Neighborhood search-based job scheduling for IoT big data real-time processing in distributed edge-cloud computing environment

Cloud-edge collaboration architecture, which combines edge processing and centralized cloud processing, is suitable for placement and caching of streaming media. A cache-aware scheduling model based on neighborhood search is proposed. The model is divided into four sub-problems: job classification,...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 77; no. 2; pp. 1853 - 1878
Main Authors: Li, Chunlin, Zhang, YiHan, Luo, Youlong
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2021
Springer Nature B.V
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cloud-edge collaboration architecture, which combines edge processing and centralized cloud processing, is suitable for placement and caching of streaming media. A cache-aware scheduling model based on neighborhood search is proposed. The model is divided into four sub-problems: job classification, node resource allocation, node clustering, and cache-aware job scheduling. Firstly, jobs are categorized into three categories, and then different resources are allocated to nodes according to different job execution conditions. Secondly, the nodes with similar capabilities are clustered, and the jobs are cached by delay-waiting. For jobs that do not satisfy the data locality, the jobs are scheduled to the nodes with similar capabilities according to the neighborhood search results. Meanwhile, a cache-aware scheduling algorithm based on neighborhood search is proposed. Experiments show that the proposed algorithm can effectively minimize the delay of content transmission and the cost of content placement, the job execution time is shortened and the processing capacity of the cloud data center is improved.
AbstractList Cloud-edge collaboration architecture, which combines edge processing and centralized cloud processing, is suitable for placement and caching of streaming media. A cache-aware scheduling model based on neighborhood search is proposed. The model is divided into four sub-problems: job classification, node resource allocation, node clustering, and cache-aware job scheduling. Firstly, jobs are categorized into three categories, and then different resources are allocated to nodes according to different job execution conditions. Secondly, the nodes with similar capabilities are clustered, and the jobs are cached by delay-waiting. For jobs that do not satisfy the data locality, the jobs are scheduled to the nodes with similar capabilities according to the neighborhood search results. Meanwhile, a cache-aware scheduling algorithm based on neighborhood search is proposed. Experiments show that the proposed algorithm can effectively minimize the delay of content transmission and the cost of content placement, the job execution time is shortened and the processing capacity of the cloud data center is improved.
Author Zhang, YiHan
Li, Chunlin
Luo, Youlong
Author_xml – sequence: 1
  givenname: Chunlin
  surname: Li
  fullname: Li, Chunlin
  organization: Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Department of Computer Science, Wuhan University of Technology
– sequence: 2
  givenname: YiHan
  surname: Zhang
  fullname: Zhang, YiHan
  organization: Department of Computer Science, Wuhan University of Technology
– sequence: 3
  givenname: Youlong
  surname: Luo
  fullname: Luo, Youlong
  email: luoyoulong2005@126.com
  organization: Department of Computer Science, Wuhan University of Technology
BookMark eNp9kEtLZDEUhMOgMO3jD7gKuM6YV9_Hcmh0FBrd6DrkcXI7ze2kJ8kV3Mxvn9u2ILhwdRanvqqiztBJTBEQumL0F6O0vSmMcd4SyimhQkhBmh9owZatIFR28gQtaD-_uqXkP9FZKVtKqRStWKB_jxCGjUl5k5LDBXS2G2J0AYe3yeBiN-CmMcQB-5TxQ3rGJgzY6apxBj2SGnaA9zlZKOWgChG7UGoOZqqzB7gBiB3T5LBNu_1UDxqIryGnuINYL9Cp12OBy497jl7ubp9X92T99Odh9XtNrGB9JRo0k9qJxnWu6zzjVpjea92a1gMw7Xpv-8Y4KvuGL4X10ntwkgOzwBtmxDm6PvrOVf9OUKrapinHOVJx2dG2a6Wks4ofVTanUjJ4tc9hp_ObYlQddlbHndW8s3rfWTUz1H2BbKi6hhRr1mH8HhVHtMw5cYD82eob6j-NcJei
