Rough Based Symmetrical Clustering for Gene Expression Profile Analysis
Identification of coexpressed genes is the central goal in microarray gene expression data analysis. Point symmetry-based clustering is an important unsupervised learning technique for recognizing symmetrical convex or non-convex shaped clusters. To enable fast automatic clustering of large microarr...
Uloženo v:
| Vydáno v: | IEEE transactions on nanobioscience Ročník 14; číslo 4; s. 360 - 367 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Magazine Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.06.2015
|
| Témata: | |
| ISSN: | 1536-1241, 1558-2639 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Identification of coexpressed genes is the central goal in microarray gene expression data analysis. Point symmetry-based clustering is an important unsupervised learning technique for recognizing symmetrical convex or non-convex shaped clusters. To enable fast automatic clustering of large microarray data, in this article, a distributed time-efficient scalable parallel rough set based hybrid approach for point symmetry-based clustering algorithm has been proposed. A natural basis for analyzing gene expression data using the symmetry-based algorithm, is to group together genes with similar symmetrical patterns of expression. Rough-set theory helps in faster convergence and initial automatic optimal classification, thereby solving the problem of unknown knowledge of number of clusters in microarray data. This new parallel implementation with K-means algorithm also satisfies the linear speedup in timing on large microarray datasets. This proposed algorithm is compared with another parallel symmetry-based K-means and parallel version of existing K-means over four artificial and benchmark microarray datasets. We also have experimented over three skewed cancer gene expression datasets. The statistical analysis are also performed to establish the significance of this new implementation. The biological relevance of the clustering solutions are also analyzed. |
|---|---|
| AbstractList | Identification of coexpressed genes is the central goal in microarray gene expression data analysis. Point symmetry-based clustering is an important unsupervised learning technique for recognizing symmetrical convex or non-convex shaped clusters. To enable fast automatic clustering of large microarray data, in this article, a distributed time-efficient scalable parallel rough set based hybrid approach for point symmetry-based clustering algorithm has been proposed. A natural basis for analyzing gene expression data using the symmetry-based algorithm, is to group together genes with similar symmetrical patterns of expression. Rough-set theory helps in faster convergence and initial automatic optimal classification, thereby solving the problem of unknown knowledge of number of clusters in microarray data. This new parallel implementation with K-means algorithm also satisfies the linear speedup in timing on large microarray datasets. This proposed algorithm is compared with another parallel symmetry-based K-means and parallel version of existing K-means over four artificial and benchmark microarray datasets. We also have experimented over three skewed cancer gene expression datasets. The statistical analysis are also performed to establish the significance of this new implementation. The biological relevance of the clustering solutions are also analyzed. |
| Author | Sarkar, Anasua Maulik, Ujjwal |
