Materials challenges and opportunities for brain-inspired computing
Inspired by the working principles of the human brain, neuromorphic computing shows great potential in executing cognitive tasks such as learning and adaptation with high energy efficiency. A major challenge is the development of devices and circuits that can naturally replicate the behavior of neur...
Saved in:
| Published in: | MRS bulletin Vol. 46; no. 10; pp. 978 - 986 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.10.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0883-7694, 1938-1425 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Inspired by the working principles of the human brain, neuromorphic computing shows great potential in executing cognitive tasks such as learning and adaptation with high energy efficiency. A major challenge is the development of devices and circuits that can naturally replicate the behavior of neurons and synapses, thus reducing the complexity, the energy consumption, and the area of the neuromorphic chip. Recently, much progress has been achieved in realizing hardware neuromorphic circuits with emerging “memristive” materials and devices, which present a wealth of physical phenomena that appear promising for the ad hoc design of virtually any neuromorphic function in the scale of few square nanometers on a silicon chip. In this article, an overview of material opportunities on emerging devices for brain-inspired computing is provided. We will summarize the biological functions of neuromorphic elements, discuss the requirements for their material counterparts and review the recent progress, and illustrate some cognitive computing primitives in hardware networks. Finally, the upcoming materials challenges will be discussed.
Graphic abstract |
|---|---|
| AbstractList | Inspired by the working principles of the human brain, neuromorphic computing shows great potential in executing cognitive tasks such as learning and adaptation with high energy efficiency. A major challenge is the development of devices and circuits that can naturally replicate the behavior of neurons and synapses, thus reducing the complexity, the energy consumption, and the area of the neuromorphic chip. Recently, much progress has been achieved in realizing hardware neuromorphic circuits with emerging “memristive” materials and devices, which present a wealth of physical phenomena that appear promising for the ad hoc design of virtually any neuromorphic function in the scale of few square nanometers on a silicon chip. In this article, an overview of material opportunities on emerging devices for brain-inspired computing is provided. We will summarize the biological functions of neuromorphic elements, discuss the requirements for their material counterparts and review the recent progress, and illustrate some cognitive computing primitives in hardware networks. Finally, the upcoming materials challenges will be discussed.
Graphic abstract Inspired by the working principles of the human brain, neuromorphic computing shows great potential in executing cognitive tasks such as learning and adaptation with high energy efficiency. A major challenge is the development of devices and circuits that can naturally replicate the behavior of neurons and synapses, thus reducing the complexity, the energy consumption, and the area of the neuromorphic chip. Recently, much progress has been achieved in realizing hardware neuromorphic circuits with emerging “memristive” materials and devices, which present a wealth of physical phenomena that appear promising for the ad hoc design of virtually any neuromorphic function in the scale of few square nanometers on a silicon chip. In this article, an overview of material opportunities on emerging devices for brain-inspired computing is provided. We will summarize the biological functions of neuromorphic elements, discuss the requirements for their material counterparts and review the recent progress, and illustrate some cognitive computing primitives in hardware networks. Finally, the upcoming materials challenges will be discussed.Graphic abstract |
| Author | Ielmini, D. Zhao, Y. D. Kang, J. F. |
| Author_xml | – sequence: 1 givenname: Y. D. surname: Zhao fullname: Zhao, Y. D. organization: Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, and Institute of Microelectronics, Peking University – sequence: 2 givenname: J. F. surname: Kang fullname: Kang, J. F. email: kangjf@pku.edu.cn organization: Institute of Microelectronics, Peking University – sequence: 3 givenname: D. surname: Ielmini fullname: Ielmini, D. organization: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET |
| BookMark | eNp9kE1LxDAQhoOs4O7qH_BU8BzNR9OkR1n8ghUveg5pk6xZuklN0oP_3mgFwcOeBoZ53pl5VmDhgzcAXGJ0jRnjN6mmjHOICIYIEcQgPgFL3FIBcU3YAiyREBTypq3PwCqlPUKYIc6WYPOssolODanq39UwGL8zqVJeV2EcQ8yTd9mVjg2x6qJyHjqfRheNrvpwGKfs_O4cnNoSYC5-6xq83d-9bh7h9uXhaXO7hT3FbYZKk54K2lnbNly3ttYdIqQVoiOYsk4pxGmtUatMY3StNbakawQnLdKWC9TRNbiac8cYPiaTstyHKfqyUhKOBSENLi-vgZin-hhSisbK3mWVXfC53D9IjOS3Mjkrk0WZ_FEmcUHJP3SM7qDi53GIzlAqw8Ve_LvqCPUFVLSBCA |
| CitedBy_id | crossref_primary_10_1021_acs_chemrev_4c00845 crossref_primary_10_1002_advs_202200629 crossref_primary_10_1002_aelm_202300749 crossref_primary_10_1088_2515_7639_acce6f crossref_primary_10_1088_2053_1583_adb8c3 crossref_primary_10_1063_5_0136403 crossref_primary_10_1088_2634_4386_ac9012 |