CitedBy_id crossref_primary_10_1109_JIOT_2024_3408166
crossref_primary_10_1186_s13638_023_02253_4
crossref_primary_10_1016_j_hcc_2024_100268
crossref_primary_10_1186_s13677_022_00304_7
crossref_primary_10_1007_s10462_025_11208_8
crossref_primary_10_1016_j_future_2022_11_031
crossref_primary_10_1007_s42979_025_03757_0
Cites_doi 10.1002/jgt.3190130610
10.1145/1218063.1217968
10.1109/TSC.2018.2866421
10.1109/SNSP.2018.00096
10.1007/978-981-10-0129-1_4
10.1142/S0129626415500097
10.1109/OJCOMS.2020.2978585
10.1109/TSC.2015.2428251
10.1109/MNET.001.1800486
10.1109/TCC.2015.2474403
10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00153
10.1109/ICNP.2019.8888037
10.1109/CAC48633.2019.8996876
10.1016/j.jss.2016.07.006
10.1049/iet-ipr.2017.0892
10.1007/s10586-016-0677-3
10.1016/j.future.2019.05.026
10.1109/TASE.2017.2693688
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-020-03343-6
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 1878
ExternalDocumentID 10_1007_s11227_020_03343_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-aea14ad36d8d88f12c3b9faa7b7fee1ad9fc96bd0496253cf4ffed42e1ce261b3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000535666200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:43:27 EDT 2025
Tue Nov 18 21:32:48 EST 2025
Sat Nov 29 04:27:39 EST 2025
Fri Feb 21 02:49:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Neighborhood search
Distributed edge-cloud
Job scheduling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-aea14ad36d8d88f12c3b9faa7b7fee1ad9fc96bd0496253cf4ffed42e1ce261b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2480787440
PQPubID 2043774
PageCount 26
ParticipantIDs proquest_journals_2480787440
crossref_primary_10_1007_s11227_020_03343_6
crossref_citationtrail_10_1007_s11227_020_03343_6
springer_journals_10_1007_s11227_020_03343_6
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChenCHLinJWKuoSYMapReduce scheduling for deadline-constrained jobs in heterogeneous cloud computing systemsIEEE Trans Cloud Comput20186112714010.1109/TCC.2015.2474403
ChunlinLiHezhiSunChenYiYoulongLuoEdge cloud resource expansion and shrinkage based on workload for minimizing the costFuture Gener Comput Syst201910132734010.1016/j.future.2019.05.026
AkhavanbitaghsirSKhonsariACooperative caching for content dissemination in vehicular networksInt J Commun Syst2018313122
Mathiya BJ, Desai VL (2016) Apache Hadoop Yarn MapReduce job classification based on cpu utilization and performance evaluation on multi-cluster heterogeneous environment. In: Proceedings of 9th International Conference on ICT for Sustainable Development. Springer, Singapore, pp 35–44
Zhang H, Chen S, Zou P, Xiong G, Zhao H, Zhang Y (2019) Research and application of industrial equipment management service system based on cloud-edge collaboration. In: 2019 Chinese Automation Congress (CAC), Hangzhou. IEEE, pp 5451–5456
HaoYJiangYChenTCaoDChenMiTaskOffloading: intelligent task offloading for a cloud-edge collaborative systemIEEE Netw2019335828810.1109/MNET.001.1800486
Kang L, Tang B, Zhang L, Tang L (2019) Mobility-aware and data caching-based task scheduling strategy in mobile edge computing. In: 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, pp 1071–1077
ChenHZhuXLiuGUncertainty-aware online scheduling for real-time workflows in cloud service environmentIEEE Trans Serv Comput201810.1109/TSC.2018.2866421
ZhangPYZhouMCDynamic cloud task scheduling based on a two-stage strategyIEEE Trans Autom Sci Eng201815277278310.1109/TASE.2017.2693688
LimBKimJWChungYDCATS: cache-aware task scheduling for hadoop-based systemsCluster Comput201720111510.1007/s10586-016-0677-3
YingCSunLChongHImproved side information generation algorithm based on naive bayesian theory for distributed video codingIET Image Process201812335436010.1049/iet-ipr.2017.0892
