Geospatial modelling of drought patterns in Oman: GIS-based and machine learning approach

Drought is one of the most devastating natural disasters, and its consequences affect various human and environmental aspects. In both arid and semi-arid regions, the impact of drought poses direct threats to livelihoods and socio-economic activities. For drought mitigation purposes, spatially accur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modeling earth systems and environment Jg. 10; H. 3; S. 3411 - 3431
1. Verfasser: Mansour, Shawky
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.06.2024
Springer Nature B.V
Schlagworte:
ISSN:2363-6203, 2363-6211
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Drought is one of the most devastating natural disasters, and its consequences affect various human and environmental aspects. In both arid and semi-arid regions, the impact of drought poses direct threats to livelihoods and socio-economic activities. For drought mitigation purposes, spatially accurate predictions of the areas to be affected are essential. By utilising an Artificial Neural Network (ANN) within a Geographic Information Systems (GIS) environment, this research aimed to project drought severity across Oman throughout the twenty-first century. Drought severity during the rainy season (DJF) was characterised using the Standardized Precipitation Evapotranspiration Index (SPEI) calculated for February at a three-month timescale. SPEI was computed based on the monthly data for a set of climatic variables (i.e. maximum and minimum air temperatures, total precipitation, wind speed, relative humidity) derived from the climate forecast system reanalysis (CFSR) dataset at a grid interval of 0.25° for the period between 1998 and 2012. The ANN model was forced with drought classes (i.e. mild, moderate, severe, extreme, and very extreme) employed as a dependent variable, while a wide spectrum of climatic (e.g., air temperature, precipitation, wind speed), topographical (e.g., elevation, aspect) and geographical (e.g., distance to coasts, vegetation cover) variables were used as independent variables. For consistency in projecting drought changes, the dependent and independent variables were re-gridded to a common grid interval (0.25 °C) using a spline interpolation algorithm. Our findings show that the ANN model provided a realistic simulation of drought occurrence incorporating the relevant climatic, topographical and geographic parameters across Oman. Regarding the projected spatial patterns of drought, the northern parts of the study area (e.g., North and South Al-Batinah governorates) are exposed to the severe and extreme intensification of drought, whilst predominately medium and low levels of droughts are expected to occur across the south and south-west areas of Oman. In a water-scarce region like Oman, the results of this study could have particular policy implications, specifically in terms of management of water resources, food production, agriculture, water supply, hydropower energy and biodiversity, amongst others. The projected changes in drought occurrence in Oman make it necessary to develop effective national initiatives to mitigate the impacts of drought and to build society's capacity for drought preparedness. Graphical abstract
AbstractList Drought is one of the most devastating natural disasters, and its consequences affect various human and environmental aspects. In both arid and semi-arid regions, the impact of drought poses direct threats to livelihoods and socio-economic activities. For drought mitigation purposes, spatially accurate predictions of the areas to be affected are essential. By utilising an Artificial Neural Network (ANN) within a Geographic Information Systems (GIS) environment, this research aimed to project drought severity across Oman throughout the twenty-first century. Drought severity during the rainy season (DJF) was characterised using the Standardized Precipitation Evapotranspiration Index (SPEI) calculated for February at a three-month timescale. SPEI was computed based on the monthly data for a set of climatic variables (i.e. maximum and minimum air temperatures, total precipitation, wind speed, relative humidity) derived from the climate forecast system reanalysis (CFSR) dataset at a grid interval of 0.25° for the period between 1998 and 2012. The ANN model was forced with drought classes (i.e. mild, moderate, severe, extreme, and very extreme) employed as a dependent variable, while a wide spectrum of climatic (e.g., air temperature, precipitation, wind speed), topographical (e.g., elevation, aspect) and geographical (e.g., distance to coasts, vegetation cover) variables were used as independent variables. For consistency in projecting drought changes, the dependent and independent variables were re-gridded to a common grid interval (0.25 °C) using a spline interpolation algorithm. Our findings show that the ANN model provided a realistic simulation of drought occurrence incorporating the relevant climatic, topographical and geographic parameters across Oman. Regarding the projected spatial patterns of drought, the northern parts of the study area (e.g., North and South Al-Batinah governorates) are exposed to the severe and extreme intensification of drought, whilst predominately medium and low levels of droughts are expected to occur across the south and south-west areas of Oman. In a water-scarce region like Oman, the results of this study could have particular policy implications, specifically in terms of management of water resources, food production, agriculture, water supply, hydropower energy and biodiversity, amongst others. The projected changes in drought occurrence in Oman make it necessary to develop effective national initiatives to mitigate the impacts of drought and to build society's capacity for drought preparedness.
Drought is one of the most devastating natural disasters, and its consequences affect various human and environmental aspects. In both arid and semi-arid regions, the impact of drought poses direct threats to livelihoods and socio-economic activities. For drought mitigation purposes, spatially accurate predictions of the areas to be affected are essential. By utilising an Artificial Neural Network (ANN) within a Geographic Information Systems (GIS) environment, this research aimed to project drought severity across Oman throughout the twenty-first century. Drought severity during the rainy season (DJF) was characterised using the Standardized Precipitation Evapotranspiration Index (SPEI) calculated for February at a three-month timescale. SPEI was computed based on the monthly data for a set of climatic variables (i.e. maximum and minimum air temperatures, total precipitation, wind speed, relative humidity) derived from the climate forecast system reanalysis (CFSR) dataset at a grid interval of 0.25° for the period between 1998 and 2012. The ANN model was forced with drought classes (i.e. mild, moderate, severe, extreme, and very extreme) employed as a dependent variable, while a wide spectrum of climatic (e.g., air temperature, precipitation, wind speed), topographical (e.g., elevation, aspect) and geographical (e.g., distance to coasts, vegetation cover) variables were used as independent variables. For consistency in projecting drought changes, the dependent and independent variables were re-gridded to a common grid interval (0.25 °C) using a spline interpolation algorithm. Our findings show that the ANN model provided a realistic simulation of drought occurrence incorporating the relevant climatic, topographical and geographic parameters across Oman. Regarding the projected spatial patterns of drought, the northern parts of the study area (e.g., North and South Al-Batinah governorates) are exposed to the severe and extreme intensification of drought, whilst predominately medium and low levels of droughts are expected to occur across the south and south-west areas of Oman. In a water-scarce region like Oman, the results of this study could have particular policy implications, specifically in terms of management of water resources, food production, agriculture, water supply, hydropower energy and biodiversity, amongst others. The projected changes in drought occurrence in Oman make it necessary to develop effective national initiatives to mitigate the impacts of drought and to build society's capacity for drought preparedness. Graphical abstract
