Rough Based Symmetrical Clustering for Gene Expression Profile Analysis

Identification of coexpressed genes is the central goal in microarray gene expression data analysis. Point symmetry-based clustering is an important unsupervised learning technique for recognizing symmetrical convex or non-convex shaped clusters. To enable fast automatic clustering of large microarr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on nanobioscience Ročník 14; číslo 4; s. 360 - 367
Hlavní autoři: Sarkar, Anasua, Maulik, Ujjwal
Médium: Magazine Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2015
Témata:
ISSN:1536-1241, 1558-2639
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Identification of coexpressed genes is the central goal in microarray gene expression data analysis. Point symmetry-based clustering is an important unsupervised learning technique for recognizing symmetrical convex or non-convex shaped clusters. To enable fast automatic clustering of large microarray data, in this article, a distributed time-efficient scalable parallel rough set based hybrid approach for point symmetry-based clustering algorithm has been proposed. A natural basis for analyzing gene expression data using the symmetry-based algorithm, is to group together genes with similar symmetrical patterns of expression. Rough-set theory helps in faster convergence and initial automatic optimal classification, thereby solving the problem of unknown knowledge of number of clusters in microarray data. This new parallel implementation with K-means algorithm also satisfies the linear speedup in timing on large microarray datasets. This proposed algorithm is compared with another parallel symmetry-based K-means and parallel version of existing K-means over four artificial and benchmark microarray datasets. We also have experimented over three skewed cancer gene expression datasets. The statistical analysis are also performed to establish the significance of this new implementation. The biological relevance of the clustering solutions are also analyzed.
AbstractList Identification of coexpressed genes is the central goal in microarray gene expression data analysis. Point symmetry-based clustering is an important unsupervised learning technique for recognizing symmetrical convex or non-convex shaped clusters. To enable fast automatic clustering of large microarray data, in this article, a distributed time-efficient scalable parallel rough set based hybrid approach for point symmetry-based clustering algorithm has been proposed. A natural basis for analyzing gene expression data using the symmetry-based algorithm, is to group together genes with similar symmetrical patterns of expression. Rough-set theory helps in faster convergence and initial automatic optimal classification, thereby solving the problem of unknown knowledge of number of clusters in microarray data. This new parallel implementation with K-means algorithm also satisfies the linear speedup in timing on large microarray datasets. This proposed algorithm is compared with another parallel symmetry-based K-means and parallel version of existing K-means over four artificial and benchmark microarray datasets. We also have experimented over three skewed cancer gene expression datasets. The statistical analysis are also performed to establish the significance of this new implementation. The biological relevance of the clustering solutions are also analyzed.
Author Sarkar, Anasua
Maulik, Ujjwal
Author_xml – sequence: 1
  givenname: Anasua
  surname: Sarkar
  fullname: Sarkar, Anasua
  email: Anasua.Sarkar.IN@ieee.org
  organization: Dept. of Inf. Technol., Gov. Coll. of Eng. & Leather Technol., Kolkata, India
– sequence: 2
  givenname: Ujjwal
  surname: Maulik
  fullname: Maulik, Ujjwal