| Author_xml | – sequence: 1 givenname: Anasua surname: Sarkar fullname: Sarkar, Anasua email: Anasua.Sarkar.IN@ieee.org organization: Dept. of Inf. Technol., Gov. Coll. of Eng. & Leather Technol., Kolkata, India – sequence: 2 givenname: Ujjwal surname: Maulik fullname: Maulik, Ujjwal email: umaulik@cse.jdvu.ac.in organization: Dept. of Comput. Sc. & Eng., Jadavpur Univ., Kolkata, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25935042$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1LAzEQhoMoatW7IMgevWzNR5NNjlq0CqLixzlMsxON7EdNdsH-e7e0evDgaebwPC8z74hsN22DhBwzOmaMmvOX-8sxp0yO-YQzwcUW2WdS6pwrYbZXu1A54xO2R0YpfVDKCiXNLtnj0ghJJ3yfzJ7a_u09u4SEZfa8rGvsYnBQZdOqTx3G0Lxlvo3ZDBvMrr4WEVMKbZM9xtaHCrOLBqplCumQ7HioEh5t5gF5vb56md7kdw-z2-nFXe4EM10Oc-c1LSkoL9Eh9UqiRiO10RxwONuXUEAxn7uCK2c8OFC8BKqdLj1oFAfkbJ27iO1nj6mzdUgOqwoabPtkmeZKMS21GtDTDdrPayztIoYa4tL-PD8Aag242KYU0VsXOuiG97oIobKM2lXLdmjZrlq2m5YHkf4Rf7L_UU7WSkDEX7ygpijERHwD65GIDw |
| CODEN | ITMCEL |
| CitedBy_id | crossref_primary_10_1007_s12351_017_0346_1 crossref_primary_10_1155_2016_6203972 crossref_primary_10_1016_j_bbe_2018_02_002 |
| Cites_doi | 10.1007/978-1-4757-0450-1 10.1093/bioinformatics/btg232 10.1093/bioinformatics/bth078 10.1126/science.283.5398.83 10.1007/BF01001956 10.1073/pnas.96.12.6745 10.1038/75556 10.1109/TPDS.2007.1024 10.1109/TPAMI.2002.1114856 10.1126/science.286.5439.531 10.20965/jaciii.2003.p0169 10.1109/34.85677 10.1093/bioinformatics/bti251 10.1109/34.927466 10.1073/pnas.95.1.334 10.1073/pnas.95.25.14863 10.1093/bioinformatics/btg455 10.1109/ICCIS.2011.213 10.1016/0377-0427(87)90125-7 10.1109/TST.2012.6374368 |
| ContentType | Magazine Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TNB.2015.2421323 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore (IEEE/IET Electronic Library - IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1558-2639 |
| EndPage | 367 |
| ExternalDocumentID | 25935042 10_1109_TNB_2015_2421323 7097734 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c319t-abcf80d0a6f5ece0f65e8e958982ae263fda7a7bbc726c9faca62da08c8dfa8e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359565800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1536-1241 |
| IngestDate | Sat Sep 27 19:06:34 EDT 2025 Thu Apr 03 06:58:17 EDT 2025 Tue Nov 18 22:43:53 EST 2025 Sat Nov 29 03:31:07 EST 2025 Tue Aug 26 16:40:09 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-abcf80d0a6f5ece0f65e8e958982ae263fda7a7bbc726c9faca62da08c8dfa8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25935042 |
| PQID | 1826618586 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_7097734 pubmed_primary_25935042 crossref_primary_10_1109_TNB_2015_2421323 proquest_miscellaneous_1826618586 crossref_citationtrail_10_1109_TNB_2015_2421323 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-June 2015-6-00 2015-Jun 20150601 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-June |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on nanobioscience |
| PublicationTitleAbbrev | TNB |
| PublicationTitleAlternate | IEEE Trans Nanobioscience |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref2 ref1 ref16 golub (ref18) 1999; 286 ref19 saha (ref7) 2007; 10 wigle (ref20) 2002; 62 ref24 ref23 pacheco (ref11) 1997 ref25 ref22 ref21 hirano (ref5) 2003; 7 ref8 ref9 ref4 gawrys (ref10) 1994 ref6 derisi (ref3) 1997; 282 iyer (ref17) 1999; 283 |
| References_xml | – ident: ref12 doi: 10.1007/978-1-4757-0450-1 – volume: 62 start-page: 3005 year: 2002 ident: ref20 article-title: Molecular profiling of non-small cell lung cancer and correlation with disease free survival publication-title: Cancer Res – ident: ref1 doi: 10.1093/bioinformatics/btg232 – ident: ref8 doi: 10.1093/bioinformatics/bth078 – volume: 283 start-page: 83 year: 1999 ident: ref17 article-title: The transcriptional program in the response of human fibroblasts serum publication-title: Science doi: 10.1126/science.283.5398.83 – ident: ref9 doi: 10.1007/BF01001956 – ident: ref19 doi: 10.1073/pnas.96.12.6745 – ident: ref22 doi: 10.1038/75556 – ident: ref24 doi: 10.1109/TPDS.2007.1024 – year: 1994 ident: ref10 publication-title: ?RSL?the Rough Set Library Version 2 0 ? – ident: ref14 doi: 10.1109/TPAMI.2002.1114856 – volume: 286 start-page: 531 year: 1999 ident: ref18 article-title: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 282 start-page: 257 year: 1997 ident: ref3 article-title: Exploring the metabolic and genetic control of gene expression on a genome scale publication-title: Science – volume: 7 start-page: 169 year: 2003 ident: ref5 article-title: An indiscernibility-based clustering method with iterative refinement of equivalence relations -rough clustering- publication-title: JACIII doi: 10.20965/jaciii.2003.p0169 – ident: ref13 doi: 10.1109/34.85677 – ident: ref25 doi: 10.1093/bioinformatics/bti251 – year: 1997 ident: ref11 publication-title: Parallel Programming with MPI – ident: ref6 doi: 10.1109/34.927466 – volume: 10 start-page: 3430 year: 2007 ident: ref7 article-title: GAPS: A clustering method using a new point symmetry-based distance measure publication-title: Pattern Recog – ident: ref16 doi: 10.1073/pnas.95.1.334 – ident: ref2 doi: 10.1073/pnas.95.25.14863 – ident: ref23 doi: 10.1093/bioinformatics/btg455 – ident: ref4 doi: 10.1109/ICCIS.2011.213 – ident: ref15 doi: 10.1016/0377-0427(87)90125-7 – ident: ref21 doi: 10.1109/TST.2012.6374368 |
| SSID | ssj0017659 |
| Score | 1.1933017 |
| Snippet | Identification of coexpressed genes is the central goal in microarray gene expression data analysis. Point symmetry-based clustering is an important... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 360 |
| SubjectTerms | Algorithm design and analysis Automatic clustering algorithm Clustering algorithms Gene expression Indexes K-means algorithm Lungs microarray gene expression data Partitioning algorithms point-symmetry based distance Program processors rough set decision rules |
| Title | Rough Based Symmetrical Clustering for Gene Expression Profile Analysis |
| URI | https://ieeexplore.ieee.org/document/7097734 https://www.ncbi.nlm.nih.gov/pubmed/25935042 https://www.proquest.com/docview/1826618586 |
| Volume | 14 |
| WOSCitedRecordID | wos000359565800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH60RcFT1brUpUTwIjg2syY5qrR6KsUFehsymQSEdipdxP5782YDQQVvc0gy4S3zXua9fB_AJZPGJNoVDteGOgEWCblwuaNCmkiPK0NFkpNNsNGITyZi3IDr-i6M1jpvPtM3-JjX8tO5WuOvsj6jNlvxgyY0GYuKu1p1xYBFOTGadWDklQncqiRJRf9ldIc9XOENlj99D6lzbNLvhzTwvkWjnF7l90wzjzjD9v_2ugvtCima3Ba2sAcNne3DdkE2uenAwxMS8pA7G7ZS8ryZzZBLy2qI3E_XiJZgYxixGSxBIGoy-CwbZDMyLli9SQVfcgCvw8HL_aNT0ig4yvrXypGJMpymVEYm1EpTE4WaaxFywT2pvcg3qWSSJYliXqSEkUpGXiopVzw1kmv_EFrZPNPHQPwU0emVlTUNglTQxDA_CaVrhOcq-83tQr8SZ6xKjHGkupjG-VmDitjqIkZdxKUuunBVz3gv8DX-GNtBOdfjShF34aLSWGx9AwseMtPz9TLGs1NkExJuN3ZUqLKeXFnAyc-LnsIOvrpoCjuD1mqx1uewpT5Wb8tFzxrghPdyA_wC-WPVCQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB480SePetQzgi-C22bv5NEWL6ylaIW-LdlsAoJupe2K_nsze4Gggm_7kCzDHDuTncn3AZyGQutY2dxiSlPLwyYh4zazpE9j4TCpKY9zsomw32ejER_MwXl9F0YplQ-fqRY-5r38ZCwz_FXWDqmpVlxvHhaROau8rVX3DMIgp0YzIYzMMp5dNSUpbw_7HZzi8lvYAHUdJM8xZb_rU8_5lo9ygpXfa80851yt_U_adVirsKLJReENGzCn0k1YLugmPxtw_YCUPKRjEldCHj9fX5FNy9iIdF8yxEswWYyYGpYgFDW5_ChHZFMyKHi9SQVgsgVPV5fD7o1VEilY0kTYzBKx1IwmVATaV1JRHfiKKe4zzhyhnMDViQhFGMcydALJtZAicBJBmWSJFky527CQjlO1C8RNEJ9eGl1Tz0s4jXXoxr6wNXdsab66TWhX6oxkiTKOZBcvUX7aoDwytojQFlFpiyac1TveCoSNP9Y2UM_1ulLFTTipLBaZ6MCWh0jVOJtGeHoKTEnCjGA7hSnrzZUH7P380mNYuRne96Lebf9uH1ZRjGJE7AAWZpNMHcKSfJ89TydHuRt-ATdT12o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rough+Based+Symmetrical+Clustering+for+Gene+Expression+Profile+Analysis&rft.jtitle=IEEE+transactions+on+nanobioscience&rft.au=Sarkar%2C+Anasua&rft.au=Maulik%2C+Ujjwal&rft.date=2015-06-01&rft.issn=1536-1241&rft.eissn=1558-2639&rft.volume=14&rft.issue=4&rft.spage=360&rft.epage=367&rft_id=info:doi/10.1109%2FTNB.2015.2421323&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNB_2015_2421323 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1241&client=summon |