Author Mansour, Shawky
Author_xml – sequence: 1
  givenname: Shawky
  orcidid: 0000-0001-6969-9188
  surname: Mansour
  fullname: Mansour, Shawky
  email: shawky.mansour@ku.edu.kw
  organization: Department of Geography, College of Social Sciences, Kuwait University
BookMark eNp9kD1PwzAQhi1UJErpH2CyxGzwR2LHbKiCUqlSB2BgshzbbVMldrHTgX-PSxBIDJ3udPc-9_FegpEP3gFwTfAtwVjcpQJXuEKYFggTWVZInoExZZwhTgkZ_eaYXYBpSjuMMeGUcynH4H3uQtrrvtEt7IJ1bdv4DQxraGM4bLY9zL3eRZ9g4-Gq0_4ezhcvqNbJWai9hZ0228Y72Dod_ZHV-30MuXgFzte6TW76Eyfg7enxdfaMlqv5YvawRIYR2SNd16KkpCalLgSV1knLhbCidMJpbUtrMCl5ZUkpWUFqzoSzFTGSGWOLShg2ATfD3Lz24-BSr3bhEH1eqRjmBZNYcppV1aAyMaQU3VqZps9vB99H3bSKYHX0Ug1equyl-vZSyYzSf-g-Np2On6chNkApi_3Gxb-rTlBfB_KIZQ
CitedBy_id crossref_primary_10_1007_s00704_024_05222_z
crossref_primary_10_1007_s40808_024_02096_y
crossref_primary_10_1007_s12371_025_01076_7
crossref_primary_10_1080_19475683_2025_2473596
crossref_primary_10_1007_s10791_025_09511_7
crossref_primary_10_3390_rs16162960
Cites_doi 10.1038/nclimate2833
10.1175/jhm-386.1
10.1016/j.atmosres.2017.09.016
10.1007/s12517-015-2102-2
10.1080/02508068508686328
10.1007/s00382-017-3740-8
10.1088/1748-9326/9/4/044001
10.1016/j.catena.2017.01.019
10.1038/nature11575
10.1029/2008WR006964
10.1007/s00704-013-0919-8
10.1007/s12517-016-2324-y
10.5194/hess-9-523-2005
10.1016/j.accre.2018.01.004
10.1038/nclimate1536
10.1038/ncomms1732
10.1088/1748-9326/10/4/044009
10.1002/joc.1562
10.1016/j.jhydrol.2015.05.003
10.1175/2010BAMS3001.1
10.1175/BAMS-D-12-00014.1
10.1016/j.atmosres.2009.11.009
10.1007/s10584-008-9438-5
10.1007/s00704-016-1840-8
10.1088/1748-9326/11/12/124021
10.1007/s10584-012-0418-4
10.1175/2009jcli2909.1
10.1002/joc.1727
10.1016/j.jhydrol.2010.07.012
10.1073/pnas.1204330109
10.1002/joc.3650
10.2134/agronj2012.0033
10.5194/hess-20-2779-2016
10.1007/s00704-012-0812-x
10.1016/j.jhydrol.2014.04.032
10.1007/s10584-010-9835-4
10.1002/joc.5225
10.1038/323533a0
10.3390/rs2030673
10.1002/joc.3754
10.1016/B978-0-12-815998-9.00002-6
10.1371/journal.pcbi.1004031
10.2166/wcc.2010.035
10.7551/mitpress/11301.001.0001
10.1007/s11069-004-5704-7
10.1016/j.pce.2003.08.009
10.1016/S0301-5629(96)00144-5
10.1175/JCLI-D-20-0004.1
10.1016/j.wace.2014.01.002
10.1016/S0893-6080(00)00050-2
10.1111/jawr.12182
10.1016/j.jaridenv.2004.09.023
10.3390/s90705558
10.1007/s10584-013-0948-4
10.1016/j.apgeog.2014.06.016
10.1016/j.enggeo.2011.09.011
10.1007/s00521-014-1801-z
10.1007/978-94-015-9472-1_3
10.1073/pnas.1604581113
10.1016/S0022-1694(00)00228-6
10.1175/JAMC-D-19-0217.1
10.1016/j.proeng.2016.07.528
10.1007/BF02478259
10.5194/nhess-6-687-2006
10.1109/72.80343
10.1002/wrcr.20123
10.1016/j.proeng.2012.01.1172
10.1016/S0360-5442(99)00086-9
10.1175/BAMS-D-13-00055.1
10.1016/j.gloenvcha.2012.10.002
10.1016/j.compag.2004.11.014
10.1201/9781315404219-1
10.3390/app7070730
10.1038/nclimate2067
10.5479/sil.538961.39088011475779
10.1016/j.ecolmodel.2006.04.017
10.1080/0143116031000070319
10.1002/joc.6126
10.1007/s10661-015-4298-8
10.1175/JHM-386.1
10.1007/s005210200021
10.1002/esp.593
10.1007/s10668-020-00798-8
10.1007/s11269-016-1283-0
10.1175/JAM2173.1
10.5194/hess-14-1247-2010
10.1002/joc.1498
10.1007/s12559-015-9333-0
10.1080/0143116031000150077
10.1061/(ASCE)1084-0699(2003)8:6(319)
10.1016/j.biosystemseng.2009.12.008
10.3390/rs1030243
10.1016/j.rse.2007.04.013
10.1007/s10584-006-6338-4
10.1109/41.873214
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7TN
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOI 10.1007/s40808-024-01958-9
DatabaseName CrossRef
Oceanic Abstracts
Water Resources Abstracts
One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Computer Science
EISSN 2363-6211
EndPage 3431
ExternalDocumentID 10_1007_s40808_024_01958_9
GeographicLocations Oman
GeographicLocations_xml – name: Oman
GroupedDBID -EM
0R~
203
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFRAH
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ASPBG
ATCPS
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BENPR
BGNMA
BHPHI
BKSAR
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GJIRD
HCIFZ
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PATMY
PCBAR
PT4
PYCSY
RIG
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TN
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-abb7521b15a4729de9d677d75e7eaad5dc01568d159341b637ed81c93ccd487c3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173453700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2363-6203
IngestDate Wed Nov 05 08:38:14 EST 2025
Tue Nov 18 21:22:34 EST 2025
Sat Nov 29 02:04:00 EST 2025
Fri Feb 21 02:42:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords GIS
Artificial neural network
Forecasting
Drought risk patterns
Oman
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-abb7521b15a4729de9d677d75e7eaad5dc01568d159341b637ed81c93ccd487c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6969-9188
PQID 3064390962
PQPubID 2044383
PageCount 21
ParticipantIDs proquest_journals_3064390962
crossref_citationtrail_10_1007_s40808_024_01958_9
crossref_primary_10_1007_s40808_024_01958_9
springer_journals_10_1007_s40808_024_01958_9
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Modeling earth systems and environment
PublicationTitleAbbrev Model. Earth Syst. Environ
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Agha, Şarlak (CR1) 2016; 9
Blauhut, Stahl, Stagge, Tallaksen, De Stefano, Vogt (CR6) 2016; 20
Evans (CR24) 2009; 92
Seng (CR78) 2017; 32
Charlesworth (CR12) 2010; 1
Pradhan, Lee (CR68) 2009; 4
Nagy (CR60) 1991; 2
Ouarda, Charron, Niranjan Kumar, Marpu, Ghedira, Molini, Khayal (CR64) 2014; 514
Kodogiannis, Lolis (CR37) 2002; 11
Savari, Shokati Amghani (CR77) 2021; 23
Wilhite, Sivakumar, Pulwarty (CR99) 2014; 3
Liu, Liu, Li, Fang, Chi (CR48) 2010; 106
Vicente-Serrano, Beguería, López-Moreno (CR95) 2010; 23
Lee, Evangelista (CR41) 2006; 6
Trombetti, Riaño, Rubio, Cheng, Ustin (CR90) 2008; 112
Sowers, Vengosh, Weinthal (CR82) 2011; 104
Sujana, Swarnamani, Suresh (CR85) 1996; 22
Lee, Ryu, Min, Won (CR42) 2003; 28
Choi, Oh, Lee, Lee, Lee (CR14) 2012; 124
Mueller, Seneviratne (CR59) 2012; 109
Imrie, Durucan, Korre (CR33) 2000; 233
Li, Chow, Tipsuwan, Hung (CR46) 2000; 47
Hamill, Bates, Whitaker, Murray, Fiorino, Lapenta (CR29) 2013; 94
Liu, Xia, Shi, Hong (CR47) 2009; 9
Siebert, Häser, Nagieb, Korn, Buerkert (CR80) 2005; 62
Kalogirou, Bojic (CR34) 2000; 25
Marengo, Torres, Alves (CR49) 2017; 129
Srinivasan, Seto, Emerson, Gorelick (CR83) 2013; 23
Ahmadi, Layegh (CR2) 2015; 26
Kazem, Chaichan (CR35) 2017; 76
Ficklin, Maxwell, Letsinger, Gholizadeh (CR26) 2015; 10
Danson, Rowland, Baret (CR19) 2003; 24
CR57
Mokhtarzade, Zoej (CR56) 2007; 9
Vicente-Serrano, López-Moreno (CR94) 2005
CR53
Pedro-Monzonís, Solera, Ferrer, Estrela, Paredes-Arquiola (CR67) 2015; 527
Wilhite, Knutson (CR98) 2008; 80
Fauth, Wörgötter, Tetzlaff (CR25) 2015; 11
Buytaert, Vuille, Dewulf, Urrutia, Karmalkar, Célleri (CR9) 2010; 14
Ding, Fromm, Avramova (CR21) 2012; 3