| Cites_doi | 10.1038/nnano.2011.96 10.1126/science.aaw5581 10.1038/s41598-017-05480-0 10.1103/PhysRevApplied.13.064056 10.1038/s41467-017-02337-y 10.1038/s41586-019-1677-2 10.1038/srep18639 10.1038/s41928-018-0023-2 10.1038/s41586-018-0632-y 10.1038/ncomms15217 10.1038/s41467-018-07979-0 10.1109/JEDS.2019.2915975 10.1038/s41467-020-17215-3 10.1002/aelm.201870056 10.1038/nn.3851 10.1002/adma.202003984 10.1038/srep29545 10.1038/nrn3353 10.1109/TED.2015.2439635 10.1523/JNEUROSCI.1425-06.2006 10.1038/s41586-019-1424-8 10.1109/JPROC.2014.2304638 10.1038/nn1387 10.1038/nmat3510 10.1038/s41467-019-11198-6 10.1126/science.1254642 10.1007/978-3-642-33269-2_16 10.1037/0278-7393.25.5.1161 10.1038/s41467-018-05517-6 10.1016/j.neucom.2016.10.012 10.1126/sciadv.1701329 10.1109/JPROC.2017.2684830 10.1038/ncomms14736 10.1038/ncomms15448 10.1016/j.mee.2017.09.001 10.1039/C8NR07135G 10.1021/nn202983n 10.1109/MCSE.2017.33 10.1126/science.aac9439 10.1007/s00422-006-0068-6 10.1126/science.aao3212 10.1038/srep04906 10.1126/sciadv.1501326 10.1109/MM.2018.112130359 10.1038/nnano.2016.70 10.1021/acsaelm.9b00011 10.1109/IEDM.2013.6724601 10.1038/nature16961 10.1002/aisy.202000096 10.1038/s41467-020-15158-3 10.1186/s11671-020-3249-7 10.1038/s41586-019-1013-x 10.1007/BF02478259 10.1038/s41928-017-0006-8 10.1002/adma.201602976 10.1002/aisy.202000224 10.1109/5.58356 10.1126/science.aav4450 10.1021/nl904092h 10.1113/jphysiol.1952.sp004718 10.1073/pnas.1105933108 10.1016/j.jallcom.2020.154434 10.1038/s41565-020-0722-5 10.1002/adma.201404531 10.1038/nmat4756 10.1038/nmat3054 10.1038/nature11451 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive License to the Materials Research Society 2021 The Author(s), under exclusive License to the Materials Research Society 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive License to the Materials Research Society 2021 – notice: The Author(s), under exclusive License to the Materials Research Society 2021. |
| DBID | AAYXX CITATION 7SR 7TA 8BQ 8FD JG9 |
| DOI | 10.1557/s43577-021-00205-1 |
| DatabaseName | CrossRef Engineered Materials Abstracts Materials Business File METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Materials Business File METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1938-1425 |
| EndPage | 986 |
| ExternalDocumentID | 10_1557_s43577_021_00205_1 |
| GrantInformation_xml | – fundername: Ministero degli Affari Esteri e della Cooperazione Internazionale grantid: PGR01011 funderid: http://dx.doi.org/10.13039/501100006601 – fundername: National Key Research and Development grantid: 2019FYB2205100 – fundername: National Natural Science Foundation of China grantid: 62004005 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -2P -2V -E. .FH 0E1 0R~ 123 2JN 4.4 406 5VS 74X 74Y 7~V 8FE 8FG 8UJ AAAZR AABES AABWE AACDK AACJH AAEWM AAGFV AAHNG AAJBT AAKTX AARAB AASML AATID AATMM AATNV AAUKB ABAKF ABBXD ABECU ABEFU ABGDZ ABJCF ABJNI ABKKG ABMQK ABMWE ABQTM ABROB ABTEG ABTKH ABTMW ABZCX ABZUI ACAOD ACBEA ACBEK ACBMC ACDTI ACETC ACGFS ACHSB ACIMK ACIWK ACPIV ACQPF ACRPL ACUIJ ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC ADNMO ADOVH ADOVT AEBAK AEFQL AEHGV AEMFK AEMSY AEMTW AENEX AENGE AESKC AEYYC AFBBN AFFUJ AFKQG AFKRA AFLOS AFLVW AFQWF AFUTZ AGLWM AGMZJ AGQEE AHQXX AIGIU AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS AKYQF AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMTXH AMXSW AMYLF ARABE ARZZG ATUCA AUXHV AYIQA BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BMAJL BQFHP C0O CBIIA CCPQU CCUQV CFAFE CFBFF CGQII CZ9 D1I DC4 DOHLZ DPUIP EBLON EBS EJD FIGPU HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IKXTQ IOEEP IOO IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JQKCU JZLTJ KAFGG KB. KC. KCGVB KFECR L98 LHUNA LLZTM M-V M7~ M8. NIKVX NPVJJ NQJWS O9- PDBOC PYCCK RAMDC RCA RNS ROL RR0 RSV S0W S6- S6U SAAAG SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TN5 UT1 WQ3 WXU WXY ZDLDU ZE2 ZJOSE ZMEZD ZYDXJ ~V1 AAUYE AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION KOV M7S PHGZM PHGZT PQGLB PTHSS 7SR 7TA 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c319t-ad2c383bff967d9f4db022988b2135baa0734d09ae6ed4dd1f2b687290df780b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721665900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0883-7694 |
| IngestDate | Thu Sep 25 00:41:54 EDT 2025 Sat Nov 29 03:39:09 EST 2025 Tue Nov 18 22:35:09 EST 2025 Fri Feb 21 02:46:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-ad2c383bff967d9f4db022988b2135baa0734d09ae6ed4dd1f2b687290df780b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2718226119 |
| PQPubID | 626324 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2718226119 crossref_citationtrail_10_1557_s43577_021_00205_1 crossref_primary_10_1557_s43577_021_00205_1 springer_journals_10_1557_s43577_021_00205_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Warrendale |
| PublicationTitle | MRS bulletin |
| PublicationTitleAbbrev | MRS Bulletin |
| PublicationYear | 2021 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | ZidanMAStrachanJPLuWDNat. Electron.201812210.1038/s41928-017-0006-8 DuttaSPariharAKhannaAGomezJDattaSNat. Commun.201910329910.1038/s41467-019-11198-61:CAS:528:DC%2BC1MXhsVeks73K S. Yu, P.