  email: umaulik@cse.jdvu.ac.in
  organization: Dept. of Comput. Sc. & Eng., Jadavpur Univ., Kolkata, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25935042$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoMoatW7IMgevWzNR5NNjlq0CqLixzlMsxON7EdNdsH-e7e0evDgaebwPC8z74hsN22DhBwzOmaMmvOX-8sxp0yO-YQzwcUW2WdS6pwrYbZXu1A54xO2R0YpfVDKCiXNLtnj0ghJJ3yfzJ7a_u09u4SEZfa8rGvsYnBQZdOqTx3G0Lxlvo3ZDBvMrr4WEVMKbZM9xtaHCrOLBqplCumQ7HioEh5t5gF5vb56md7kdw-z2-nFXe4EM10Oc-c1LSkoL9Eh9UqiRiO10RxwONuXUEAxn7uCK2c8OFC8BKqdLj1oFAfkbJ27iO1nj6mzdUgOqwoabPtkmeZKMS21GtDTDdrPayztIoYa4tL-PD8Aag242KYU0VsXOuiG97oIobKM2lXLdmjZrlq2m5YHkf4Rf7L_UU7WSkDEX7ygpijERHwD65GIDw
CODEN ITMCEL
CitedBy_id crossref_primary_10_1007_s12351_017_0346_1
crossref_primary_10_1155_2016_6203972
crossref_primary_10_1016_j_bbe_2018_02_002
Cites_doi 10.1007/978-1-4757-0450-1
10.1093/bioinformatics/btg232
10.1093/bioinformatics/bth078
10.1126/science.283.5398.83
10.1007/BF01001956
10.1073/pnas.96.12.6745
10.1038/75556
10.1109/TPDS.2007.1024
10.1109/TPAMI.2002.1114856
10.1126/science.286.5439.531
10.20965/jaciii.2003.p0169
10.1109/34.85677
10.1093/bioinformatics/bti251
10.1109/34.927466
10.1073/pnas.95.1.334
10.1073/pnas.95.25.14863
10.1093/bioinformatics/btg455
10.1109/ICCIS.2011.213
10.1016/0377-0427(87)90125-7
10.1109/TST.2012.6374368
ContentType Magazine Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNB.2015.2421323
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1558-2639
EndPage 367
ExternalDocumentID 25935042
10_1109_TNB_2015_2421323
7097734
Genre orig-research
Journal Article
GroupedDBID ---
-~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c319t-abcf80d0a6f5ece0f65e8e958982ae263fda7a7bbc726c9faca62da08c8dfa8e3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359565800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1536-1241
IngestDate Sat Sep 27 19:06:34 EDT 2025
Thu Apr 03 06:58:17 EDT 2025
Tue Nov 18 22:43:53 EST 2025
Sat Nov 29 03:31:07 EST 2025
Tue Aug 26 16:40:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-abcf80d0a6f5ece0f65e8e958982ae263fda7a7bbc726c9faca62da08c8dfa8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25935042
PQID 1826618586
PQPubID 23479
PageCount 8
ParticipantIDs ieee_primary_7097734
pubmed_primary_25935042
crossref_primary_10_1109_TNB_2015_2421323
proquest_miscellaneous_1826618586
crossref_citationtrail_10_1109_TNB_2015_2421323
PublicationCentury 2000
PublicationDate 2015-June
2015-6-00
2015-Jun
20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-June
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on nanobioscience
PublicationTitleAbbrev TNB
PublicationTitleAlternate IEEE Trans Nanobioscience
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref2
ref1
ref16
golub (ref18) 1999; 286
ref19
saha (ref7) 2007; 10
wigle (ref20) 2002; 62
ref24
ref23
pacheco (ref11) 1997
ref25
ref22
ref21
hirano (ref5) 2003; 7
ref8
ref9
ref4
gawrys (ref10) 1994
ref6
derisi (ref3) 1997; 282
iyer (ref17) 1999; 283
References_xml – ident: ref12
  doi: 10.1007/978-1-4757-0450-1
– volume: 62
  start-page: 3005
  year: 2002
  ident: ref20
  article-title: Molecular profiling of non-small cell lung cancer and correlation with disease free survival
  publication-title: Cancer Res
– ident: ref1
  doi: 10.1093/bioinformatics/btg232
– ident: ref8
  doi: 10.1093/bioinformatics/bth078
– volume: 283
  start-page: 83
  year: 1999
  ident: ref17
  article-title: The transcriptional program in the response of human fibroblasts serum
  publication-title: Science
  doi: 10.1126/science.283.5398.83
– ident: ref9
  doi: 10.1007/BF01001956
– ident: ref19
  doi: 10.1073/pnas.96.12.6745
– ident: ref22
  doi: 10.1038/75556
– ident: ref24
  doi: 10.1109/TPDS.2007.1024
– year: 1994
  ident: ref10
  publication-title: ?RSL?the Rough Set Library Version 2 0 ?