McCulloch, Pitts (CR51) 1943; 5
Arnell, Lloyd-Hughes (CR4) 2014; 122
Subyani, Hajjar (CR84) 2016; 9
CR63
CR61
Trenberth, Dai, Van Der Schrier, Jones, Barichivich, Briffa, Sheffield (CR89) 2014; 4
Groves, Yates, Tebaldi (CR28) 2008
Qiang, Lam (CR69) 2015; 187
Quesada, Vautard, Yiou, Hirschi, Seneviratne (CR70) 2012; 2
Saha, Moorthi, Pan, Wu, Wang, Nadiga, Goldberg (CR76) 2010; 91
Dai, Trenberth, Qian (CR17) 2004; 5
van Vliet, Sheffield, Wiberg, Wood (CR93) 2016; 11
Okwuashi, Isong, Eyo, Eyoh, Nwanekezie, Olayinka, Ofem (CR62) 2012; 4
Freiwan, Kadioglu (CR27) 2008; 28
Erbek, Özkan, Taberner (CR23) 2004; 25
Hong, Hsu, Sorooshian, Gao (CR31) 2004; 43
Coats, Smerdon, Stevenson, Fasullo, Otto-Bliesner, Ault (CR15) 2020; 33
Woli, Jones, Ingram (CR100) 2013; 105
Vicente-Serrano, Lopez-Moreno, Beguería, Lorenzo-Lacruz, Sanchez-Lorenzo, García-Ruiz, Espejo (CR96) 2014; 9
Rumelhart, Hinton, Williams (CR75) 1986; 323
Almazroui, Hasanean, Al-Khalaf, Abdel Basset (CR3) 2013; 113
El Kharraz, El-Sadek, Ghaffour, Mino (CR22) 2012; 33
Zhang, Jin (CR103) 2000; 13
CR87
Pal, Eltahir (CR65) 2016; 6
Wilhite, Glantz (CR97) 1985; 10
Mezaal, Pradhan, Sameen, Shafri, Zulhaidi, Yusoff (CR52) 2017; 7
Razavi (CR71) 2014; 6
Carrão, Naumann, Barbosa (CR10) 2018; 50
Huang (CR32) 2015; 7
Morid, Smakhtin, Bagherzadeh (CR58) 2007; 27
Brito, Cunha, Cunningham, Alvalá, Marengo, Carvalho (CR7) 2018; 38
Rezaeianzadeh, Stein, Cox (CR73) 2016; 30
Terink, Immerzeel, Droogers (CR88) 2013; 33
CR16
Dehghani, Saghafian, Nasiri Saleh, Farokhnia, Noori (CR20) 2014; 34
Lelieveld, Hadjinicolaou, Kostopoulou, Chenoweth, El Maayar, Giannakopoulos, Xoplaki (CR45) 2012; 114
CR13
Bucchignani, Mercogliano, Panitz, Montesarchio (CR8) 2018; 9
Hoerling, Eischeid, Kumar, Leung, Mariotti, Mo, Seager (CR30) 2014; 95
Yuan, Van Der Wiele, Khorram (CR102) 2009; 1
Le, Perez, Solomatine, Nguyen (CR39) 2016; 154
Mathbout, Lopez-Bustins, Martin-Vide, Bech, Rodrigo (CR50) 2018; 200
Lehner, Döll, Alcamo, Henrichs, Kaspar (CR44) 2006; 75
Lee, Ryu, Won, Park (CR43) 2014; 71
Worqlul, Yen, Collick, Tilahun, Langan, Steenhuis (CR101) 2017; 152
Uno, Prasher, Lacroix, Goel, Karimi, Viau, Patel (CR91) 2005; 47
Basse, Omrani, Charif, Gerber, Bódis (CR5) 2014; 53
Leasor, Quiring, Svoboda (CR40) 2020; 59
Kwarteng, Dorvlo, Vijaya Kumar (CR38) 2009; 29
Sönmez, Koemuescue, Erkan, Turgu (CR81) 2005; 35
Panda, Ames, Panigrahi (CR66) 2010; 2
Sheffield, Wood, Roderick (CR79) 2012; 491
Raziei, Daryabari, Bordi, Pereira (CR72) 2014; 115
Dai, Trenberth, Qian (CR18) 2004; 5
Mishra, Singh (CR55) 2010; 391
Rockström (CR74) 2003; 28
CR104
Mishra, Desai (CR54) 2006; 198
Charabi, Al-Hatrushi (CR11) 2010; 95
CR105
Kim, Valdés (CR36) 2003; 8
Swann, Hoffman, Koven, Randerson (CR86) 2016; 113
van Dijk, Beck, Crosbie, de Jeu, Liu, Podger, Viney (CR92) 2013; 49
CR108
CR109
CR106
CR107
M Pedro-Monzonís (1958_CR67) 2015; 527
FK Sönmez (1958_CR81) 2005; 35
JS Pal (1958_CR65) 2016; 6
P Woli (1958_CR100) 2013; 105
1958_CR13
J Zhang (1958_CR103) 2000; 13
W Terink (1958_CR88) 2013; 33
1958_CR16
B Pradhan (1958_CR68) 2009; 4
A Dai (1958_CR17) 2004; 5
M Mokhtarzade (1958_CR56) 2007; 9
DA Wilhite (1958_CR99) 2014; 3
AW Worqlul (1958_CR101) 2017; 152
AL Swann (1958_CR86) 2016; 113
M Freiwan (1958_CR27) 2008; 28
M Dehghani (1958_CR20) 2014; 34
J Sheffield (1958_CR79) 2012; 491
AM Subyani (1958_CR84) 2016; 9
A Dai (1958_CR18) 2004; 5
BS Razavi (1958_CR71) 2014; 6
OMAM Agha (1958_CR1) 2016; 9
S Lee (1958_CR43) 2014; 71
SSB Brito (1958_CR7) 2018; 38
M Liu (1958_CR48) 2010; 106
DL Ficklin (1958_CR26) 2015; 10
ZT Leasor (1958_CR40) 2020; 59
CE Imrie (1958_CR33) 2000; 233
A Mishra (1958_CR54) 2006; 198
DG Groves (1958_CR28) 2008
M Rezaeianzadeh (1958_CR73) 2016; 30
S Lee (1958_CR42) 2003; 28
SM Charlesworth (1958_CR12) 2010; 1
F Danson (1958_CR19) 2003; 24
SA Kalogirou (1958_CR34) 2000; 25
M Fauth (1958_CR25) 2015; 11
H Carrão (1958_CR10) 2018; 50
S Lee (1958_CR41) 2006; 6
B Li (1958_CR46) 2000; 47
Y Liu (1958_CR47) 2009; 9
1958_CR87
O Okwuashi (1958_CR62) 2012; 4
G Nagy (1958_CR60) 1991; 2
J El Kharraz (1958_CR22) 2012; 33
J Lelieveld (1958_CR45) 2012; 114
J Sowers (1958_CR82) 2011; 104
D Wilhite (1958_CR98) 2008; 80
TBMJ Ouarda (1958_CR64) 2014; 514
Y Uno (1958_CR91) 2005; 47
AY Kwarteng (1958_CR38) 2009; 29
M Trombetti (1958_CR90) 2008; 112
B Mueller (1958_CR59) 2012; 109
V Srinivasan (1958_CR83) 2013; 23
E Bucchignani (1958_CR8) 2018; 9
Y Charabi (1958_CR11) 2010; 95
1958_CR105
1958_CR104
S Siebert (1958_CR80) 2005; 62
1958_CR107
1958_CR106
1958_CR109
1958_CR61
1958_CR108
1958_CR53
S Coats (1958_CR15) 2020; 33
1958_CR57
FF Ahmadi (1958_CR2) 2015; 26
B Quesada (1958_CR70) 2012; 2
RM Basse (1958_CR5) 2014; 53
WS McCulloch (1958_CR51) 1943; 5
B Lehner (1958_CR44) 2006; 75
M Almazroui (1958_CR3) 2013; 113
TM Hamill (1958_CR29) 2013; 94
H Yuan (1958_CR102) 2009; 1
DA Wilhite (1958_CR97) 1985; 10
SS Panda (1958_CR66) 2010; 2
MH Le (1958_CR39) 2016; 154
MR Mezaal (1958_CR52) 2017; 7
S Mathbout (1958_CR50) 2018; 200
1958_CR63
S Saha (1958_CR76) 2010; 91
H Sujana (1958_CR85) 1996; 22
D Seng (1958_CR78) 2017; 32
J Rockström (1958_CR74) 2003; 28
V Blauhut (1958_CR6) 2016; 20
SM Vicente-Serrano (1958_CR96) 2014; 9
AI van Dijk (1958_CR92) 2013; 49
M Savari (1958_CR77) 2021; 23
NW Arnell (1958_CR4) 2014; 122
T Raziei (1958_CR72) 2014; 115
Y Hong (1958_CR31) 2004; 43
V Kodogiannis (1958_CR37) 2002; 11
SM Vicente-Serrano (1958_CR95) 2010; 23
T-W Kim (1958_CR36) 2003; 8
DE Rumelhart (1958_CR75) 1986; 323
AK Mishra (1958_CR55) 2010; 391
M Hoerling (1958_CR30) 2014; 95
J Choi (1958_CR14) 2012; 124
Y Ding (1958_CR21) 2012; 3
G-B Huang (1958_CR32) 2015; 7
JA Marengo (1958_CR49) 2017; 129
MTH van Vliet (1958_CR93) 2016; 11
HA Kazem (1958_CR35) 2017; 76
Y Qiang (1958_CR69) 2015; 187
KE Trenberth (1958_CR89) 2014; 4
W Buytaert (1958_CR9) 2010; 14
FS Erbek (1958_CR23) 2004; 25
S Morid (1958_CR58) 2007; 27
JP Evans (1958_CR24) 2009; 92
SM Vicente-Serrano (1958_CR94) 2005
References_xml – volume: 7
  start-page: 730
  issue: 7
  year: 2017
  ident: CR52
  article-title: Optimized neural architecture for automatic landslide detection from high-resolution airborne laser scanning data
  publication-title: Appl Sci
– volume: 6
  start-page: 197
  issue: 2
  year: 2016
  end-page: 200
  ident: CR65
  article-title: Future temperature in southwest Asia projected to exceed a threshold for human adaptability
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate2833
– volume: 1
  start-page: 243
  issue: 3
  year: 2009
  end-page: 265
  ident: CR102
  article-title: An automated artificial neural network system for land use/land cover classification from Landsat TM imagery
  publication-title: Remote Sensing
– volume: 5
  start-page: 1117
  issue: 6
  year: 2004
  end-page: 1130
  ident: CR18
  article-title: A global dataset of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming
  publication-title: J Hydrometeorol
  doi: 10.1175/jhm-386.1
– ident: CR16
– volume: 47
  start-page: 1060
  issue: 5
  year: 2000
  end-page: 1069
  ident: CR46
  article-title: Neural-network-based motor rolling bearing fault diagnosis
  publication-title: IEEE Trans Industr Electron
– volume: 95
  start-page: 269
  issue: 2
  year: 2014
  end-page: 282
  ident: CR30
  article-title: Causes and predictability of the 2012 great plains drought
  publication-title: Bull Am Meteorol Soc
– volume: 200
  start-page: 153
  year: 2018
  end-page: 168
  ident: CR50
  article-title: Spatial and temporal analysis of drought variability at several time scales in Syria during 1961–2012
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2017.09.016
– volume: 9
  start-page: 122
  issue: 2
  year: 2016
  ident: CR84
