An Iterative Scheme for Solving Arbitrary-Order Nonlinear Volterra Integro-Differential Equations Involving Delay

This paper introduces an iterative-based numerical scheme for solving nonlinear fractional-order Volterra integro-differential equations involving delay. Additionally, we provide sufficient conditions for the existence and uniqueness of the solution. The composite trapezoidal rule is applied to appr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Iranian journal of science (Online) Ročník 47; číslo 3; s. 851 - 861
Hlavní autoři: Ghosh, Bappa, Mohapatra, Jugal
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2023
Springer Nature B.V
Témata:
ISSN:2731-8095, 2731-8109
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces an iterative-based numerical scheme for solving nonlinear fractional-order Volterra integro-differential equations involving delay. Additionally, we provide sufficient conditions for the existence and uniqueness of the solution. The composite trapezoidal rule is applied to approximate the integral involved in the equation, followed by discretizing the Caputo fractional derivative operator of arbitrary order α ∈ ( 0 , 1 ) by using the classical L1 scheme. Further, the Daftardar-Gejji and Jafari method is employed to solve the implicit algebraic equation. The convergence analysis and error bounds of the proposed scheme are presented. It is shown that the approximate solution converges to the exact solution with order ( 2 - α ) . We illustrate the efficacy and applicability of the proposed method through a couple of examples.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2731-8095
2731-8109
DOI:10.1007/s40995-023-01446-2