Alibaba cloud. IT services. [2020-1-2]. https://www.aliyun.com/ysc/1895756.html
Gao Z et al (2019) A light-weight trust mechanism for cloud-edge collaboration framework. In: 2019 IEEE 27th International Conference on Network Protocols (ICNP), Chicago. IEEE, pp 1–6
Online Github Intel-Hadoop. HiBench. [2019-07-1]. https://github.com/intel-Hadoop/HiBench
MccuaigWShepherdBDomination in graphs with minimum degree twoJ Graph Theory2010136749762102589610.1002/jgt.3190130610
AhaniGYuanDOptimal scheduling of content caching subject to deadlineIEEE Open J Commun Soc2020129330710.1109/OJCOMS.2020.2978585
GopalanNPSureshSModified delay scheduling: a heuristic approach for hadoop scheduling to improve fairness and response timeParallel Process Lett2015250415501559343820810.1142/S0129626415500097
Online Github Google. Youtube-8m. [2019-07-01]. https://github.com/google/youtube-8m
ChoJKoHKoIAdaptive service selection according to the service density in multiple Qos aspectsIEEE Trans Serv Comput20169688389410.1109/TSC.2015.2428251
KeshanchiBSouriANavimipourNJAn improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testingJ Syst Softw2017124212110.1016/j.jss.2016.07.006
Liang W, Huang J (2018) Research on streaming media adaptive congestion control technology. In: 2018 International Conference on Sensor Networks and Signal Processing (SNSP), Xi’an. IEEE, pp 482–485
ZhangXHuBJiangJAn optimized algorithm for reduce task schedulingJ Comput201494794802
YuHZhengDZhaoBYUnderstanding user behavior in large-scale video-on-demand systemsACM SIGOPS Operat Syst Rev200640433334410.1145/1218063.1217968
CH Chen (3343_CR9) 2018; 6
S Akhavanbitaghsir (3343_CR12) 2018; 31
Li Chunlin (3343_CR23) 2019; 101
B Keshanchi (3343_CR6) 2017; 124
H Chen (3343_CR7) 2018
3343_CR11
3343_CR22
3343_CR21
X Zhang (3343_CR17) 2014; 9
G Ahani (3343_CR10) 2020; 1
C Ying (3343_CR15) 2018; 12
3343_CR1
3343_CR2
PY Zhang (3343_CR8) 2018; 15
B Lim (3343_CR14) 2017; 20
3343_CR19
Y Hao (3343_CR3) 2019; 33
3343_CR4
NP Gopalan (3343_CR13) 2015; 25
J Cho (3343_CR5) 2016; 9
3343_CR16
H Yu (3343_CR20) 2006; 40
W Mccuaig (3343_CR18) 2010; 13
References_xml – reference: AhaniGYuanDOptimal scheduling of content caching subject to deadlineIEEE Open J Commun Soc2020129330710.1109/OJCOMS.2020.2978585
– reference: Gao Z et al (2019) A light-weight trust mechanism for cloud-edge collaboration framework. In: 2019 IEEE 27th International Conference on Network Protocols (ICNP), Chicago. IEEE, pp 1–6
– reference: ChenCHLinJWKuoSYMapReduce scheduling for deadline-constrained jobs in heterogeneous cloud computing systemsIEEE Trans Cloud Comput20186112714010.1109/TCC.2015.2474403
– reference: Mathiya BJ, Desai VL (2016) Apache Hadoop Yarn MapReduce job classification based on cpu utilization and performance evaluation on multi-cluster heterogeneous environment. In: Proceedings of 9th International Conference on ICT for Sustainable Development. Springer, Singapore, pp 35–44
– reference: ZhangPYZhouMCDynamic cloud task scheduling based on a two-stage strategyIEEE Trans Autom Sci Eng201815277278310.1109/TASE.2017.2693688
– reference: Kang L, Tang B, Zhang L, Tang L (2019) Mobility-aware and data caching-based task scheduling strategy in mobile edge computing. In: 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), Xiamen, pp 1071–1077
– reference: ChoJKoHKoIAdaptive service selection according to the service density in multiple Qos aspectsIEEE Trans Serv Comput20169688389410.1109/TSC.2015.2428251
– reference: KeshanchiBSouriANavimipourNJAn improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testingJ Syst Softw2017124212110.1016/j.jss.2016.07.006
– reference: ChenHZhuXLiuGUncertainty-aware online scheduling for real-time workflows in cloud service environmentIEEE Trans Serv Comput201810.1109/TSC.2018.2866421