  article-title: Rainfall analysis in the contest of climate change for Jeddah area Western Saudi Arabia
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-2102-2
– volume: 10
  start-page: 111
  issue: 3
  year: 1985
  end-page: 120
  ident: CR97
  article-title: Understanding: the drought phenomenon: the role of definitions
  publication-title: Water Int
  doi: 10.1080/02508068508686328
– volume: 47
  start-page: 149
  issue: 2
  year: 2005
  end-page: 161
  ident: CR91
  article-title: Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data
  publication-title: Comput Electron Agric
– volume: 50
  start-page: 2137
  issue: 5
  year: 2018
  end-page: 2155
  ident: CR10
  article-title: Global projections of drought hazard in a warming climate: a prime for disaster risk management
  publication-title: Clim Dyn
  doi: 10.1007/s00382-017-3740-8
– volume: 80
  start-page: 141
  year: 2008
  end-page: 148
  ident: CR98
  article-title: Drought management planning: conditions for success
  publication-title: Options Mediterr Ser A
– ident: CR106
– volume: 11
  issue: 1
  year: 2015
  ident: CR25
  article-title: The formation of multi-synaptic connections by the interaction of synaptic and structural plasticity and their functional consequences
  publication-title: PLoS Comput Biol
– volume: 9
  start-page: 044001
  issue: 4
  year: 2014
  ident: CR96
  article-title: Evidence of increasing drought severity caused by temperature rise in southern Europe
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/9/4/044001
– volume: 24
  start-page: 4891
  issue: 23
  year: 2003
  end-page: 4905
  ident: CR19
  article-title: Training a neural network with a canopy reflectance model to estimate crop leaf area index
  publication-title: Int J Remote Sens
– volume: 32
  start-page: 216
  issue: 14
  year: 2017
  end-page: 224
  ident: CR78
  article-title: 37. Granular computing in the short-term traffic prediction
  publication-title: Rev Fac Ing
– volume: 152
  start-page: 242
  year: 2017
  end-page: 251
  ident: CR101
  article-title: Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: the upper Blue Nile Basin, Ethiopia
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.01.019
– volume: 491
  start-page: 435
  issue: 7424
  year: 2012
  end-page: 438
  ident: CR79
  article-title: Little change in global drought over the past 60 years
  publication-title: Nature
  doi: 10.1038/nature11575
– volume: 75
  start-page: 273
  issue: 3
  year: 2006
  end-page: 299
  ident: CR44
  article-title: Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis
  publication-title: Clim Change
– year: 2008
  ident: CR28
  article-title: Developing and applying uncertain global climate change projections for regional water management planning
  publication-title: Water Res Res
  doi: 10.1029/2008WR006964
– volume: 4
  start-page: 1
  issue: 1
  year: 2009
  end-page: 15
  ident: CR68
  article-title: Landslide risk analysis using artificial neural network model focussing on different training sites
  publication-title: Int J Phys Sci
– volume: 6
  start-page: 687
  issue: 5
  year: 2006
  end-page: 695
  ident: CR41
  article-title: Earthquake-induced landslide-susceptibility mapping using an artificial neural network
  publication-title: Nat Hazards Earth Syst Sci
– volume: 115
  start-page: 531
  issue: 3
  year: 2014
  end-page: 540
  ident: CR72
  article-title: Spatial patterns and temporal trends of precipitation in Iran
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-0919-8
– volume: 9
  start-page: 302
  issue: 4
  year: 2016
  ident: CR1
  article-title: Spatial and temporal patterns of climate variables in Iraq
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2324-y
– year: 2005
  ident: CR94
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-9-523-2005
– volume: 33
  start-page: 14
  year: 2012
  end-page: 29
  ident: CR22
  article-title: Water scarcity and drought in WANA countries
  publication-title: Proced Eng
– ident: CR57
– volume: 33
  start-page: 9883
  issue: 22
  year: 2020
  end-page: 9903
  ident: CR15
  article-title: Paleoclimate constraints on the spatiotemporal character of past and future droughts
  publication-title: J Clim
– volume: 4
  start-page: 94
  issue: 2
  year: 2012
  ident: CR62
  article-title: GIS cellular automata using artificial neural network for land use change simulation of Lagos
  publication-title: Nigeria. J Geogr Geol
– volume: 8
  start-page: 319
  issue: 6
  year: 2003
  end-page: 328
  ident: CR36
  article-title: Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
  publication-title: J Hydrol Eng
– volume: 9
  start-page: 66
  issue: 1
  year: 2018
  end-page: 80
  ident: CR8
  article-title: Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions
  publication-title: Adv Clim Change Res
  doi: 10.1016/j.accre.2018.01.004
– volume: 198
  start-page: 127
  issue: 1–2
  year: 2006
  end-page: 138
  ident: CR54
  article-title: Drought forecasting using feed-forward recursive neural network
  publication-title: Ecol Model
– ident: CR109
– volume: 2
  start-page: 736
  issue: 10
  year: 2012
  end-page: 741
  ident: CR70
  article-title: Asymmetric European summer heat predictability from wet and dry southern winters and springs
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate1536
– volume: 9
  start-page: 5558
  issue: 7
  year: 2009
  end-page: 5579
  ident: CR47
  article-title: An improved cloud classification algorithm for China’s FY-2C multi-channel images using artificial neural network
  publication-title: Sensors
– volume: 25
  start-page: 479
  issue: 5
  year: 2000
  end-page: 491
  ident: CR34
  article-title: Artificial neural networks for the prediction of the energy consumption of a passive solar building
  publication-title: Energy
– volume: 23
  start-page: 229
  issue: 1
  year: 2013
  end-page: 239
  ident: CR83
  article-title: The impact of urbanization on water vulnerability: a coupled human–environment system approach for Chennai
  publication-title: India Global Environ Change
– volume: 28
  start-page: 869
  issue: 20–27
  year: 2003
  end-page: 877
  ident: CR74
  article-title: Resilience building and water demand management for drought mitigation
  publication-title: Phys Chem Earth, Parts a/b/c
– volume: 3
  start-page: 740
  issue: 1
  year: 2012
  ident: CR21
  article-title: Multiple exposures to drought 'train' transcriptional responses in Arabidopsis
  publication-title: Nat Commun
  doi: 10.1038/ncomms1732
– volume: 1
  start-page: 165
  issue: 3
  year: 2010
  end-page: 180
  ident: CR12
  article-title: A review of the adaptation and mitigation of global climate change using sustainable drainage in cities
  publication-title: J Water Clim Change
– volume: 43
  start-page: 1834
  issue: 12
  year: 2004
  end-page: 1853
  ident: CR31
  article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system
  publication-title: J Appl Meteorol
– volume: 10
  start-page: 044009
  issue: 4
  year: 2015
  ident: CR26
  article-title: A climatic deconstruction of recent drought trends in the United States
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/10/4/044009
– ident: CR63
– ident: CR108
– volume: 34
  start-page: 1169
  issue: 4
  year: 2014
  end-page: 1180
  ident: CR20
  article-title: Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation
  publication-title: Int J Climatol
– volume: 28
  start-page: 521
  issue: 4
  year: 2008
  end-page: 535
  ident: CR27
  article-title: Spatial and temporal analysis of climatological data in Jordan
  publication-title: Int J Climatol
  doi: 10.1002/joc.1562
– ident: CR13
– volume: 28
  start-page: 1361
  issue: 12
  year: 2003
  end-page: 1376
  ident: CR42