-Y. Chen, Y. Cao, L. Xia, Y. Wang, H. Wu, 2015 IEEE International Electron Devices Meeting (Washington, DC, December 7–9, 2015), p. 17.3.1 SchneiderMLDonnellyCARussekSEBaekBPufallMRHopkinsPFDresselhausPDBenzSPRippardWHSci. Adv.20184e170132910.1126/sciadv.1701329 ChuangK-CChuC-YZhangH-XLuoJ-DLiW-SLiY-SChengH-CIEEE J. Electron Dev. Soc.201975891:CAS:528:DC%2BB3cXotlenuw%3D%3D10.1109/JEDS.2019.2915975 DaviesMSrinivasaNLinT-HChinyaGCaoYChodaySHDimouGJoshiPImamNJainSLiaoYLinC-KLinesALiuRMathaikuttyDMcCoySPaulATseJVenkataramananGWengY-HWildAYangYWangHIEEE Micro2018388210.1109/MM.2018.112130359 IlyasNLiDLiCJiangXJiangYLiWNano. Res. Lett.202015301:CAS:528:DC%2BB3cXjsF2iurw%3D10.1186/s11671-020-3249-7 TumaTPantaziALe GalloMSebastianAEleftheriouENat. Nanotechnol.2016116931:CAS:528:DC%2BC28XotV2nt74%3D10.1038/nnano.2016.70 FullerEJKeeneSTMelianasAWangZAgarwalSLiYTuchmanYJamesCDMarinellaMJYangJJScience20193645701:CAS:528:DC%2BC1MXptFalur0%3D10.1126/science.aaw5581 QiaoNMostafaHCorradiFOsswaldMStefaniniFSumislawskaDIndiveriGFront. Neuro. Sci.20159141 JoSHChangTEbongIBhadviyaBBMazumderPLuWNano Lett.20101012971:CAS:528:DC%2BC3cXisFGnu7k%3D10.1021/nl904092h BurrGWShelbyRMSidlerSdi NolfoCJangJBoybatIShenoyRSNarayananPVirwaniKGiacomettiEUKurdiBNHwangHIEEE Trans. Electron Devices201562349810.1109/TED.2015.2439635 MerollaPAArthurJVAlvarez-IcazaRCassidyASSawadaJAkopyanFJacksonBLImamNGuoCNakamuraYScience20143456681:CAS:528:DC%2BC2cXht12gtLbN10.1126/science.1254642 LiYFullerEJSugarJDYooSAshbyDSBennettCHHortonRDBartschMSMarinellaMJLuWDTalinAAAdv. Mater.20203220039841:CAS:528:DC%2BB3cXhvFSisLnM10.1002/adma.202003984 RomeraMTalatchianPTsunegiSAraujoFACrosVBortolottiPTrastoyJYakushijiKFukushimaAKubotaHYuasaSErnoultMVodenicarevicDHirtzlinTLocatelliNQuerliozDGrollierJNature20185632301:CAS:528:DC%2BC1cXitVCitL7F10.1038/s41586-018-0632-y LiCGaoBYaoYGuanXShenXWangYHuangPLiuLLiuXLiJAdv. Mater.201729160297610.1002/adma.2016029761:CAS:528:DC%2BC2sXpsVOksQ%3D%3D SimpsonRFonsPKolobovAFukayaTKrbalMYagiTTominagaJNat. Nanotechnol.201165011:CAS:528:DC%2BC3MXotlCktL4%3D10.1038/nnano.2011.96 M.-H. Wu, M.-C. Hong, C.-C. Chang, P. Sahu, J.-H. Wei, H.-Y. Lee, S.-S. Sheu, T.-H. Hou, 2019 Symposium on VLSI Technology (IEEE, Kyoto, Japan, June 9–14, 2019), p. T34 KandelERSchwartzJHJessellTMSiegelbaumSAHudspethAJPrinciples of Neural Science20135Columbia, MDCenveo Publisher Services BerdanRVasilakiEKhiatAIndiveriGSerbAProdromakisTSci. Rep.20166186391:CAS:528:DC%2BC28XjslSgtA%3D%3D10.1038/srep18639 RubinDCHintonSWenzelAJ. Exp. Psychol. Learn. Mem. Cogn.199925116110.1037/0278-7393.25.5.1161 PickettMDMedeiros-RibeiroGWilliamsRSNat. Mater.2013121141:CAS:528:DC%2BC38XhvVersr%2FP10.1038/nmat3510 SrinivasanGSenguptaARoyKSci. Rep.20166295451:CAS:528:DC%2BC2sXksVektbc%3D10.1038/srep29545 CooperLNBearMFNat. Rev. Neurosci.2012137981:CAS:528:DC%2BC38XhsFeqsrzL10.1038/nrn3353 GjorgjievaJClopathCAudetJPfisterJPProc. Natl. Acad. Sci. U.S.A.2011108193831:CAS:528:DC%2BC3MXhs1eitb7K10.1073/pnas.1105933108 HodgkinALHuxleyAFJ. Physiol.19521164731:STN:280:DyaG38%2Fns1yhtg%3D%3D10.1113/jphysiol.1952.sp004718 S. Santurkar, B. Rajendran, 2015 International Joint Conference on Neural Networks (IJCNN) (IEEE, Killarney, Ireland, July 12–17, 2015), p. 1 SilverDHuangAMaddisonCJGuezASifreLvan den DriesscheGSchrittwieserJAntonoglouIPanneershelvamVLanctotMDielemanSGreweDNhamJKalchbrennerNSutskeverILillicrapTLeachMKavukcuogluKGraepelTHassabisDNature20165294841:CAS:528:DC%2BC28Xhs12is7w%3D10.1038/nature16961 TrenholmSMcLaughlinAJSchwabDJTurnerMHSmithRGRiekeFAwatramaniGBNat. Neurosci.20141717591:CAS:528:DC%2BC2cXhvVSqsbnK10.1038/nn.3851 HodgkinALHuxleyAFJ. Phys.19521175001:STN:280:DyaG3s%2FhsFGjug%3D%3D LeeMChoSWKimSJKwakJYJuHYiYCheongB-KLeeSPhys. Rev. Appl.2020130640561:CAS:528:DC%2BB3cXhsFCiur7O10.1103/PhysRevApplied.13.064056 MulaosmanovicHChiccaEBerteleMMikolajickTSlesazeckSNanoscale201810217551:CAS:528:DC%2BC1cXitVGks7nL10.1039/C8NR07135G S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, 2017 IEEE International Electron Devices Meeting (San Francisco, December 2–6, 2017), p. 19.7.1 MeadCProc. IEEE199078162910.1109/5.58356 RoyKJaiswalAPandaPNature20195756071:CAS:528:DC%2BC1MXit1OhsrrP10.1038/s41586-019-1677-2 WangZZengTRenYLinYXuHZhaoXLiuYIelminiDNat. Commun.20201115101:CAS:528:DC%2BB3cXlvFCqu7c%3D10.1038/s41467-020-15158-3 LavzinMRapoportSPolskyAGarionLSchillerJNature20124903971:CAS:528:DC%2BC38Xht1ynt7jJ10.1038/nature11451 PfisterJPGerstnerWJ. Neurosci.20062696731:CAS:528:DC%2BD28XhtVCgu7jJ10.1523/JNEUROSCI.1425-06.2006 LiYZhongYZhangJXuLWangQSunHTongHChengXMiaoXSci. Rep.2014449061:CAS:528:DC%2BC2MXktlOntbg%3D10.1038/srep04906 WuHWangXHGaoBDengNLuZHauknessBBronnerGQianHProc. IEEE201710517701:CAS:528:DC%2BC1cXntlOqtbk%3D10.1109/JPROC.2017.2684830 GongCZhangXScience2019363eaav44501:CAS:528:DC%2BC1MXivVOis74%3D10.1126/science.aav4450 ManningHGNiosiFda RochaCGBellewATO’CallaghanCBiswasSFlowersPFWileyBJHolmesJDFerreiraMSBolandJJNat. Commun.20189321910.1038/s41467-018-05517-61:CAS:528:DC%2BC1cXhsFart7bJ WangZJoshiSSavel’evSSongWMidyaRLiYRaoMYanPAsapuSZhuoYNat. Electron.2018113710.1038/s41928-018-0023-2 BoynSGrollierJLecerfGXuBLocatelliNFusilSGirodSCarrétéroCGarciaKXavierSTomasJBellaicheLBibesMBarthélémyASaïghiSGarciaVNat. Commun.20178147361:CAS:528:DC%2BC2sXls1KhtLc%3D10.1038/ncomms14736 HuangPLiZDongZHanRZhouZZhuDLiuLLiuXKangJACS Appl. Electron. Mater.201918451:CAS:528:DC%2BC1MXpvFKmsL8%3D10.1021/acsaelm.9b00011 MilanoGPedrettiGFrettoMBoarinoLBenfenatiFIelminiDValovIRicciardiCAdv. Intell. Syst.20202200009610.1002/aisy.202000096 S. Choudhary, S. Sloan, S. Fok, A. Neckar, E. Trautmann, P. Gao, T. Stewart, C. Eliasmith, K. Boahen, 2012 International Conference on Artificial Neural Networks (Springer, Berlin, Germany, 2012), p. 121 FurberSBGalluppiFTempleSPlanaLAProc. IEEE201410265210.1109/JPROC.2014.2304638 LinYZengTXuHWangZZhaoXLiuWMaJLiuYAdv. Electron. Mater.20184187005610.1002/aelm.2018700561:CAS:528:DC%2BC1cXisVKqs73F CortiEJimenezJACNiangKMRobertsonJMoselundKEGotsmannBIonescuAMKargSFront. Neuro. Sci.20211519 C.-W. Hsu, C.-C. Wan, I.-T. Wang, M.-C. Chen, C.-L. Lo, Y.-J. Lee, W.-Y. Jang, C.-H. Lin, T.-H. Hou, 2013 IEEE International Electron Devices Meeting (Washington, DC, December 9–11, 2013), p. 10.4.1 PedrettiGMiloVAmbrogioSCarboniRBianchiSCalderoniARamaswamyNSpinelliAIelminiDSci. Rep.2017752881:STN:280:DC%2BC1cjnsVaqsg%3D%3D10.1038/s41598-017-05480-0 WangHNat Neurosci.200581871:CAS:528:DC%2BD2MXnslKltg%3D%3D10.1038/nn1387 W. Wu, H. Wu, B. Gao, P. Yao, X. Zhang, X. Peng, S. Yu, H. Qian, 2018 IEEE Symposium on VLSI Technology (Honolulu Hawai`i, June 18–22, 2018), p. 103 WangWCoviEMilozziAFarronatoMRicciSSbandatiCPedrettiGIelminiDAdv. Intell. Syst.20203200022410.1002/aisy.202000224 ParkMHLeeYHKimHJKimYJMoonTKimKDMuellerJKerschASchroederUMikolajickTAdv. Mater.20152718111:CAS:528:DC%2BC2MXlsVKnsL0%3D10.1002/adma.201404531 WooJLeeDKooYHwangHMicroelectron. Eng.2017182421:CAS:528:DC%2BC2sXhsVOhsr%2FL10.1016/j.mee.2017.09.001 XiZRuanJLiCZhengCWenZDaiJLiAWuDNat. Commun.20178152171:CAS:528:DC%2BC2sXnvFGmu7g%3D10.1038/ncomms15217 GkoupidenisPKoutsourasDAMalliarasGGNat. Commun.20178110.1038/ncomms154481:CAS:528:DC%2BC2sXnvFGmu7o%3D XuWMinSYHwangHLeeTWSci. Adv.20162e150132610.1126/sciadv.15013261:CAS:528:DC%2BC2sXhslaksbrJ BurkittANBiol. Cybern.20069511:STN:280:DC%2BD28zpsVSlug%3D%3D10.1007/s00422-006-0068-6 NovoselovKMishchenkoOACarvalhoOANetoACScience2016353aac94391:STN:280:DC%2BC2s3lvVCnsA%3D%3D10.1126/science.aac9439 BurrGWShelbyRMSebastianAKimSKimSSidlerSVirwaniKIshiiMNarayananPFumarolaAAdv. Phys. X2017289 M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, S. Datta, 2017 IEEE International Electron Devices Meeting (San Francisco, December 2–6, 2017), p. 6.2.1 LiXTangJZhangQGaoBYangJJSongSWuWZhangWYaoPDengNNat. Nanotechnol.2020157761:CAS:528:DC%2BB3cXht1Ontr3N10.1038/s41565-020-0722-5 OhnoTHasegawaTTsuruokaTTerabeKGimzewskiJKAonoMNat. Mater.2011105911:CAS:528:DC%2BC3MXotV2ju7w%3D10.1038/nmat3054 PeiJDengLSongSZhaoMZhangYWuSWangGZouZWuZHeWChenFDengNWuSWangYWuYYangZMaCLiGHanWLiHWuHZhaoRXieYShiLNature20195721061:CAS:528:DC%2BC1MXhsFShu7bF10.1038/s41586-019-1424-8 WangWWangMAmbrosiEBricalliALaudatoMSunZChenXIelminiDNat. Commun.201910811:CAS:528:DC%2BC1MXmvFSqs78%3D10.1038/s41467-018-07979-0 DuCCaiFZidanMAMaWLeeSHLuWDNat. Commun.20178220410.1038/s41467-017-02337-y1:CAS:528:DC%2BC1cXhtV2ntr%2FJ S. Park, A. Sheri, J. Kim, J. Noh, J. Jang, M. Jeon, B. Lee, B.R. Lee, B.H. Lee, H. Hwang, 2013 IEEE International Electron Devices Meeting (Washington, DC, December 9–11, 2013), p. 25.6.1 WangZJoshiSSavel’evSEJiangHMidyaRLinPHuMGeNStrachanJPLiZNat. Mater.2017161011:CAS:528:DC%2BC28XhsFyms7bL10.1038/nmat4756 RaoFDingKZhouYZhengYXiaMLvSSongZFengSRonnebergerIMazzarelloRScience201735814231:CAS:528:DC%2BC2sXhvFGmtr%2FP10.1126/science.aao3212 DuanQJingZZouXWangYYangKZhangTWuSHuangRYangYNat. Commun.20201133991:CAS:528:DC%2BB3cXhtlKgur%2FJ10.1038/s41467-020-17215-3 ChangTJoS-HLuWACS Nano2011576691:CAS:528:DC%2BC3MXhtVylsb%2FN10.1021/nn202983n J. Tang, D. Bishop, S. Kim, M. Copel, T. Gokmen, T. Todorov, S. Shin, K.-T. Lee, P. Solomon, K. Chan, 2018 IEEE International Electron Devices Meeting (San Francisco, December 1–5, 2018), p. 13.1.1 MahataCLeeCAnYKimM-HBangSKimCSRyuJ-HKimSKimHParkB-GJ. Alloys Compd.20208261544341:CAS:528:DC%2BB3cXktFCit7s%3D10.1016/j.jallcom.2020.154434 S. Kim, T. Todorov, M. Onen, T. Gokmen, D. Bishop, P. Solomon, K.-T. Lee, M. Copel, D.B. Farmer, J.A. Ott, 2019 IEEE International Electron Devices Meeting (San Francisco, December 7–11, 2019), p. 35.7.1 LiuYHuangYDuanXNature20195673231:CAS:528:DC%2BC1MXotFansrk%3D10.1038/s41586-019-1013-x ZhangPLiCHuangTChenLChenYNeurocomputing20172224710.1016/j.neucom.2016.10.012 McCullochWSPittsWBull. Math. Biophys.1943511510.1007/BF02478259 BoahenKComput. Sci. Eng.2017191410.1109/MCSE.2017.33 D Silver (205_CR10) 2016; 529 H Wang (205_CR56) 2005; 8 C Li (205_CR12) 2017; 29 C Du (205_CR74) 2017; 8 M Davies (205_CR5) 2018; 38 AL Hodgkin (205_CR40) 1952; 117 G Srinivasan (205_CR60) 2016; 6 205_CR29 HG Manning (205_CR76) 2018; 9 Z Wang (205_CR64) 2020; 11 C Gong (205_CR82) 2019; 363 Y Li (205_CR59) 2014; 4 SB Furber (205_CR6) 2014; 102 T Tuma (205_CR25) 2016; 11 E Corti (205_CR42) 2021; 15 PA Merolla (205_CR4) 2014; 345 MA Zidan (205_CR11) 2018; 1 EJ Fuller (205_CR53) 2019; 364 DC Rubin (205_CR70) 1999; 25 AN Burkitt (205_CR22) 2006; 95 G Pedretti (205_CR73) 2017; 7 K Novoselov (205_CR80) 2016; 353 ER Kandel (205_CR21) 2013 Z Xi (205_CR36) 2017; 8 205_CR50 J Pei (205_CR7) 2019; 572 M Romera (205_CR44) 2018; 563 S Trenholm (205_CR19) 2014; 17 N Qiao (205_CR9) 2015; 9 205_CR55 C Mahata (205_CR57) 2020; 826 205_CR15 N Ilyas (205_CR67) 2020; 15 205_CR14 205_CR16 M Lavzin (205_CR20) 2012; 490 Y Liu (205_CR81) 2019; 567 K Boahen (205_CR2) 2017; 19 R Simpson (205_CR13) 2011; 6 S Dutta (205_CR43) 2019; 10 W Wang (205_CR37) 2019; 10 GW Burr (205_CR1) 2017; 2 S Boyn (205_CR61) 2017; 8 SH Jo (205_CR51) 2010; 10 AL Hodgkin (205_CR24) 1952; 116 P Gkoupidenis (205_CR45) 2017; 8 C Mead (205_CR3) 1990; 78 G Milano (205_CR77) 2020; 2 MH Park (205_CR79) 2015; 27 M Lee (205_CR41) 2020; 13 F Rao (205_CR34) 2017; 358 X Li (205_CR31) 2020; 15 205_CR48 205_CR47 205_CR49 cr-split#-205_CR17.1 W Xu (205_CR78) 2016; 2 cr-split#-205_CR17.2 JP Pfister (205_CR62) 2006; 26 P Huang (205_CR66) 2019; 1 205_CR8 K Roy (205_CR18) 2019; 575 J Woo (205_CR26) 2017; 182 T Ohno (205_CR68) 2011; 10 LN Cooper (205_CR65) 2012; 13 T Chang (205_CR69) 2011; 5 Y Li (205_CR52) 2020; 32 K-C Chuang (205_CR46) 2019; 7 MD Pickett (205_CR27) 2013; 12 H Mulaosmanovic (205_CR30) 2018; 10 205_CR39 Z Wang (205_CR33) 2017; 16 J Gjorgjieva (205_CR63) 2011; 108 Y Lin (205_CR58) 2018; 4 H Wu (205_CR32) 2017; 105 Q Duan (205_CR38) 2020; 11 Z Wang (205_CR28) 2018; 1 GW Burr (205_CR54) 2015; 62 W Wang (205_CR75) 2020; 3 ML Schneider (205_CR35) 2018; 4 P Zhang (205_CR71) 2017; 222 WS McCulloch (205_CR23) 1943; 5 R Berdan (205_CR72) 2016; 6 |
| References_xml | – reference: BerdanRVasilakiEKhiatAIndiveriGSerbAProdromakisTSci. Rep.20166186391:CAS:528:DC%2BC28XjslSgtA%3D%3D10.1038/srep18639 – reference: FurberSBGalluppiFTempleSPlanaLAProc. IEEE201410265210.1109/JPROC.2014.2304638 – reference: WangZJoshiSSavel’evSSongWMidyaRLiYRaoMYanPAsapuSZhuoYNat. Electron.2018113710.1038/s41928-018-0023-2 – reference: ParkMHLeeYHKimHJKimYJMoonTKimKDMuellerJKerschASchroederUMikolajickTAdv. Mater.20152718111:CAS:528:DC%2BC2MXlsVKnsL0%3D10.1002/adma.201404531 – reference: HodgkinALHuxleyAFJ. Physiol.19521164731:STN:280:DyaG38%2Fns1yhtg%3D%3D10.1113/jphysiol.1952.sp004718 – reference: ChuangK-CChuC-YZhangH-XLuoJ-DLiW-SLiY-SChengH-CIEEE J. Electron Dev. Soc.201975891:CAS:528:DC%2BB3cXotlenuw%3D%3D10.1109/JEDS.2019.2915975 – reference: LavzinMRapoportSPolskyAGarionLSchillerJNature20124903971:CAS:528:DC%2BC38Xht1ynt7jJ10.1038/nature11451 – reference: WangHNat Neurosci.200581871:CAS:528:DC%2BD2MXnslKltg%3D%3D10.1038/nn1387 – reference: M.-H. Wu, M.-C. Hong, C.-C. Chang, P. Sahu, J.-H. Wei, H.-Y. Lee, S.-S. Sheu, T.-H. Hou, 2019 Symposium on VLSI Technology (IEEE, Kyoto, Japan, June 9–14, 2019), p. T34 – reference: WangZJoshiSSavel’evSEJiangHMidyaRLinPHuMGeNStrachanJPLiZNat. Mater.2017161011:CAS:528:DC%2BC28XhsFyms7bL10.1038/nmat4756 – reference: RoyKJaiswalAPandaPNature20195756071:CAS:528:DC%2BC1MXit1OhsrrP10.1038/s41586-019-1677-2 – reference: SchneiderMLDonnellyCARussekSEBaekBPufallMRHopkinsPFDresselhausPDBenzSPRippardWHSci. Adv.20184e170132910.1126/sciadv.1701329 – reference: XiZRuanJLiCZhengCWenZDaiJLiAWuDNat. Commun.20178152171:CAS:528:DC%2BC2sXnvFGmu7g%3D10.1038/ncomms15217 – reference: DuanQJingZZouXWangYYangKZhangTWuSHuangRYangYNat. Commun.20201133991:CAS:528:DC%2BB3cXhtlKgur%2FJ10.1038/s41467-020-17215-3 – reference: CooperLNBearMFNat. Rev. Neurosci.2012137981:CAS:528:DC%2BC38XhsFeqsrzL10.1038/nrn3353 – reference: SimpsonRFonsPKolobovAFukayaTKrbalMYagiTTominagaJNat. Nanotechnol.201165011:CAS:528:DC%2BC3MXotlCktL4%3D10.1038/nnano.2011.96 – reference: W. Wu, H. Wu, B. Gao, P. Yao, X. Zhang, X. Peng, S. Yu, H. Qian, 2018 IEEE Symposium on VLSI Technology (Honolulu Hawai`i, June 18–22, 2018), p. 103 – reference: McCullochWSPittsWBull. Math. Biophys.1943511510.1007/BF02478259 – reference: M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, S. Datta, 2017 IEEE International Electron Devices Meeting (San Francisco, December 2–6, 2017), p. 6.2.1 – reference: MahataCLeeCAnYKimM-HBangSKimCSRyuJ-HKimSKimHParkB-GJ. Alloys Compd.20208261544341:CAS:528:DC%2BB3cXktFCit7s%3D10.1016/j.jallcom.2020.154434 – reference: LiXTangJZhangQGaoBYangJJSongSWuWZhangWYaoPDengNNat. Nanotechnol.2020157761:CAS:528:DC%2BB3cXht1Ontr3N10.1038/s41565-020-0722-5 – reference: LiYFullerEJSugarJDYooSAshbyDSBennettCHHortonRDBartschMSMarinellaMJLuWDTalinAAAdv. Mater.20203220039841:CAS:528:DC%2BB3cXhvFSisLnM10.1002/adma.202003984 – reference: TrenholmSMcLaughlinAJSchwabDJTurnerMHSmithRGRiekeFAwatramaniGBNat. Neurosci.20141717591:CAS:528:DC%2BC2cXhvVSqsbnK10.1038/nn.3851 – reference: RomeraMTalatchianPTsunegiSAraujoFACrosVBortolottiPTrastoyJYakushijiKFukushimaAKubotaHYuasaSErnoultMVodenicarevicDHirtzlinTLocatelliNQuerliozDGrollierJNature20185632301:CAS:528:DC%2BC1cXitVCitL7F10.1038/s41586-018-0632-y – reference: S. Kim, T. Todorov, M. Onen, T. Gokmen, D. Bishop, P. Solomon, K.-T. Lee, M. Copel, D.B. Farmer, J.A. Ott, 2019 IEEE International Electron Devices Meeting (San Francisco, December 7–11, 2019), p. 35.7.1 – reference: S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, 2017 IEEE International Electron Devices Meeting (San Francisco, December 2–6, 2017), p. 19.7.1 – reference: GjorgjievaJClopathCAudetJPfisterJPProc. Natl. Acad. Sci. U.S.A.2011108193831:CAS:528:DC%2BC3MXhs1eitb7K10.1073/pnas.1105933108 – reference: DuCCaiFZidanMAMaWLeeSHLuWDNat. Commun.20178220410.1038/s41467-017-02337-y1:CAS:528:DC%2BC1cXhtV2ntr%2FJ – reference: CortiEJimenezJACNiangKMRobertsonJMoselundKEGotsmannBIonescuAMKargSFront. Neuro. Sci.20211519 – reference: GkoupidenisPKoutsourasDAMalliarasGGNat. Commun.20178110.1038/ncomms154481:CAS:528:DC%2BC2sXnvFGmu7o%3D – reference: S. Yu, P.-Y. Chen, Y. Cao, L. Xia, Y. Wang, H. Wu, 2015 IEEE International Electron Devices Meeting (Washington, DC, December 7–9, 2015), p. 17.3.1 – reference: LiYZhongYZhangJXuLWangQSunHTongHChengXMiaoXSci. Rep.2014449061:CAS:528:DC%2BC2MXktlOntbg%3D10.1038/srep04906 – reference: SrinivasanGSenguptaARoyKSci. Rep.20166295451:CAS:528:DC%2BC2sXksVektbc%3D10.1038/srep29545 – reference: FullerEJKeeneSTMelianasAWangZAgarwalSLiYTuchmanYJamesCDMarinellaMJYangJJScience20193645701:CAS:528:DC%2BC1MXptFalur0%3D10.1126/science.aaw5581 – reference: HodgkinALHuxleyAFJ. Phys.19521175001:STN:280:DyaG3s%2FhsFGjug%3D%3D – reference: GongCZhangXScience2019363eaav44501:CAS:528:DC%2BC1MXivVOis74%3D10.1126/science.aav4450 – reference: NovoselovKMishchenkoOACarvalhoOANetoACScience2016353aac94391:STN:280:DC%2BC2s3lvVCnsA%3D%3D10.1126/science.aac9439 – reference: J. Tang, D. Bishop, S. Kim, M. Copel, T. Gokmen, T. Todorov, S. Shin, K.-T. Lee, P. Solomon, K. Chan, 2018 IEEE International Electron Devices Meeting (San Francisco, December 1–5, 2018), p. 13.1.1 – reference: RubinDCHintonSWenzelAJ. Exp. Psychol. Learn. Mem. Cogn.199925116110.1037/0278-7393.25.5.1161 – reference: BurrGWShelbyRMSebastianAKimSKimSSidlerSVirwaniKIshiiMNarayananPFumarolaAAdv. Phys. X2017289 – reference: S. Santurkar, B. Rajendran, 2015 International Joint Conference on Neural Networks (IJCNN) (IEEE, Killarney, Ireland, July 12–17, 2015), p. 1 – reference: HuangPLiZDongZHanRZhouZZhuDLiuLLiuXKangJACS Appl. Electron. Mater.201918451:CAS:528:DC%2BC1MXpvFKmsL8%3D10.1021/acsaelm.9b00011 – reference: OhnoTHasegawaTTsuruokaTTerabeKGimzewskiJKAonoMNat. Mater.2011105911:CAS:528:DC%2BC3MXotV2ju7w%3D10.1038/nmat3054 – reference: ManningHGNiosiFda RochaCGBellewATO’CallaghanCBiswasSFlowersPFWileyBJHolmesJDFerreiraMSBolandJJNat. Commun.20189321910.1038/s41467-018-05517-61:CAS:528:DC%2BC1cXhsFart7bJ – reference: BurkittANBiol. Cybern.20069511:STN:280:DC%2BD28zpsVSlug%3D%3D10.1007/s00422-006-0068-6 – reference: S. Choudhary, S. Sloan, S. Fok, A. Neckar, E. Trautmann, P. Gao, T. Stewart, C. Eliasmith, K. Boahen, 2012 International Conference on Artificial Neural Networks (Springer, Berlin, Germany, 2012), p. 121 – reference: WuHWangXHGaoBDengNLuZHauknessBBronnerGQianHProc. IEEE201710517701:CAS:528:DC%2BC1cXntlOqtbk%3D10.1109/JPROC.2017.2684830 – reference: WangWWangMAmbrosiEBricalliALaudatoMSunZChenXIelminiDNat. Commun.201910811:CAS:528:DC%2BC1MXmvFSqs78%3D10.1038/s41467-018-07979-0 – reference: PfisterJPGerstnerWJ. Neurosci.20062696731:CAS:528:DC%2BD28XhtVCgu7jJ10.1523/JNEUROSCI.1425-06.2006 – reference: LiCGaoBYaoYGuanXShenXWangYHuangPLiuLLiuXLiJAdv. Mater.201729160297610.1002/adma.2016029761:CAS:528:DC%2BC2sXpsVOksQ%3D%3D – reference: TumaTPantaziALe GalloMSebastianAEleftheriouENat. Nanotechnol.2016116931:CAS:528:DC%2BC28XotV2nt74%3D10.1038/nnano.2016.70 – reference: DuttaSPariharAKhannaAGomezJDattaSNat. Commun.201910329910.1038/s41467-019-11198-61:CAS:528:DC%2BC1MXhsVeks73K – reference: WangWCoviEMilozziAFarronatoMRicciSSbandatiCPedrettiGIelminiDAdv. Intell. Syst.20203200022410.1002/aisy.202000224 – reference: IlyasNLiDLiCJiangXJiangYLiWNano. Res. Lett.202015301:CAS:528:DC%2BB3cXjsF2iurw%3D10.1186/s11671-020-3249-7 – reference: PickettMDMedeiros-RibeiroGWilliamsRSNat. Mater.2013121141:CAS:528:DC%2BC38XhvVersr%2FP10.1038/nmat3510 – reference: BurrGWShelbyRMSidlerSdi NolfoCJangJBoybatIShenoyRSNarayananPVirwaniKGiacomettiEUKurdiBNHwangHIEEE Trans. Electron Devices201562349810.1109/TED.2015.2439635 – reference: XuWMinSYHwangHLeeTWSci. Adv.20162e150132610.1126/sciadv.15013261:CAS:528:DC%2BC2sXhslaksbrJ – reference: KandelERSchwartzJHJessellTMSiegelbaumSAHudspethAJPrinciples of Neural Science20135Columbia, MDCenveo Publisher Services – reference: JoSHChangTEbongIBhadviyaBBMazumderPLuWNano Lett.20101012971:CAS:528:DC%2BC3cXisFGnu7k%3D10.1021/nl904092h – reference: LinYZengTXuHWangZZhaoXLiuWMaJLiuYAdv. Electron. Mater.20184187005610.1002/aelm.2018700561:CAS:528:DC%2BC1cXisVKqs73F – reference: PeiJDengLSongSZhaoMZhangYWuSWangGZouZWuZHeWChenFDengNWuSWangYWuYYangZMaCLiGHanWLiHWuHZhaoRXieYShiLNature20195721061:CAS:528:DC%2BC1MXhsFShu7bF10.1038/s41586-019-1424-8 – reference: S. Park, A. Sheri, J. Kim, J. Noh, J. Jang, M. Jeon, B. Lee, B.R. Lee, B.H. Lee, H. Hwang, 2013 IEEE International Electron Devices Meeting (Washington, DC, December 9–11, 2013), p. 25.6.1 – reference: SilverDHuangAMaddisonCJGuezASifreLvan den DriesscheGSchrittwieserJAntonoglouIPanneershelvamVLanctotMDielemanSGreweDNhamJKalchbrennerNSutskeverILillicrapTLeachMKavukcuogluKGraepelTHassabisDNature20165294841:CAS:528:DC%2BC28Xhs12is7w%3D10.1038/nature16961 – reference: BoahenKComput. Sci. Eng.2017191410.1109/MCSE.2017.33 – reference: MeadCProc. IEEE199078162910.1109/5.58356 – reference: BoynSGrollierJLecerfGXuBLocatelliNFusilSGirodSCarrétéroCGarciaKXavierSTomasJBellaicheLBibesMBarthélémyASaïghiSGarciaVNat. Commun.20178147361:CAS:528:DC%2BC2sXls1KhtLc%3D10.1038/ncomms14736 – reference: LiuYHuangYDuanXNature20195673231:CAS:528:DC%2BC1MXotFansrk%3D10.1038/s41586-019-1013-x – reference: RaoFDingKZhouYZhengYXiaMLvSSongZFengSRonnebergerIMazzarelloRScience201735814231:CAS:528:DC%2BC2sXhvFGmtr%2FP10.1126/science.aao3212 – reference: C.-W. Hsu, C.-C. Wan, I.-T. Wang, M.-C. Chen, C.-L. Lo, Y.-J. Lee, W.-Y. Jang, C.-H. Lin, T.-H. Hou, 2013 IEEE International Electron Devices Meeting (Washington, DC, December 9–11, 2013), p. 10.4.1 – reference: MulaosmanovicHChiccaEBerteleMMikolajickTSlesazeckSNanoscale201810217551:CAS:528:DC%2BC1cXitVGks7nL10.1039/C8NR07135G – reference: LeeMChoSWKimSJKwakJYJuHYiYCheongB-KLeeSPhys. Rev. Appl.2020130640561:CAS:528:DC%2BB3cXhsFCiur7O10.1103/PhysRevApplied.13.064056 – reference: ChangTJoS-HLuWACS Nano2011576691:CAS:528:DC%2BC3MXhtVylsb%2FN10.1021/nn202983n – reference: QiaoNMostafaHCorradiFOsswaldMStefaniniFSumislawskaDIndiveriGFront. Neuro. Sci.20159141 – reference: MilanoGPedrettiGFrettoMBoarinoLBenfenatiFIelminiDValovIRicciardiCAdv. Intell. Syst.20202200009610.1002/aisy.202000096 – reference: ZhangPLiCHuangTChenLChenYNeurocomputing20172224710.1016/j.neucom.2016.10.012 – reference: ZidanMAStrachanJPLuWDNat. Electron.201812210.1038/s41928-017-0006-8 – reference: DaviesMSrinivasaNLinT-HChinyaGCaoYChodaySHDimouGJoshiPImamNJainSLiaoYLinC-KLinesALiuRMathaikuttyDMcCoySPaulATseJVenkataramananGWengY-HWildAYangYWangHIEEE Micro2018388210.1109/MM.2018.112130359 – reference: PedrettiGMiloVAmbrogioSCarboniRBianchiSCalderoniARamaswamyNSpinelliAIelminiDSci. Rep.2017752881:STN:280:DC%2BC1cjnsVaqsg%3D%3D10.1038/s41598-017-05480-0 – reference: WangZZengTRenYLinYXuHZhaoXLiuYIelminiDNat. Commun.20201115101:CAS:528:DC%2BB3cXlvFCqu7c%3D10.1038/s41467-020-15158-3 – reference: WooJLeeDKooYHwangHMicroelectron. Eng.2017182421:CAS:528:DC%2BC2sXhsVOhsr%2FL10.1016/j.mee.2017.09.001 – reference: MerollaPAArthurJVAlvarez-IcazaRCassidyASSawadaJAkopyanFJacksonBLImamNGuoCNakamuraYScience20143456681:CAS:528:DC%2BC2cXht12gtLbN10.1126/science.1254642 – volume: 6 start-page: 501 year: 2011 ident: 205_CR13 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.96 – volume: 364 start-page: 570 year: 2019 ident: 205_CR53 publication-title: Science doi: 10.1126/science.aaw5581 – volume: 7 start-page: 5288 year: 2017 ident: 205_CR73 publication-title: Sci. Rep. doi: 10.1038/s41598-017-05480-0 – volume: 13 start-page: 064056 year: 2020 ident: 205_CR41 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.064056 – volume: 8 start-page: 2204 year: 2017 ident: 205_CR74 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02337-y – volume: 575 start-page: 607 year: 2019 ident: 205_CR18 publication-title: Nature doi: 10.1038/s41586-019-1677-2 – volume: 6 start-page: 18639 year: 2016 ident: 205_CR72 publication-title: Sci. Rep. doi: 10.1038/srep18639 – volume: 1 start-page: 137 year: 2018 ident: 205_CR28 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0023-2 – ident: 205_CR29 – volume: 563 start-page: 230 year: 2018 ident: 205_CR44 publication-title: Nature doi: 10.1038/s41586-018-0632-y – volume: 8 start-page: 15217 year: 2017 ident: 205_CR36 publication-title: Nat. Commun. doi: 10.1038/ncomms15217 – volume: 10 start-page: 81 year: 2019 ident: 205_CR37 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07979-0 – volume: 7 start-page: 589 year: 2019 ident: 205_CR46 publication-title: IEEE J. Electron Dev. Soc. doi: 10.1109/JEDS.2019.2915975 – ident: #cr-split#-205_CR17.1 – volume: 11 start-page: 3399 year: 2020 ident: 205_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17215-3 – volume: 4 start-page: 1870056 year: 2018 ident: 205_CR58 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201870056 – volume: 17 start-page: 1759 year: 2014 ident: 205_CR19 publication-title: Nat. Neurosci. doi: 10.1038/nn.3851 – volume: 32 start-page: 2003984 year: 2020 ident: 205_CR52 publication-title: Adv. Mater. doi: 10.1002/adma.202003984 – volume: 6 start-page: 29545 year: 2016 ident: 205_CR60 publication-title: Sci. Rep. doi: 10.1038/srep29545 – volume: 13 start-page: 798 year: 2012 ident: 205_CR65 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3353 – volume: 62 start-page: 3498 year: 2015 ident: 205_CR54 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2015.2439635 – volume: 26 start-page: 9673 year: 2006 ident: 205_CR62 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1425-06.2006 – volume: 572 start-page: 106 year: 2019 ident: 205_CR7 publication-title: Nature doi: 10.1038/s41586-019-1424-8 – ident: 205_CR15 – volume: 102 start-page: 652 year: 2014 ident: 205_CR6 publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2304638 – volume: 8 start-page: 187 year: 2005 ident: 205_CR56 publication-title: Nat Neurosci. doi: 10.1038/nn1387 – volume: 12 start-page: 114 year: 2013 ident: 205_CR27 publication-title: Nat. Mater. doi: 10.1038/nmat3510 – volume: 10 start-page: 3299 year: 2019 ident: 205_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11198-6 – volume: 345 start-page: 668 year: 2014 ident: 205_CR4 publication-title: Science doi: 10.1126/science.1254642 – ident: 205_CR8 doi: 10.1007/978-3-642-33269-2_16 – ident: 205_CR47 – volume: 25 start-page: 1161 year: 1999 ident: 205_CR70 publication-title: J. Exp. Psychol. Learn. Mem. Cogn. doi: 10.1037/0278-7393.25.5.1161 – volume: 9 start-page: 3219 year: 2018 ident: 205_CR76 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05517-6 – volume: 222 start-page: 47 year: 2017 ident: 205_CR71 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.012 – volume: 4 start-page: e1701329 year: 2018 ident: 205_CR35 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701329 – ident: #cr-split#-205_CR17.2 – volume: 105 start-page: 1770 year: 2017 ident: 205_CR32 publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2684830 – volume: 8 start-page: 14736 year: 2017 ident: 205_CR61 publication-title: Nat. Commun. doi: 10.1038/ncomms14736 – volume: 8 start-page: 1 year: 2017 ident: 205_CR45 publication-title: Nat. Commun. doi: 10.1038/ncomms15448 – volume: 182 start-page: 42 year: 2017 ident: 205_CR26 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2017.09.001 – volume: 10 start-page: 21755 year: 2018 ident: 205_CR30 publication-title: Nanoscale doi: 10.1039/C8NR07135G – volume: 5 start-page: 7669 year: 2011 ident: 205_CR69 publication-title: ACS Nano doi: 10.1021/nn202983n – volume: 19 start-page: 14 year: 2017 ident: 205_CR2 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2017.33 – volume: 353 start-page: aac9439 year: 2016 ident: 205_CR80 publication-title: Science doi: 10.1126/science.aac9439 – volume: 9 start-page: 141 year: 2015 ident: 205_CR9 publication-title: Front. Neuro. Sci. – ident: 205_CR16 – ident: 205_CR50 – volume: 95 start-page: 1 year: 2006 ident: 205_CR22 publication-title: Biol. Cybern. doi: 10.1007/s00422-006-0068-6 – volume: 358 start-page: 1423 year: 2017 ident: 205_CR34 publication-title: Science doi: 10.1126/science.aao3212 – volume: 4 start-page: 4906 year: 2014 ident: 205_CR59 publication-title: Sci. Rep. doi: 10.1038/srep04906 – volume: 2 start-page: e1501326 year: 2016 ident: 205_CR78 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501326 – volume: 38 start-page: 82 year: 2018 ident: 205_CR5 publication-title: IEEE Micro doi: 10.1109/MM.2018.112130359 – volume: 11 start-page: 693 year: 2016 ident: 205_CR25 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.70 – volume: 1 start-page: 845 year: 2019 ident: 205_CR66 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.9b00011 – volume: 2 start-page: 89 year: 2017 ident: 205_CR1 publication-title: Adv. Phys. X – ident: 205_CR48 doi: 10.1109/IEDM.2013.6724601 – volume: 529 start-page: 484 year: 2016 ident: 205_CR10 publication-title: Nature doi: 10.1038/nature16961 – ident: 205_CR55 – volume: 2 start-page: 2000096 year: 2020 ident: 205_CR77 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202000096 – volume: 11 start-page: 1510 year: 2020 ident: 205_CR64 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15158-3 – volume: 15 start-page: 30 year: 2020 ident: 205_CR67 publication-title: Nano. Res. Lett. doi: 10.1186/s11671-020-3249-7 – volume: 567 start-page: 323 year: 2019 ident: 205_CR81 publication-title: Nature doi: 10.1038/s41586-019-1013-x – volume: 5 start-page: 115 year: 1943 ident: 205_CR23 publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 1 start-page: 22 year: 2018 ident: 205_CR11 publication-title: Nat. Electron. doi: 10.1038/s41928-017-0006-8 – volume: 29 start-page: 1602976 year: 2017 ident: 205_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201602976 – volume-title: Principles of Neural Science year: 2013 ident: 205_CR21 – volume: 3 start-page: 2000224 year: 2020 ident: 205_CR75 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202000224 – volume: 78 start-page: 1629 year: 1990 ident: 205_CR3 publication-title: Proc. IEEE doi: 10.1109/5.58356 – volume: 363 start-page: eaav4450 year: 2019 ident: 205_CR82 publication-title: Science doi: 10.1126/science.aav4450 – ident: 205_CR49 – volume: 10 start-page: 1297 year: 2010 ident: 205_CR51 publication-title: Nano Lett. doi: 10.1021/nl904092h – volume: 116 start-page: 473 year: 1952 ident: 205_CR24 publication-title: J. Physiol. doi: 10.1113/jphysiol.1952.sp004718 – volume: 108 start-page: 19383 year: 2011 ident: 205_CR63 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1105933108 – volume: 826 start-page: 154434 year: 2020 ident: 205_CR57 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.154434 – volume: 117 start-page: 500 year: 1952 ident: 205_CR40 publication-title: J. Phys. – volume: 15 start-page: 776 year: 2020 ident: 205_CR31 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0722-5 – volume: 27 start-page: 1811 year: 2015 ident: 205_CR79 publication-title: Adv. Mater. doi: 10.1002/adma.201404531 – volume: 16 start-page: 101 year: 2017 ident: 205_CR33 publication-title: Nat. Mater. doi: 10.1038/nmat4756 – volume: 15 start-page: 19 year: 2021 ident: 205_CR42 publication-title: Front. Neuro. Sci. – volume: 10 start-page: 591 year: 2011 ident: 205_CR68 publication-title: Nat. Mater. doi: 10.1038/nmat3054 – volume: 490 start-page: 397 year: 2012 ident: 205_CR20 publication-title: Nature doi: 10.1038/nature11451 – ident: 205_CR14 – ident: 205_CR39 |
| SSID | ssj0015075 |
| Score | 2.3876467 |
| SecondaryResourceType | review_article |
| Snippet | Inspired by the working principles of the human brain, neuromorphic computing shows great potential in executing cognitive tasks such as learning and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 978 |
| SubjectTerms | Applied and Technical Physics Brain Characterization and Evaluation of Materials Chemistry and Materials Science Circuits Cognitive tasks Energy consumption Energy Materials Hardware Materials Engineering Materials Science Nanotechnology Neuromorphic computing Review Article Synapses |
| Title | Materials challenges and opportunities for brain-inspired computing |
| URI | https://link.springer.com/article/10.1557/s43577-021-00205-1 https://www.proquest.com/docview/2718226119 |
| Volume | 46 |
| WOSCitedRecordID | wos000721665900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1938-1425 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015075 issn: 0883-7694 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SFfTgoypWq-TgTQP7TDZHKRYvFvFFb0ueUJBt6W79_U6yu62KCnreZAiTmZ1vmMl8CF0YIaJU24CYOAkgQREx-JyyhEtqaKQNmIj2ZBNsNMrGY37fPAor2273tiTp_9SeowfS9hICO2PEtRQ4jJMSyHnWIdxlzh0fHl-WtYO0Hq8L7hMTRnnSPJX5XsbncLTCmF_Koj7aDHf_d849tNOgS3xdm8M-WjNFF21_mDnYRZu-51OVB2hwJ6ra_rBqKVVKLAqNpzOHyheFn7aKAdZi6ZgkyKRwdXmjsfJcECDvED0Pb54Gt6ThVCAKnK0iQkcKklJpLadMc5toCVGcZ5mMwjiVQoDLJzrgwlCjE61DG0maAQIPtGVZIOMj1CmmhTlGOOM6koFJIxbqRDAuBbOUpyDMAGxRYQ-FrWpz1Qwcd7wXr7lLPEBVea2qHFSVe1XlsOdyuWdWj9v4dXW_vbG8cb0yh-MA6KFhyHvoqr2h1eefpZ38bfkp2orcJfvGvj7qVPOFOUMb6q2alPNzb5LvIJ_ZsA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SFfXgoyrW5x68aWDf2RylWCq2RbRKbyGvhYJsS3fr73eS3W1VVNDzJkOYzOx8w0zmQ-hSc-5HKnWxDkIXEhQegM_JFFMR69hXGkxEWbIJMhgkoxF9qB6F5XW3e12StH9qy9EDaXsOgZ0QbFoKDMaJMOQ8qyFELNPI9_j0sqgdROV4XXCfAJOYhtVTme9lfA5HS4z5pSxqo01n53_n3EXbFbp0bkpz2EMrOmuirQ8zB5to3fZ8ynwftfu8KO3PkTWlSu7wTDmTqUHl88xOW3UA1jrCMEngcWbq8lo50nJBgLwD9Ny5Hba7uOJUwBKcrcBc-RKSUpGmNCaKpqESEMVpkgjfCyLBObh8qFzKdaxVqJSX-iJOAIG7KiWJK4JD1MgmmT5CTkKVL1wd-cRTISdUcJLGNAJhGmCL9FrIq1XLZDVw3PBevDKTeICqWKkqBqpiVlUM9lwt9kzLcRu_rj6tb4xVrpczOA6AntjzaAtd1ze0_PyztOO_Lb9AG91hv8d6d4P7E7Tpmwu3TX6nqFHM5voMrcm3YpzPzq15vgNeJNyU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA6yHuiDx6q4nnnwTYO90zyKuijqInjgW8gJC9JdbPX3O0nb9UAF8bnJECYznW-YyXwI7RsholTbgJg4CSBBETH4nLKEycxkkTZgItqTTdDBIH98ZDcfXvH7bve2JFm_aXBTmorqaKxtzdcDKXwJQZ5S4toLHN5JCeQ_04kjDXL5-u3DpI6Q1qN2wZViQjOWNM9mvpfxOTS9480vJVIfefpL_z_zMlpsUCc-rs1kBU2ZoosWPswi7KJZ3wuqylV0ci2q2i6xaqlWSiwKjUdjh9ZfCj-FFQPcxdIxTJBh4er1RmPlOSJA3hq675_dnZyThmuBKHDCiggdKUhWpbUso5rZREuI7izPZRTGqRQCfgWJDpgwmdGJ1qGNZJYDMg-0pXkg43XUKUaF2UA4ZzqSgUkjGupEUCYFtRlLQZgBOKPCHgpbNXPVDCJ3fBhP3CUkoCpeq4qDqrhXFYc9B5M943oMx6-rt9vb441LlhyOA2AoC0PWQ4ftbb1__lna5t-W76G5m9M-v7oYXG6h-cjdt-_920ad6vnF7KAZ9VoNy-ddb6lvi1LleA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Materials+challenges+and+opportunities+for+brain-inspired+computing&rft.jtitle=MRS+bulletin&rft.au=Zhao%2C+Y.+D.&rft.au=Kang%2C+J.+F.&rft.au=Ielmini%2C+D.&rft.date=2021-10-01&rft.issn=0883-7694&rft.eissn=1938-1425&rft.volume=46&rft.issue=10&rft.spage=978&rft.epage=986&rft_id=info:doi/10.1557%2Fs43577-021-00205-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1557_s43577_021_00205_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-7694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-7694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-7694&client=summon |