– reference: ZhangXHuBJiangJAn optimized algorithm for reduce task schedulingJ Comput201494794802
– reference: Zhang H, Chen S, Zou P, Xiong G, Zhao H, Zhang Y (2019) Research and application of industrial equipment management service system based on cloud-edge collaboration. In: 2019 Chinese Automation Congress (CAC), Hangzhou. IEEE, pp 5451–5456
– reference: MccuaigWShepherdBDomination in graphs with minimum degree twoJ Graph Theory2010136749762102589610.1002/jgt.3190130610
– reference: LimBKimJWChungYDCATS: cache-aware task scheduling for hadoop-based systemsCluster Comput201720111510.1007/s10586-016-0677-3
– reference: Online Github Google. Youtube-8m. [2019-07-01]. https://github.com/google/youtube-8m
– reference: Alibaba cloud. IT services. [2020-1-2]. https://www.aliyun.com/ysc/1895756.html
– reference: HaoYJiangYChenTCaoDChenMiTaskOffloading: intelligent task offloading for a cloud-edge collaborative systemIEEE Netw2019335828810.1109/MNET.001.1800486
– reference: GopalanNPSureshSModified delay scheduling: a heuristic approach for hadoop scheduling to improve fairness and response timeParallel Process Lett2015250415501559343820810.1142/S0129626415500097
– reference: YingCSunLChongHImproved side information generation algorithm based on naive bayesian theory for distributed video codingIET Image Process201812335436010.1049/iet-ipr.2017.0892
– reference: YuHZhengDZhaoBYUnderstanding user behavior in large-scale video-on-demand systemsACM SIGOPS Operat Syst Rev200640433334410.1145/1218063.1217968
– reference: Online Github Intel-Hadoop. HiBench. [2019-07-1]. https://github.com/intel-Hadoop/HiBench
– reference: ChunlinLiHezhiSunChenYiYoulongLuoEdge cloud resource expansion and shrinkage based on workload for minimizing the costFuture Gener Comput Syst201910132734010.1016/j.future.2019.05.026
– reference: AkhavanbitaghsirSKhonsariACooperative caching for content dissemination in vehicular networksInt J Commun Syst2018313122
– reference: Liang W, Huang J (2018) Research on streaming media adaptive congestion control technology. In: 2018 International Conference on Sensor Networks and Signal Processing (SNSP), Xi’an. IEEE, pp 482–485
– volume: 13
  start-page: 749
  issue: 6
  year: 2010
  ident: 3343_CR18
  publication-title: J Graph Theory
  doi: 10.1002/jgt.3190130610
– volume: 40
  start-page: 333
  issue: 4
  year: 2006
  ident: 3343_CR20
  publication-title: ACM SIGOPS Operat Syst Rev
  doi: 10.1145/1218063.1217968
– year: 2018
  ident: 3343_CR7
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2018.2866421
– ident: 3343_CR4
  doi: 10.1109/SNSP.2018.00096
– ident: 3343_CR16
  doi: 10.1007/978-981-10-0129-1_4
– volume: 25
  start-page: 1550
  issue: 04
  year: 2015
  ident: 3343_CR13
  publication-title: Parallel Process Lett
  doi: 10.1142/S0129626415500097
– ident: 3343_CR19
– volume: 1
  start-page: 293
  year: 2020
  ident: 3343_CR10
  publication-title: IEEE Open J Commun Soc
  doi: 10.1109/OJCOMS.2020.2978585
– volume: 9
  start-page: 883
  issue: 6
  year: 2016
  ident: 3343_CR5
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2015.2428251
– volume: 33
  start-page: 82
  issue: 5
  year: 2019
  ident: 3343_CR3
  publication-title: IEEE Netw
  doi: 10.1109/MNET.001.1800486
– volume: 6
  start-page: 127
  issue: 1
  year: 2018
  ident: 3343_CR9
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2015.2474403
– ident: 3343_CR11
  doi: 10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00153
– ident: 3343_CR1
  doi: 10.1109/ICNP.2019.8888037
– volume: 31
  start-page: 1
  issue: 3
  year: 2018
  ident: 3343_CR12
  publication-title: Int J Commun Syst
– ident: 3343_CR2
  doi: 10.1109/CAC48633.2019.8996876
– volume: 9
  start-page: 794
  issue: 4
  year: 2014
  ident: 3343_CR17
  publication-title: J Comput
– volume: 124
  start-page: 1
  issue: 2
  year: 2017
  ident: 3343_CR6
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2016.07.006