  article-title: Landslide susceptibility analysis using GIS and artificial neural network
  publication-title: Earth Surf Process Landf J Br Geomorphol Res Group
– volume: 527
  start-page: 482
  year: 2015
  end-page: 493
  ident: CR67
  article-title: A review of water scarcity and drought indexes in water resources planning and management
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.05.003
– volume: 91
  start-page: 1015
  issue: 8
  year: 2010
  end-page: 1058
  ident: CR76
  article-title: The NCEP climate forecast system reanalysis
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/2010BAMS3001.1
– volume: 187
  start-page: 57
  issue: 3
  year: 2015
  ident: CR69
  article-title: Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata
  publication-title: Environ Monit Assess
– volume: 59
  start-page: 455
  issue: 3
  year: 2020
  end-page: 475
  ident: CR40
  article-title: Utilizing objective drought severity thresholds to improve drought monitoring
  publication-title: J Appl Meteorol Climatol
– volume: 4
  start-page: 17
  issue: 1
  year: 2014
  end-page: 22
  ident: CR89
  article-title: Global warming and changes in drought
  publication-title: Nat Clim Chang
– volume: 94
  start-page: 1553
  issue: 10
  year: 2013
  end-page: 1565
  ident: CR29
  article-title: NOAA's second-generation global medium-range ensemble reforecast dataset
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-D-12-00014.1
– volume: 106
  start-page: 223
  issue: 3
  year: 2010
  end-page: 233
  ident: CR48
  article-title: Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices
  publication-title: Biosyst Eng
– volume: 71
  start-page: 289
  issue: 3–4
  year: 2014
  end-page: 302
  ident: CR43
  article-title: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network
  publication-title: Eng Geol
– volume: 49
  start-page: 1040
  issue: 2
  year: 2013
  end-page: 1057
  ident: CR92
  article-title: The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society
  publication-title: Water Resour Res
– volume: 95
  start-page: 470
  issue: 4
  year: 2010
  end-page: 486
  ident: CR11
  article-title: Synoptic aspects of winter rainfall variability in Oman
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2009.11.009
– volume: 92
  start-page: 417
  issue: 3
  year: 2009
  end-page: 432
  ident: CR24
  article-title: 21st century climate change in the Middle East
  publication-title: Clim Change
  doi: 10.1007/s10584-008-9438-5
– volume: 129
  start-page: 1189
  issue: 3
  year: 2017
  end-page: 1200
  ident: CR49
  article-title: Drought in Northeast Brazil—past, present, and future
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-016-1840-8
– ident: CR87
– volume: 112
  start-page: 203
  issue: 1
  year: 2008
  end-page: 215
  ident: CR90
  article-title: Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA
  publication-title: Remote Sens Environ
– volume: 113
  start-page: 10019
  issue: 36
  year: 2016
  end-page: 10024
  ident: CR86
  article-title: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity
  publication-title: Proc Natl Acad Sci
– volume: 11
  start-page: 124021
  issue: 12
  year: 2016
  ident: CR93
  article-title: Impacts of recent drought and warm years on water resources and electricity supply worldwide
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/11/12/124021
– ident: CR61
– volume: 53
  start-page: 160
  year: 2014
  end-page: 171
  ident: CR5
  article-title: Land use changes modelling using advanced methods: cellular automata and artificial neural networks. the spatial and explicit representation of land cover dynamics at the cross-border region scale
  publication-title: Appl Geogr
– volume: 154
  start-page: 1169
  year: 2016
  end-page: 1175
  ident: CR39
  article-title: Meteorological drought forecasting based on climate signals using artificial neural network–a case study in Khanhhoa Province Vietnam
  publication-title: Proced Eng
– volume: 114
  start-page: 667
  issue: 3
  year: 2012
  end-page: 687
  ident: CR45
  article-title: Climate change and impacts in the Eastern Mediterranean and the Middle East
  publication-title: Clim Change
  doi: 10.1007/s10584-012-0418-4
– volume: 122
  start-page: 127
  issue: 1–2
  year: 2014
  end-page: 140
  ident: CR4
  article-title: The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios
  publication-title: Clim Change
– volume: 13
  start-page: 745
  issue: 7
  year: 2000
  end-page: 753
  ident: CR103
  article-title: Global stability analysis in delayed Hopfield neural network models
  publication-title: Neural Netw
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  end-page: 536
  ident: CR75
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 9
  start-page: 32
  issue: 1
  year: 2007
  end-page: 40
  ident: CR56
  article-title: Road detection from high-resolution satellite images using artificial neural networks
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 27
  start-page: 2103
  issue: 15
  year: 2007
  end-page: 2111
  ident: CR58
  article-title: Drought forecasting using artificial neural networks and time series of drought indices
  publication-title: Int J Climatol J R Meteorol Soc
– ident: CR105
– volume: 23
  start-page: 1696
  issue: 7
  year: 2010
  end-page: 1718
  ident: CR95
  article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index
  publication-title: J Clim
  doi: 10.1175/2009jcli2909.1
– volume: 14
  start-page: 1247
  issue: 7
  year: 2010
  end-page: 1258
  ident: CR9
  article-title: Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management
  publication-title: Hydrol Earth Syst Sci
– volume: 62
  start-page: 177
  issue: 1
  year: 2005
  end-page: 197
  ident: CR80
  article-title: Agricultural, architectural and archaeological evidence for the role and ecological adaptation of a scattered mountain oasis in Oman
  publication-title: J Arid Environ
– volume: 5
  start-page: 1117
  issue: 6
  year: 2004
  end-page: 1130
  ident: CR17
  article-title: A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming
  publication-title: J Hydrometeorol
– volume: 29
  start-page: 605
  issue: 4
  year: 2009
  end-page: 617
  ident: CR38
  article-title: Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman
  publication-title: Int J Climatol
  doi: 10.1002/joc.1727
– volume: 391
  start-page: 202
  issue: 1
  year: 2010
  end-page: 216
  ident: CR55
  article-title: A review of drought concepts
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.07.012
– volume: 109
  start-page: 12398
  issue: 31
  year: 2012
  end-page: 12403
  ident: CR59
  article-title: Hot days induced by precipitation deficits at the global scale
  publication-title: Proceed Nat Acad Sci
  doi: 10.1073/pnas.1204330109
– volume: 2
  start-page: 673
  issue: 3
  year: 2010
  end-page: 696
  ident: CR66
  article-title: Application of vegetation indices for agricultural crop yield prediction using neural network techniques
  publication-title: Remote Sens
– volume: 124
  start-page: 12
  year: 2012
  end-page: 23
  ident: CR14
  article-title: Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS
  publication-title: Eng Geol
– ident: CR53
– volume: 3
  start-page: 4
  year: 2014
  end-page: 13
  ident: CR99
  article-title: Managing drought risk in a changing climate: the role of national drought policy
  publication-title: Weather Clim Extremes
– volume: 22
  start-page: 1177
  issue: 9
  year: 1996
  end-page: 1181
  ident: CR85
  article-title: Application of artificial neural networks for the classification of liver lesions by image texture parameters
  publication-title: Ultrasound Med Biol
– volume: 11
  start-page: 90
  issue: 2
  year: 2002
  end-page: 102
  ident: CR37
  article-title: Forecasting financial time series using neural network and fuzzy system-based techniques
  publication-title: Neural Comput Appl
– volume: 33
  start-page: 3055
  issue: 14
  year: 2013
  end-page: 3072
  ident: CR88
  article-title: Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050
  publication-title: Int J Climatol
  doi: 10.1002/joc.3650
– volume: 105
  start-page: 150
  issue: 1
  year: 2013
  end-page: 160
  ident: CR100
  article-title: Assessing the agricultural reference index for drought (ARID) using uncertainty and sensitivity analyses
  publication-title: Agron J
  doi: 10.2134/agronj2012.0033
– volume: 6
  start-page: 215
  issue: 4
  year: 2014
  end-page: 226
  ident: CR71
  article-title: Predicting the trend of land use changes using artificial neural network and markov chain model (case study: Kermanshah City)
  publication-title: Res J Environ Earth Sci
– volume: 26
  start-page: 1311
  issue: 6
  year: 2015
  end-page: 1320
  ident: CR2
  article-title: Integration of artificial neural network and geographical information system for intelligent assessment of land suitability for the cultivation of a selected crop
  publication-title: Neural Comput Appl
– volume: 23
  start-page: 4949
  year: 2021
  end-page: 4972
  ident: CR77
  article-title: Factors influencing farmers’ adaptation strategies in confronting the drought in Iran
  publication-title: Environ Dev Sustain
– volume: 20
  start-page: 2779
  issue: 7
  year: 2016
  end-page: 2800
  ident: CR6
  article-title: Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-20-2779-2016
– ident: CR104
– volume: 7
  start-page: 263
  issue: 3
  year: 2015
  end-page: 278
  ident: CR32
  article-title: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle
  publication-title: Cogn Comput
– volume: 113
  start-page: 585
  issue: 3
  year: 2013
  end-page: 598
  ident: CR3
  article-title: Detecting climate change signals in Saudi Arabia using mean annual surface air temperatures
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-012-0812-x
– volume: 514
  start-page: 258
  year: 2014
  end-page: 270
  ident: CR64
  article-title: Evolution of the rainfall regime in the United Arab Emirates
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.04.032
– volume: 104
  start-page: 599
  issue: 3
  year: 2011
  end-page: 627
  ident: CR82
  article-title: Climate change, water resources, and the politics of adaptation in the Middle East and North Africa
  publication-title: Clim Change
  doi: 10.1007/s10584-010-9835-4
– volume: 233
  start-page: 138
  issue: 1–4
  year: 2000
  end-page: 153
  ident: CR33
  article-title: River flow prediction using artificial neural networks: generalisation beyond the calibration range
  publication-title: J Hydrol
– volume: 30
  start-page: 2245
  issue: 7
  year: 2016
  end-page: 2259
  ident: CR73
  article-title: Drought forecasting using Markov chain model and artificial neural networks
  publication-title: Water Resour Manage
– volume: 38
  start-page: 517
  issue: 2
  year: 2018
  end-page: 529
  ident: CR7
  article-title: Frequency, duration and severity of drought in the Semiarid Northeast Brazil region
  publication-title: Int J Climatol
  doi: 10.1002/joc.5225
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  end-page: 133
  ident: CR51
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biophys
– volume: 76
  start-page: 555
  issue: C
  year: 2017
  end-page: 576
  ident: CR35
  article-title: Climate change: the game changer in the gulf cooperation council region
  publication-title: Renew Sustain Energy Rev
– volume: 35
  start-page: 243
  issue: 2
  year: 2005
  end-page: 264
  ident: CR81
  article-title: An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index
  publication-title: Nat Hazards
– ident: CR107
– volume: 25
  start-page: 1733
  issue: 9
  year: 2004
  end-page: 1748
  ident: CR23
  article-title: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities
  publication-title: Int J Remote Sens
– volume: 2
  start-page: 316
  issue: 2
  year: 1991
  end-page: 318
  ident: CR60
  article-title: Neural networks-then and now
  publication-title: IEEE Trans Neural Netw
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 1958_CR75
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 10
  start-page: 111
  issue: 3
  year: 1985
  ident: 1958_CR97
  publication-title: Water Int
  doi: 10.1080/02508068508686328
– volume: 2
  start-page: 673
  issue: 3
  year: 2010
  ident: 1958_CR66
  publication-title: Remote Sens
  doi: 10.3390/rs2030673
– volume: 34
  start-page: 1169
  issue: 4
  year: 2014
  ident: 1958_CR20
  publication-title: Int J Climatol
  doi: 10.1002/joc.3754
– volume: 114
  start-page: 667
  issue: 3
  year: 2012
  ident: 1958_CR45
  publication-title: Clim Change
  doi: 10.1007/s10584-012-0418-4
– ident: 1958_CR108
  doi: 10.1016/B978-0-12-815998-9.00002-6
– volume: 11
  issue: 1
  year: 2015
  ident: 1958_CR25
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004031
– volume: 1
  start-page: 165
  issue: 3
  year: 2010
  ident: 1958_CR12
  publication-title: J Water Clim Change
  doi: 10.2166/wcc.2010.035
– volume: 3
  start-page: 740
  issue: 1
  year: 2012
  ident: 1958_CR21
  publication-title: Nat Commun
  doi: 10.1038/ncomms1732
– volume: 6
  start-page: 197
  issue: 2
  year: 2016
  ident: 1958_CR65
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate2833
– ident: 1958_CR53
  doi: 10.7551/mitpress/11301.001.0001
– volume: 32
  start-page: 216
  issue: 14
  year: 2017
  ident: 1958_CR78
  publication-title: Rev Fac Ing
– volume: 35
  start-page: 243
  issue: 2
  year: 2005
  ident: 1958_CR81
  publication-title: Nat Hazards
  doi: 10.1007/s11069-004-5704-7
– volume: 28
  start-page: 869
  issue: 20–27
  year: 2003
  ident: 1958_CR74
  publication-title: Phys Chem Earth, Parts a/b/c
  doi: 10.1016/j.pce.2003.08.009
– volume: 22
  start-page: 1177
  issue: 9
  year: 1996
  ident: 1958_CR85
  publication-title: Ultrasound Med Biol
  doi: 10.1016/S0301-5629(96)00144-5
– volume: 33
  start-page: 9883
  issue: 22
  year: 2020
  ident: 1958_CR15
  publication-title: J Clim
  doi: 10.1175/JCLI-D-20-0004.1
– volume: 3
  start-page: 4
  year: 2014
  ident: 1958_CR99
  publication-title: Weather Clim Extremes
  doi: 10.1016/j.wace.2014.01.002
– volume: 113
  start-page: 585
  issue: 3
  year: 2013
  ident: 1958_CR3
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-012-0812-x
– volume: 94
  start-page: 1553
  issue: 10
  year: 2013
  ident: 1958_CR29
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-D-12-00014.1
– volume: 91
  start-page: 1015
  issue: 8
  year: 2010
  ident: 1958_CR76
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/2010BAMS3001.1
– volume: 13
  start-page: 745
  issue: 7
  year: 2000
  ident: 1958_CR103
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(00)00050-2
– volume: 50
  start-page: 2137
  issue: 5
  year: 2018
  ident: 1958_CR10
  publication-title: Clim Dyn
  doi: 10.1007/s00382-017-3740-8
– ident: 1958_CR107
  doi: 10.1111/jawr.12182
– volume: 62
  start-page: 177
  issue: 1
  year: 2005
  ident: 1958_CR80
  publication-title: J Arid Environ
  doi: 10.1016/j.jaridenv.2004.09.023
– volume: 9
  start-page: 5558
  issue: 7
  year: 2009
  ident: 1958_CR47
  publication-title: Sensors
  doi: 10.3390/s90705558
– volume: 20
  start-page: 2779
  issue: 7
  year: 2016
  ident: 1958_CR6
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-20-2779-2016
– volume: 122
  start-page: 127
  issue: 1–2
  year: 2014
  ident: 1958_CR4
  publication-title: Clim Change
  doi: 10.1007/s10584-013-0948-4
– volume: 53
  start-page: 160
  year: 2014
  ident: 1958_CR5
  publication-title: Appl Geogr
  doi: 10.1016/j.apgeog.2014.06.016
– year: 2008
  ident: 1958_CR28
  publication-title: Water Res Res
  doi: 10.1029/2008WR006964
– volume: 124
  start-page: 12
  year: 2012
  ident: 1958_CR14
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2011.09.011
– volume: 26
  start-page: 1311
  issue: 6
  year: 2015
  ident: 1958_CR2
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-014-1801-z
– ident: 1958_CR87
  doi: 10.1007/978-94-015-9472-1_3
– volume: 113
  start-page: 10019
  issue: 36
  year: 2016
  ident: 1958_CR86
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1604581113
– volume: 233
  start-page: 138
  issue: 1–4
  year: 2000
  ident: 1958_CR33
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00228-6
– volume: 59
  start-page: 455
  issue: 3
  year: 2020
  ident: 1958_CR40
  publication-title: J Appl Meteorol Climatol
  doi: 10.1175/JAMC-D-19-0217.1
– volume: 154
  start-page: 1169
  year: 2016
  ident: 1958_CR39
  publication-title: Proced Eng
  doi: 10.1016/j.proeng.2016.07.528
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 1958_CR51
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02478259
– volume: 6
  start-page: 687
  issue: 5
  year: 2006
  ident: 1958_CR41
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-6-687-2006
– volume: 10
  start-page: 044009
  issue: 4
  year: 2015
  ident: 1958_CR26
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/10/4/044009
– volume: 2
  start-page: 316
  issue: 2
  year: 1991
  ident: 1958_CR60
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80343
– ident: 1958_CR106
– ident: 1958_CR57
– volume: 49
  start-page: 1040
  issue: 2
  year: 2013
  ident: 1958_CR92
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20123
– volume: 9
  start-page: 122
  issue: 2
  year: 2016
  ident: 1958_CR84
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-2102-2
– volume: 5
  start-page: 1117
  issue: 6
  year: 2004
  ident: 1958_CR18
  publication-title: J Hydrometeorol
  doi: 10.1175/jhm-386.1
– volume: 33
  start-page: 14
  year: 2012
  ident: 1958_CR22
  publication-title: Proced Eng
  doi: 10.1016/j.proeng.2012.01.1172
– ident: 1958_CR63
– volume: 6
  start-page: 215
  issue: 4
  year: 2014
  ident: 1958_CR71
  publication-title: Res J Environ Earth Sci
– volume: 514
  start-page: 258
  year: 2014
  ident: 1958_CR64
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.04.032
– volume: 25
  start-page: 479
  issue: 5
  year: 2000
  ident: 1958_CR34
  publication-title: Energy
  doi: 10.1016/S0360-5442(99)00086-9
– volume: 9
  start-page: 302
  issue: 4
  year: 2016
  ident: 1958_CR1
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-016-2324-y
– volume: 95
  start-page: 269
  issue: 2
  year: 2014
  ident: 1958_CR30
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/BAMS-D-13-00055.1
– volume: 23
  start-page: 229
  issue: 1
  year: 2013
  ident: 1958_CR83
  publication-title: India Global Environ Change
  doi: 10.1016/j.gloenvcha.2012.10.002
– volume: 47
  start-page: 149
  issue: 2
  year: 2005
  ident: 1958_CR91
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2004.11.014
– ident: 1958_CR16
  doi: 10.1201/9781315404219-1
– volume: 7
  start-page: 730
  issue: 7
  year: 2017
  ident: 1958_CR52
  publication-title: Appl Sci
  doi: 10.3390/app7070730
– volume: 4
  start-page: 17
  issue: 1
  year: 2014
  ident: 1958_CR89
  publication-title: Nat Clim Chang
  doi: 10.1038/nclimate2067
– ident: 1958_CR109
– ident: 1958_CR61
  doi: 10.5479/sil.538961.39088011475779
– volume: 33
  start-page: 3055
  issue: 14
  year: 2013
  ident: 1958_CR88
  publication-title: Int J Climatol
  doi: 10.1002/joc.3650
– volume: 23
  start-page: 1696
  issue: 7
  year: 2010
  ident: 1958_CR95
  publication-title: J Clim
  doi: 10.1175/2009jcli2909.1
– volume: 76
  start-page: 555
  issue: C
  year: 2017
  ident: 1958_CR35
  publication-title: Renew Sustain Energy Rev
– volume: 198
  start-page: 127
  issue: 1–2
  year: 2006
  ident: 1958_CR54
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2006.04.017
– volume: 80
  start-page: 141
  year: 2008
  ident: 1958_CR98
  publication-title: Options Mediterr Ser A
– volume: 527
  start-page: 482
  year: 2015
  ident: 1958_CR67
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.05.003
– volume: 38
  start-page: 517
  issue: 2
  year: 2018
  ident: 1958_CR7
  publication-title: Int J Climatol
  doi: 10.1002/joc.5225
– volume: 24
  start-page: 4891
  issue: 23
  year: 2003
  ident: 1958_CR19
  publication-title: Int J Remote Sens
  doi: 10.1080/0143116031000070319
– ident: 1958_CR105
  doi: 10.1002/joc.6126
– volume: 105
  start-page: 150
  issue: 1
  year: 2013
  ident: 1958_CR100
  publication-title: Agron J
  doi: 10.2134/agronj2012.0033
– volume: 9
  start-page: 32
  issue: 1
  year: 2007
  ident: 1958_CR56
  publication-title: Int J Appl Earth Obs Geoinf
– volume: 187
  start-page: 57
  issue: 3
  year: 2015
  ident: 1958_CR69
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-015-4298-8
– volume: 2
  start-page: 736
  issue: 10
  year: 2012
  ident: 1958_CR70
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate1536
– year: 2005
  ident: 1958_CR94
  doi: 10.5194/hess-9-523-2005
– volume: 5
  start-page: 1117
  issue: 6
  year: 2004
  ident: 1958_CR17
  publication-title: J Hydrometeorol
  doi: 10.1175/JHM-386.1
– volume: 11
  start-page: 90
  issue: 2
  year: 2002
  ident: 1958_CR37
  publication-title: Neural Comput Appl
  doi: 10.1007/s005210200021
– volume: 28
  start-page: 1361
  issue: 12
  year: 2003
  ident: 1958_CR42
  publication-title: Earth Surf Process Landf J Br Geomorphol Res Group
  doi: 10.1002/esp.593
– ident: 1958_CR104
– volume: 28
  start-page: 521
  issue: 4
  year: 2008
  ident: 1958_CR27
  publication-title: Int J Climatol
  doi: 10.1002/joc.1562
– volume: 200
  start-page: 153
  year: 2018
  ident: 1958_CR50
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2017.09.016
– volume: 4
  start-page: 94
  issue: 2
  year: 2012
  ident: 1958_CR62
  publication-title: Nigeria. J Geogr Geol
– volume: 23
  start-page: 4949
  year: 2021
  ident: 1958_CR77
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-020-00798-8
– ident: 1958_CR13
– volume: 30
  start-page: 2245
  issue: 7
  year: 2016
  ident: 1958_CR73
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-016-1283-0
– volume: 491
  start-page: 435
  issue: 7424
  year: 2012
  ident: 1958_CR79
  publication-title: Nature
  doi: 10.1038/nature11575
– volume: 43
  start-page: 1834
  issue: 12
  year: 2004
  ident: 1958_CR31
  publication-title: J Appl Meteorol
  doi: 10.1175/JAM2173.1
– volume: 391
  start-page: 202
  issue: 1
  year: 2010
  ident: 1958_CR55
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2010.07.012
– volume: 14
  start-page: 1247
  issue: 7
  year: 2010
  ident: 1958_CR9
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-14-1247-2010
– volume: 27
  start-page: 2103
  issue: 15
  year: 2007
  ident: 1958_CR58
  publication-title: Int J Climatol J R Meteorol Soc
  doi: 10.1002/joc.1498
– volume: 129
  start-page: 1189
  issue: 3
  year: 2017
  ident: 1958_CR49
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-016-1840-8
– volume: 152
  start-page: 242
  year: 2017
  ident: 1958_CR101
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.01.019
– volume: 7
  start-page: 263
  issue: 3
  year: 2015
  ident: 1958_CR32
  publication-title: Cogn Comput
  doi: 10.1007/s12559-015-9333-0
– volume: 25
  start-page: 1733
  issue: 9
  year: 2004
  ident: 1958_CR23
  publication-title: Int J Remote Sens
  doi: 10.1080/0143116031000150077
– volume: 8
  start-page: 319
  issue: 6
  year: 2003
  ident: 1958_CR36
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2003)8:6(319)
– volume: 29
  start-page: 605
  issue: 4
  year: 2009
  ident: 1958_CR38
  publication-title: Int J Climatol
  doi: 10.1002/joc.1727
– volume: 106
  start-page: 223
  issue: 3
  year: 2010
  ident: 1958_CR48
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2009.12.008
– volume: 11
  start-page: 124021
  issue: 12
  year: 2016
  ident: 1958_CR93
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/11/12/124021
– volume: 1
  start-page: 243
  issue: 3
  year: 2009
  ident: 1958_CR102
  publication-title: Remote Sensing
  doi: 10.3390/rs1030243
– volume: 115
  start-page: 531
  issue: 3
  year: 2014
  ident: 1958_CR72
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-013-0919-8
– volume: 9
  start-page: 66
  issue: 1
  year: 2018
  ident: 1958_CR8
  publication-title: Adv Clim Change Res
  doi: 10.1016/j.accre.2018.01.004
– volume: 92
  start-page: 417
  issue: 3
  year: 2009
  ident: 1958_CR24
  publication-title: Clim Change
  doi: 10.1007/s10584-008-9438-5
– volume: 71
  start-page: 289
  issue: 3–4
  year: 2014
  ident: 1958_CR43
  publication-title: Eng Geol
– volume: 109
  start-page: 12398
  issue: 31
  year: 2012
  ident: 1958_CR59
  publication-title: Proceed Nat Acad Sci
  doi: 10.1073/pnas.1204330109
– volume: 9
  start-page: 044001
  issue: 4
  year: 2014
  ident: 1958_CR96
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/9/4/044001
– volume: 95
  start-page: 470
  issue: 4
  year: 2010
  ident: 1958_CR11
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2009.11.009
– volume: 112
  start-page: 203
  issue: 1
  year: 2008
  ident: 1958_CR90
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2007.04.013
– volume: 75
  start-page: 273
  issue: 3
  year: 2006
  ident: 1958_CR44
  publication-title: Clim Change
  doi: 10.1007/s10584-006-6338-4
– volume: 4
  start-page: 1
  issue: 1
  year: 2009
  ident: 1958_CR68
  publication-title: Int J Phys Sci
– volume: 104
  start-page: 599
  issue: 3
  year: 2011
  ident: 1958_CR82
  publication-title: Clim Change
  doi: 10.1007/s10584-010-9835-4
– volume: 47
  start-page: 1060
  issue: 5
  year: 2000
  ident: 1958_CR46
  publication-title: IEEE Trans Industr Electron
  doi: 10.1109/41.873214
SSID ssj0001626699
Score 2.3157082
Snippet Drought is one of the most devastating natural disasters, and its consequences affect various human and environmental aspects. In both arid and semi-arid...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3411
SubjectTerms Air temperature
Algorithms
Arid zones
Artificial neural networks
Biodiversity
Chemistry and Earth Sciences
Climate change
Climate system
Computer Science
Dependent variables
Disasters
Drought
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Economic activities
Ecosystems
Emergency preparedness
Environment
Environmental aspects
Environmental impact
Evapotranspiration
Food production
Geographic information systems
Geographical information systems
Hydroelectric power
Independent variables
Information systems
Livelihoods
Machine learning
Math. Appl. in Environmental Science
Mathematical Applications in the Physical Sciences
Mitigation
Natural disasters
Neural networks
Original Article
Physics
Plant cover
Precipitation
Rainy season
Relative humidity
Remote sensing
Semi arid areas
Semiarid zones
Socioeconomic aspects
Statistics for Engineering
Variables
Vegetation cover
Water management
Water resources
Water resources management
Water supply
Wet season
Wind speed
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66KfjiXZxOyYNvGuwtTeuLqGxTkDm8MZ9Km6QycN1cq-C_9yRLVxTci2-FJqH0O8k5Ocn5PoSOmJ2GXshTIrnrEk9yRkIepMRKeeimDhW-Jnt-vmXdbtDvhz2TcMvNtcpyTdQLtRhxlSM_dbXvhIDbOR-_E6UapU5XjYTGIqorpjKw8_plq9u7r7IsEK_7WkTSUQeWvmO5pnJG1895EC8FBNwUUXVzMPN_eqcq5Px1SqqdT3vtv5-9jlZN2IkvpnaygRZktomWO1rW92sLvcBTru5WQxutjaOK1PEoxUKr-BR4rGk4sxwPMnw3jLMz3Ll5IMoFChxnAg_1nUyJjQjFKy65yrfRU7v1eHVNjOgC4TAbCxInCQOXntg09iDwFjIUPmOCUclkHAsquCq-DgSEQeAAE99lUgQ2AMu5gM0Pd3dQLRtlchdhW3BmUaEY8xJFpBY4CXUo57BFsVJK4wayy58dccNIroQx3qIZl7IGKAKAIg1QFDbQ8azPeMrHMbd1s0QlMnMzjypIGuikxLV6_fdoe_NH20crjjYllaJpolox-ZAHaIl_FoN8cmgs8xvDKOeR
  priority: 102
  providerName: ProQuest
Title Geospatial modelling of drought patterns in Oman: GIS-based and machine learning approach
URI https://link.springer.com/article/10.1007/s40808-024-01958-9
https://www.proquest.com/docview/3064390962
Volume 10
WOSCitedRecordID wos001173453700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2363-6211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001626699
  issn: 2363-6203
  databaseCode: PCBAR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2363-6211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001626699
  issn: 2363-6203
  databaseCode: PATMY
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2363-6211
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001626699
  issn: 2363-6203
  databaseCode: BENPR
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2363-6211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001626699
  issn: 2363-6203
  databaseCode: RSV
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50U_DF6VScTsmDbxpYf6RpfVPZpiBzOB3zqbRJKgPXjXUK_vdesnZDUUHfSpuGcsn17nJ33wdwwq0kcAORUCUch7pKcBoIP6GNRAROYjPpGbDn_i3vdPzBIOjmTWFZUe1epCTNn3rR7Oaic-NTtClUN7mhmq5CmWm0GR2j9_rLkxX00T1DHGnrJKVnN5y8W-b7aT5bpKWb-SUzagxOq_K_T92CzdzBJBfzHbENKyqtQqUgbyC5LldhvW04fd_xylSBimwHnvBepkuscQJDkaN71ck4IdKQ-czIxKBxphkZpuRuFKXnpH3To9oSShKlkoxMaaYiORfFMykgy3fhsdV8uLqmOfcCFaiUMxrFMUfLHlssctH_liqQHueSM8VVFEkmhe7B9iV6Q2gHY8_hSvoWrq8QEmMg4exBKR2nah-IJQVvMKmB82KNp-bbMbOZEBipNBLGohpYhfxDkQOTa36Ml3ABqWzkGaI8QyPPMKjB6eKdyRyW49fR9WJZw1xFs9AxzhhGcHYNzoplXD7-ebaDvw0_hA3b7AR9clOH0mz6qo5gTbzNhtn0GMqXzU73_ths4Q92qudM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB5BAcGFXV6ivNaH5QQWjRPHCRJawfKqKAXxUjmFxHYQEqSFFBB_an8jYzehAgluHPYWKY6VxJ9nxh7P9wH8Fk4aeqFMqZauSz0tBQ1lkNJaKkM3ZVz5luz5oiGazaDVCo8H4F9ZC2OOVZY20Rpq1ZZmj3zNtb4TA272p3NPjWqUya6WEho9WBzol2dcsuUb9W0c32XGdnfO_u7TQlWASoRbl8ZJItBnJQ6PPYwslQ6VL4QSXAsdx4oraaqLA4V-Hi184rtCq8DBN5dSYXQvXex3EIY81_N5BYa2dprHJ_1dHVwf-Fa0kpkEqc9qblGpY-v1PIzPAopukZo6PbQ0771hP8T9kJW1zm73x__2m37CeBFWk83ePJiAAZ1NwsielS1-mYJLvMrN2XFsY7V_TBE-aadEWZWiLulYmtEsJzcZObqLs3WyVz-lxsUrEmeK3Nkzp5oUIhvXpORin4bzb_muGahk7UzPAnGUFDWuDCNgYojiApZwxqXEJVgt5TyuglMObiQLxnUj_HEbvXFFW0BECIjIAiIKq7Dy9kynxzfyZeuFEgVRYXvyqA-BKqyWOOrf_ry3ua97-wWj-2eHjahRbx7MwxizMDbbUQtQ6T486kUYlk_dm_xhqZgVBK6-G2GvxjRE-Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8xhc_puJ0ah5807D1I03rm6jT4ZjiVOZTaZNUBK1jrYL_vZes3VRUEN9Km4aSy3G_a-5-P4BdbiWBG4iEKuE41FWC00D4CW0kInASm0nPkD3ftnmn4_d6weWHLn5T7V4eSQ57GjRLU5rX-zKpjxrfXAQ6PsX4QnXDG7rsJEy7mMnooq6r7u34Lwvidc-ISNr6wNKzG07ROfP9NJ-j0xhyfjklNcGnufj_z16ChQJ4ksPhTlmGCZVWYLEUdSCFj1dg9tRo_b7hlakOFdkK3OG9TJde4wRGOkf3sJPnhEgj8pOTvmHpTDPykJKLpyg9IKetLtURUpIoleTJlGwqUmhU3JOSynwVbpon10dntNBkoAKdNadRHHOM-LHFIhdxuVSB9DiXnCmuokgyKXRvti8RJWF8jD2HK-lbaHchJOZGwlmDqfQ5VetALCl4g0lNqBdrnjXfjpnNhMAMppEwFlXBKm0RioKwXOtmPIYjqmWzniGuZ2jWMwyqsDd6pz-k6_h1dK00cVi4bhY6BqRhZmdXYb806fjxz7Nt_G34DsxdHjfDdqtzvgnzttkU-udODabywYvaghnxmj9kg22zo98Bmzvxeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geospatial+modelling+of+drought+patterns+in+Oman%3A+GIS-based+and+machine+learning+approach&rft.jtitle=Modeling+earth+systems+and+environment&rft.au=Mansour%2C+Shawky&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=2363-6203&rft.eissn=2363-6211&rft.volume=10&rft.issue=3&rft.spage=3411&rft.epage=3431&rft_id=info:doi/10.1007%2Fs40808-024-01958-9&rft.externalDocID=10_1007_s40808_024_01958_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2363-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2363-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2363-6203&client=summon