– ident: ref14
  doi: 10.1109/TPAMI.2002.1114856
– volume: 286
  start-page: 531
  year: 1999
  ident: ref18
  article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 282
  start-page: 257
  year: 1997
  ident: ref3
  article-title: Exploring the metabolic and genetic control of gene expression on a genome scale
  publication-title: Science
– volume: 7
  start-page: 169
  year: 2003
  ident: ref5
  article-title: An indiscernibility-based clustering method with iterative refinement of equivalence relations -rough clustering-
  publication-title: JACIII
  doi: 10.20965/jaciii.2003.p0169
– ident: ref13
  doi: 10.1109/34.85677
– ident: ref25
  doi: 10.1093/bioinformatics/bti251
– year: 1997
  ident: ref11
  publication-title: Parallel Programming with MPI
– ident: ref6
  doi: 10.1109/34.927466
– volume: 10
  start-page: 3430
  year: 2007
  ident: ref7
  article-title: GAPS: A clustering method using a new point symmetry-based distance measure
  publication-title: Pattern Recog
– ident: ref16
  doi: 10.1073/pnas.95.1.334
– ident: ref2
  doi: 10.1073/pnas.95.25.14863
– ident: ref23
  doi: 10.1093/bioinformatics/btg455
– ident: ref4
  doi: 10.1109/ICCIS.2011.213
– ident: ref15
  doi: 10.1016/0377-0427(87)90125-7
– ident: ref21
  doi: 10.1109/TST.2012.6374368
SSID ssj0017659
Score 1.1933017
Snippet Identification of coexpressed genes is the central goal in microarray gene expression data analysis. Point symmetry-based clustering is an important...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 360
SubjectTerms Algorithm design and analysis
Automatic clustering algorithm
Clustering algorithms
Gene expression
Indexes
K-means algorithm
Lungs
microarray gene expression data
Partitioning algorithms
point-symmetry based distance
Program processors
rough set decision rules
Title Rough Based Symmetrical Clustering for Gene Expression Profile Analysis
URI https://ieeexplore.ieee.org/document/7097734
https://www.ncbi.nlm.nih.gov/pubmed/25935042
https://www.proquest.com/docview/1826618586
Volume 14
WOSCitedRecordID wos000359565800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH60RcFT1brUpUTwIjg2syY5qrR6KsUFehsymQSEdipdxP5782YDQQVvc0gy4S3zXua9fB_AJZPGJNoVDteGOgEWCblwuaNCmkiPK0NFkpNNsNGITyZi3IDr-i6M1jpvPtM3-JjX8tO5WuOvsj6jNlvxgyY0GYuKu1p1xYBFOTGadWDklQncqiRJRf9ldIc9XOENlj99D6lzbNLvhzTwvkWjnF7l90wzjzjD9v_2ugvtCima3Ba2sAcNne3DdkE2uenAwxMS8pA7G7ZS8ryZzZBLy2qI3E_XiJZgYxixGSxBIGoy-CwbZDMyLli9SQVfcgCvw8HL_aNT0ig4yvrXypGJMpymVEYm1EpTE4WaaxFywT2pvcg3qWSSJYliXqSEkUpGXiopVzw1kmv_EFrZPNPHQPwU0emVlTUNglTQxDA_CaVrhOcq-83tQr8SZ6xKjHGkupjG-VmDitjqIkZdxKUuunBVz3gv8DX-GNtBOdfjShF34aLSWGx9AwseMtPz9TLGs1NkExJuN3ZUqLKeXFnAyc-LnsIOvrpoCjuD1mqx1uewpT5Wb8tFzxrghPdyA_wC-WPVCQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB480SePetQzgi-C22bv5NEWL6ylaIW-LdlsAoJupe2K_nsze4Gggm_7kCzDHDuTncn3AZyGQutY2dxiSlPLwyYh4zazpE9j4TCpKY9zsomw32ejER_MwXl9F0YplQ-fqRY-5r38ZCwz_FXWDqmpVlxvHhaROau8rVX3DMIgp0YzIYzMMp5dNSUpbw_7HZzi8lvYAHUdJM8xZb_rU8_5lo9ygpXfa80851yt_U_adVirsKLJReENGzCn0k1YLugmPxtw_YCUPKRjEldCHj9fX5FNy9iIdF8yxEswWYyYGpYgFDW5_ChHZFMyKHi9SQVgsgVPV5fD7o1VEilY0kTYzBKx1IwmVATaV1JRHfiKKe4zzhyhnMDViQhFGMcydALJtZAicBJBmWSJFky527CQjlO1C8RNEJ9eGl1Tz0s4jXXoxr6wNXdsab66TWhX6oxkiTKOZBcvUX7aoDwytojQFlFpiyac1TveCoSNP9Y2UM_1ulLFTTipLBaZ6MCWh0jVOJtGeHoKTEnCjGA7hSnrzZUH7P380mNYuRne96Lebf9uH1ZRjGJE7AAWZpNMHcKSfJ89TydHuRt-ATdT12o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rough+Based+Symmetrical+Clustering+for+Gene+Expression+Profile+Analysis&rft.jtitle=IEEE+transactions+on+nanobioscience&rft.au=Sarkar%2C+Anasua&rft.au=Maulik%2C+Ujjwal&rft.date=2015-06-01&rft.issn=1536-1241&rft.eissn=1558-2639&rft.volume=14&rft.issue=4&rft.spage=360&rft.epage=367&rft_id=info:doi/10.1109%2FTNB.2015.2421323&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNB_2015_2421323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1241&client=summon