– volume: 12
  start-page: 354
  issue: 3
  year: 2018
  ident: 3343_CR15
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2017.0892
– ident: 3343_CR22
– volume: 20
  start-page: 1
  issue: 1
  year: 2017
  ident: 3343_CR14
  publication-title: Cluster Comput
  doi: 10.1007/s10586-016-0677-3
– ident: 3343_CR21
– volume: 101
  start-page: 327
  year: 2019
  ident: 3343_CR23
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2019.05.026
– volume: 15
  start-page: 772
  issue: 2
  year: 2018
  ident: 3343_CR8
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2017.2693688
SSID ssj0004373
Score 2.285739
Snippet Cloud-edge collaboration architecture, which combines edge processing and centralized cloud processing, is suitable for placement and caching of streaming...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1853
SubjectTerms Algorithms
Caching
Cloud computing
Clustering
Compilers
Computer Science
Data centers
Interpreters
Job classification
Neighborhoods
Nodes
Placement
Processor Architectures
Programming Languages
Resource allocation
Scheduling
Searching
Streaming media
Title Neighborhood search-based job scheduling for IoT big data real-time processing in distributed edge-cloud computing environment
URI https://link.springer.com/article/10.1007/s11227-020-03343-6
https://www.proquest.com/docview/2480787440
Volume 77
WOSCitedRecordID wos000535666200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66evDiW1xdJQdvGmibtE2OIi56WQRX2VvJU1aWdtmHR3-7mT6sigp67jQtmUxmJpnvG4TOpNDKR6kBYZRrwqRLiJTeHkXgaCQcZ0rLstlEOhjw0Ujc1aCweVPt3lxJljt1C3YLoyglkO4ElDJKklW0FgPbDOTo948tGpJW98rCS_KYRTVU5vsxPrujNsb8ci1aepv-1v_-cxtt1tElvqyWww5asfku2mo6N-DakPfQ6wBORL36gdQYV6udgEMz-LlQ2Ge83gMBUB37mBbfFkOsxk8YqkmxDzInBDrS42mFMQCpcY4NMPBC8yw_BpzRET0plgbr8tsg8wFSt48e-tfDqxtSd2Ig2pvogkgrQyYNTQw3nLsw0lQJJ2WqUmdtKI1wWiTK-HTD51NUO-acNSyyobY-RVP0AHXyIreHCCfAB08FpSYUzDrNLWdGcx9VSipNHHdR2Cgk0zVNOXTLmGQtwTJMcOYnOCsnOEu66Pz9nWlF0vGrdK_Rc1Yb7DyLAFoPrQCCLrpo9No-_nm0o7-JH6ONCKpiyrrvHuosZkt7gtb1y2I8n52WC_kNZZvu1w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4SXBhPMV45sANIq1N1iVHhEBDjAqJgXar0jzQ0NQhNjjy24n7oIAACc510yqOYzvx5w_gUEmd-ii1RTkTmnLlIqqUt0fZciyUTvBUq5xsohPHYjCQ1yUobFJVu1dXkvlOXYPdgjDsUEx3WoxxRqNZmOdIs4M5-s1djYZkxb2y9JKizcMSKvP9GJ_dUR1jfrkWzb3NeeN__7kCy2V0SU6K5bAKMzZbg0bF3EBKQ16H1xhPRL36sakxKVY7RYdmyMM4JT7j9R4IgerEx7TkYtwn6fCeYDUp8UHmiCIjPXksMAYoNcyIwQ68SJ7lx8AzOqpH42dDdP5tlPkAqduA2_Oz_mmXlkwMVHsTnVJlVcCVYZERRggXhJql0inVSTvO2kAZ6bSMUuPTDZ9PMe24c9bw0Aba-hQtZZswl40zuwUkwn7wTDJmAsmt08IKbrTwUaViyrTbTQgqhSS6bFOObBmjpG6wjBOc-AlO8glOoiYcvb_zWDTp-FV6t9JzUhrsJAkRWo9UAK0mHFd6rR__PNr238QPYLHbv-olvYv4cgeWQqyQyWvAd2Fu-vRs92BBv0yHk6f9fFG_AZ-z8bs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58IV58i_WZgzcN7W7SbXIUtViUIr7obcnmIZWyLVo9-tvN7MOtooJ43tnskmSYmWS-7wM4UFInPkttUM6Eply5iCrl_VE2HAulEzzRKhObaHW7oteTVxMo_qzbvbySzDENyNKUjusj4-oV8C0IwxbF0qfBGGc0moZZ7isZbOq6vrmvkJEsv2OW3lI0eVjAZr4f43NoqvLNL1ekWeRpL_3_n5dhscg6yXG-TVZgyqarsFQqOpDCwdfgrYsnpX5bINkxyb2AYqAz5HGYEF8J-8iEAHbic13SGd6SpP9AsMuU-ORzQFGpnoxy7AFa9VNikJkXRbX8GHh2R_Vg-GKIzr6NNhNQu3W4a5_dnpzTQqGBau-6Y6qsCrgyLDLCCOGCULNEOqVaSctZGygjnZZRYnwZ4ussph13zhoe2kBbX7olbANm0mFqN4FEyBPPJGMmkNw6LazgRgufbSqmTLNZg6BcnFgX9OWoojGIK-JlnODYT3CcTXAc1eDw451RTt7xq_VOueZx4cjPcYiQe5QIaNTgqFzj6vHPo239zXwf5q9O2_Flp3uxDQshNs5kreE7MDN-erG7MKdfx_3np71sf78Dpd36nw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neighborhood+search-based+job+scheduling+for+IoT+big+data+real-time+processing+in+distributed+edge-cloud+computing+environment&rft.jtitle=The+Journal+of+supercomputing&rft.au=Li%2C+Chunlin&rft.au=Zhang%2C+YiHan&rft.au=Luo%2C+Youlong&rft.date=2021-02-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=2&rft.spage=1853&rft.epage=1878&rft_id=info:doi/10.1007%2Fs11227-020-03343-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_020_03343_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon