in+distributed+edge-cloud+computing+environment&rft.jtitle=The+Journal+of+supercomputing&rft.au=Li%2C+Chunlin&rft.au=Zhang%2C+YiHan&rft.au=Luo%2C+Youlong&rft.date=2021-02-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=2&rft.spage=1853&rft.epage=1878&rft_id=info:doi/10.1007%2Fs11227-020-03343-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_020_03343_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |