Geospatial modelling of drought patterns in Oman: GIS-based and machine learning approach
Drought is one of the most devastating natural disasters, and its consequences affect various human and environmental aspects. In both arid and semi-arid regions, the impact of drought poses direct threats to livelihoods and socio-economic activities. For drought mitigation purposes, spatially accur...
Gespeichert in:
| Veröffentlicht in: | Modeling earth systems and environment Jg. 10; H. 3; S. 3411 - 3431 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.06.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2363-6203, 2363-6211 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Drought is one of the most devastating natural disasters, and its consequences affect various human and environmental aspects. In both arid and semi-arid regions, the impact of drought poses direct threats to livelihoods and socio-economic activities. For drought mitigation purposes, spatially accurate predictions of the areas to be affected are essential. By utilising an Artificial Neural Network (ANN) within a Geographic Information Systems (GIS) environment, this research aimed to project drought severity across Oman throughout the twenty-first century. Drought severity during the rainy season (DJF) was characterised using the Standardized Precipitation Evapotranspiration Index (SPEI) calculated for February at a three-month timescale. SPEI was computed based on the monthly data for a set of climatic variables (i.e. maximum and minimum air temperatures, total precipitation, wind speed, relative humidity) derived from the climate forecast system reanalysis (CFSR) dataset at a grid interval of 0.25° for the period between 1998 and 2012. The ANN model was forced with drought classes (i.e. mild, moderate, severe, extreme, and very extreme) employed as a dependent variable, while a wide spectrum of climatic (e.g., air temperature, precipitation, wind speed), topographical (e.g., elevation, aspect) and geographical (e.g., distance to coasts, vegetation cover) variables were used as independent variables. For consistency in projecting drought changes, the dependent and independent variables were re-gridded to a common grid interval (0.25 °C) using a spline interpolation algorithm. Our findings show that the ANN model provided a realistic simulation of drought occurrence incorporating the relevant climatic, topographical and geographic parameters across Oman. Regarding the projected spatial patterns of drought, the northern parts of the study area (e.g., North and South Al-Batinah governorates) are exposed to the severe and extreme intensification of drought, whilst predominately medium and low levels of droughts are expected to occur across the south and south-west areas of Oman. In a water-scarce region like Oman, the results of this study could have particular policy implications, specifically in terms of management of water resources, food production, agriculture, water supply, hydropower energy and biodiversity, amongst others. The projected changes in drought occurrence in Oman make it necessary to develop effective national initiatives to mitigate the impacts of drought and to build society's capacity for drought preparedness.
Graphical abstract |
|---|---|
| AbstractList | Drought is one of the most devastating natural disasters, and its consequences affect various human and environmental aspects. In both arid and semi-arid regions, the impact of drought poses direct threats to livelihoods and socio-economic activities. For drought mitigation purposes, spatially accurate predictions of the areas to be affected are essential. By utilising an Artificial Neural Network (ANN) within a Geographic Information Systems (GIS) environment, this research aimed to project drought severity across Oman throughout the twenty-first century. Drought severity during the rainy season (DJF) was characterised using the Standardized Precipitation Evapotranspiration Index (SPEI) calculated for February at a three-month timescale. SPEI was computed based on the monthly data for a set of climatic variables (i.e. maximum and minimum air temperatures, total precipitation, wind speed, relative humidity) derived from the climate forecast system reanalysis (CFSR) dataset at a grid interval of 0.25° for the period between 1998 and 2012. The ANN model was forced with drought classes (i.e. mild, moderate, severe, extreme, and very extreme) employed as a dependent variable, while a wide spectrum of climatic (e.g., air temperature, precipitation, wind speed), topographical (e.g., elevation, aspect) and geographical (e.g., distance to coasts, vegetation cover) variables were used as independent variables. For consistency in projecting drought changes, the dependent and independent variables were re-gridded to a common grid interval (0.25 °C) using a spline interpolation algorithm. Our findings show that the ANN model provided a realistic simulation of drought occurrence incorporating the relevant climatic, topographical and geographic parameters across Oman. Regarding the projected spatial patterns of drought, the northern parts of the study area (e.g., North and South Al-Batinah governorates) are exposed to the severe and extreme intensification of drought, whilst predominately medium and low levels of droughts are expected to occur across the south and south-west areas of Oman. In a water-scarce region like Oman, the results of this study could have particular policy implications, specifically in terms of management of water resources, food production, agriculture, water supply, hydropower energy and biodiversity, amongst others. The projected changes in drought occurrence in Oman make it necessary to develop effective national initiatives to mitigate the impacts of drought and to build society's capacity for drought preparedness. Drought is one of the most devastating natural disasters, and its consequences affect various human and environmental aspects. In both arid and semi-arid regions, the impact of drought poses direct threats to livelihoods and socio-economic activities. For drought mitigation purposes, spatially accurate predictions of the areas to be affected are essential. By utilising an Artificial Neural Network (ANN) within a Geographic Information Systems (GIS) environment, this research aimed to project drought severity across Oman throughout the twenty-first century. Drought severity during the rainy season (DJF) was characterised using the Standardized Precipitation Evapotranspiration Index (SPEI) calculated for February at a three-month timescale. SPEI was computed based on the monthly data for a set of climatic variables (i.e. maximum and minimum air temperatures, total precipitation, wind speed, relative humidity) derived from the climate forecast system reanalysis (CFSR) dataset at a grid interval of 0.25° for the period between 1998 and 2012. The ANN model was forced with drought classes (i.e. mild, moderate, severe, extreme, and very extreme) employed as a dependent variable, while a wide spectrum of climatic (e.g., air temperature, precipitation, wind speed), topographical (e.g., elevation, aspect) and geographical (e.g., distance to coasts, vegetation cover) variables were used as independent variables. For consistency in projecting drought changes, the dependent and independent variables were re-gridded to a common grid interval (0.25 °C) using a spline interpolation algorithm. Our findings show that the ANN model provided a realistic simulation of drought occurrence incorporating the relevant climatic, topographical and geographic parameters across Oman. Regarding the projected spatial patterns of drought, the northern parts of the study area (e.g., North and South Al-Batinah governorates) are exposed to the severe and extreme intensification of drought, whilst predominately medium and low levels of droughts are expected to occur across the south and south-west areas of Oman. In a water-scarce region like Oman, the results of this study could have particular policy implications, specifically in terms of management of water resources, food production, agriculture, water supply, hydropower energy and biodiversity, amongst others. The projected changes in drought occurrence in Oman make it necessary to develop effective national initiatives to mitigate the impacts of drought and to build society's capacity for drought preparedness. Graphical abstract |
| Author | Mansour, Shawky |
| Author_xml | – sequence: 1 givenname: Shawky orcidid: 0000-0001-6969-9188 surname: Mansour fullname: Mansour, Shawky email: shawky.mansour@ku.edu.kw organization: Department of Geography, College of Social Sciences, Kuwait University |
| BookMark | eNp9kD1PwzAQhi1UJErpH2CyxGzwR2LHbKiCUqlSB2BgshzbbVMldrHTgX-PSxBIDJ3udPc-9_FegpEP3gFwTfAtwVjcpQJXuEKYFggTWVZInoExZZwhTgkZ_eaYXYBpSjuMMeGUcynH4H3uQtrrvtEt7IJ1bdv4DQxraGM4bLY9zL3eRZ9g4-Gq0_4ezhcvqNbJWai9hZ0228Y72Dod_ZHV-30MuXgFzte6TW76Eyfg7enxdfaMlqv5YvawRIYR2SNd16KkpCalLgSV1knLhbCidMJpbUtrMCl5ZUkpWUFqzoSzFTGSGWOLShg2ATfD3Lz24-BSr3bhEH1eqRjmBZNYcppV1aAyMaQU3VqZps9vB99H3bSKYHX0Ug1equyl-vZSyYzSf-g-Np2On6chNkApi_3Gxb-rTlBfB_KIZQ |
| CitedBy_id | crossref_primary_10_1007_s00704_024_05222_z crossref_primary_10_1007_s40808_024_02096_y crossref_primary_10_1007_s12371_025_01076_7 crossref_primary_10_1080_19475683_2025_2473596 crossref_primary_10_1007_s10791_025_09511_7 crossref_primary_10_3390_rs16162960 |
| Cites_doi | 10.1038/nclimate2833 10.1175/jhm-386.1 10.1016/j.atmosres.2017.09.016 10.1007/s12517-015-2102-2 10.1080/02508068508686328 10.1007/s00382-017-3740-8 10.1088/1748-9326/9/4/044001 10.1016/j.catena.2017.01.019 10.1038/nature11575 10.1029/2008WR006964 10.1007/s00704-013-0919-8 10.1007/s12517-016-2324-y 10.5194/hess-9-523-2005 10.1016/j.accre.2018.01.004 10.1038/nclimate1536 10.1038/ncomms1732 10.1088/1748-9326/10/4/044009 10.1002/joc.1562 10.1016/j.jhydrol.2015.05.003 10.1175/2010BAMS3001.1 10.1175/BAMS-D-12-00014.1 10.1016/j.atmosres.2009.11.009 10.1007/s10584-008-9438-5 10.1007/s00704-016-1840-8 10.1088/1748-9326/11/12/124021 10.1007/s10584-012-0418-4 10.1175/2009jcli2909.1 10.1002/joc.1727 10.1016/j.jhydrol.2010.07.012 10.1073/pnas.1204330109 10.1002/joc.3650 10.2134/agronj2012.0033 10.5194/hess-20-2779-2016 10.1007/s00704-012-0812-x 10.1016/j.jhydrol.2014.04.032 10.1007/s10584-010-9835-4 10.1002/joc.5225 10.1038/323533a0 10.3390/rs2030673 10.1002/joc.3754 10.1016/B978-0-12-815998-9.00002-6 10.1371/journal.pcbi.1004031 10.2166/wcc.2010.035 10.7551/mitpress/11301.001.0001 10.1007/s11069-004-5704-7 10.1016/j.pce.2003.08.009 10.1016/S0301-5629(96)00144-5 10.1175/JCLI-D-20-0004.1 10.1016/j.wace.2014.01.002 10.1016/S0893-6080(00)00050-2 10.1111/jawr.12182 10.1016/j.jaridenv.2004.09.023 10.3390/s90705558 10.1007/s10584-013-0948-4 10.1016/j.apgeog.2014.06.016 10.1016/j.enggeo.2011.09.011 10.1007/s00521-014-1801-z 10.1007/978-94-015-9472-1_3 10.1073/pnas.1604581113 10.1016/S0022-1694(00)00228-6 10.1175/JAMC-D-19-0217.1 10.1016/j.proeng.2016.07.528 10.1007/BF02478259 10.5194/nhess-6-687-2006 10.1109/72.80343 10.1002/wrcr.20123 10.1016/j.proeng.2012.01.1172 10.1016/S0360-5442(99)00086-9 10.1175/BAMS-D-13-00055.1 10.1016/j.gloenvcha.2012.10.002 10.1016/j.compag.2004.11.014 10.1201/9781315404219-1 10.3390/app7070730 10.1038/nclimate2067 10.5479/sil.538961.39088011475779 10.1016/j.ecolmodel.2006.04.017 10.1080/0143116031000070319 10.1002/joc.6126 10.1007/s10661-015-4298-8 10.1175/JHM-386.1 10.1007/s005210200021 10.1002/esp.593 10.1007/s10668-020-00798-8 10.1007/s11269-016-1283-0 10.1175/JAM2173.1 10.5194/hess-14-1247-2010 10.1002/joc.1498 10.1007/s12559-015-9333-0 10.1080/0143116031000150077 10.1061/(ASCE)1084-0699(2003)8:6(319) 10.1016/j.biosystemseng.2009.12.008 10.3390/rs1030243 10.1016/j.rse.2007.04.013 10.1007/s10584-006-6338-4 10.1109/41.873214 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 7TN 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY |
| DOI | 10.1007/s40808-024-01958-9 |
| DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics Computer Science |
| EISSN | 2363-6211 |
| EndPage | 3431 |
| ExternalDocumentID | 10_1007_s40808_024_01958_9 |
| GeographicLocations | Oman |
| GeographicLocations_xml | – name: Oman |
| GroupedDBID | -EM 0R~ 203 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFQWF AFRAH AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHSBF AHYZX AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ASPBG ATCPS AUKKA AVWKF AVXWI AXYYD AZFZN BENPR BGNMA BHPHI BKSAR CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GJIRD HCIFZ HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PATMY PCBAR PT4 PYCSY RIG RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW Z5O ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7TN 7UA AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-abb7521b15a4729de9d677d75e7eaad5dc01568d159341b637ed81c93ccd487c3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001173453700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2363-6203 |
| IngestDate | Wed Nov 05 08:38:14 EST 2025 Tue Nov 18 21:22:34 EST 2025 Sat Nov 29 02:04:00 EST 2025 Fri Feb 21 02:42:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | GIS Artificial neural network Forecasting Drought risk patterns Oman |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-abb7521b15a4729de9d677d75e7eaad5dc01568d159341b637ed81c93ccd487c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6969-9188 |
| PQID | 3064390962 |
| PQPubID | 2044383 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_3064390962 crossref_citationtrail_10_1007_s40808_024_01958_9 crossref_primary_10_1007_s40808_024_01958_9 springer_journals_10_1007_s40808_024_01958_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20240600 2024-06-00 20240601 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 6 year: 2024 text: 20240600 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Modeling earth systems and environment |
| PublicationTitleAbbrev | Model. Earth Syst. Environ |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Agha, Şarlak (CR1) 2016; 9 Blauhut, Stahl, Stagge, Tallaksen, De Stefano, Vogt (CR6) 2016; 20 Evans (CR24) 2009; 92 Seng (CR78) 2017; 32 Charlesworth (CR12) 2010; 1 Pradhan, Lee (CR68) 2009; 4 Nagy (CR60) 1991; 2 Ouarda, Charron, Niranjan Kumar, Marpu, Ghedira, Molini, Khayal (CR64) 2014; 514 Kodogiannis, Lolis (CR37) 2002; 11 Savari, Shokati Amghani (CR77) 2021; 23 Wilhite, Sivakumar, Pulwarty (CR99) 2014; 3 Liu, Liu, Li, Fang, Chi (CR48) 2010; 106 Vicente-Serrano, Beguería, López-Moreno (CR95) 2010; 23 Lee, Evangelista (CR41) 2006; 6 Trombetti, Riaño, Rubio, Cheng, Ustin (CR90) 2008; 112 Sowers, Vengosh, Weinthal (CR82) 2011; 104 Sujana, Swarnamani, Suresh (CR85) 1996; 22 Lee, Ryu, Min, Won (CR42) 2003; 28 Choi, Oh, Lee, Lee, Lee (CR14) 2012; 124 Mueller, Seneviratne (CR59) 2012; 109 Imrie, Durucan, Korre (CR33) 2000; 233 Li, Chow, Tipsuwan, Hung (CR46) 2000; 47 Hamill, Bates, Whitaker, Murray, Fiorino, Lapenta (CR29) 2013; 94 Liu, Xia, Shi, Hong (CR47) 2009; 9 Siebert, Häser, Nagieb, Korn, Buerkert (CR80) 2005; 62 Kalogirou, Bojic (CR34) 2000; 25 Marengo, Torres, Alves (CR49) 2017; 129 Srinivasan, Seto, Emerson, Gorelick (CR83) 2013; 23 Ahmadi, Layegh (CR2) 2015; 26 Kazem, Chaichan (CR35) 2017; 76 Ficklin, Maxwell, Letsinger, Gholizadeh (CR26) 2015; 10 Danson, Rowland, Baret (CR19) 2003; 24 CR57 Mokhtarzade, Zoej (CR56) 2007; 9 Vicente-Serrano, López-Moreno (CR94) 2005 CR53 Pedro-Monzonís, Solera, Ferrer, Estrela, Paredes-Arquiola (CR67) 2015; 527 Wilhite, Knutson (CR98) 2008; 80 Fauth, Wörgötter, Tetzlaff (CR25) 2015; 11 Buytaert, Vuille, Dewulf, Urrutia, Karmalkar, Célleri (CR9) 2010; 14 Ding, Fromm, Avramova (CR21) 2012; 3 McCulloch, Pitts (CR51) 1943; 5 Arnell, Lloyd-Hughes (CR4) 2014; 122 Subyani, Hajjar (CR84) 2016; 9 CR63 CR61 Trenberth, Dai, Van Der Schrier, Jones, Barichivich, Briffa, Sheffield (CR89) 2014; 4 Groves, Yates, Tebaldi (CR28) 2008 Qiang, Lam (CR69) 2015; 187 Quesada, Vautard, Yiou, Hirschi, Seneviratne (CR70) 2012; 2 Saha, Moorthi, Pan, Wu, Wang, Nadiga, Goldberg (CR76) 2010; 91 Dai, Trenberth, Qian (CR17) 2004; 5 van Vliet, Sheffield, Wiberg, Wood (CR93) 2016; 11 Okwuashi, Isong, Eyo, Eyoh, Nwanekezie, Olayinka, Ofem (CR62) 2012; 4 Freiwan, Kadioglu (CR27) 2008; 28 Erbek, Özkan, Taberner (CR23) 2004; 25 Hong, Hsu, Sorooshian, Gao (CR31) 2004; 43 Coats, Smerdon, Stevenson, Fasullo, Otto-Bliesner, Ault (CR15) 2020; 33 Woli, Jones, Ingram (CR100) 2013; 105 Vicente-Serrano, Lopez-Moreno, Beguería, Lorenzo-Lacruz, Sanchez-Lorenzo, García-Ruiz, Espejo (CR96) 2014; 9 Rumelhart, Hinton, Williams (CR75) 1986; 323 Almazroui, Hasanean, Al-Khalaf, Abdel Basset (CR3) 2013; 113 El Kharraz, El-Sadek, Ghaffour, Mino (CR22) 2012; 33 Zhang, Jin (CR103) 2000; 13 CR87 Pal, Eltahir (CR65) 2016; 6 Wilhite, Glantz (CR97) 1985; 10 Mezaal, Pradhan, Sameen, Shafri, Zulhaidi, Yusoff (CR52) 2017; 7 Razavi (CR71) 2014; 6 Carrão, Naumann, Barbosa (CR10) 2018; 50 Huang (CR32) 2015; 7 Morid, Smakhtin, Bagherzadeh (CR58) 2007; 27 Brito, Cunha, Cunningham, Alvalá, Marengo, Carvalho (CR7) 2018; 38 Rezaeianzadeh, Stein, Cox (CR73) 2016; 30 Terink, Immerzeel, Droogers (CR88) 2013; 33 CR16 Dehghani, Saghafian, Nasiri Saleh, Farokhnia, Noori (CR20) 2014; 34 Lelieveld, Hadjinicolaou, Kostopoulou, Chenoweth, El Maayar, Giannakopoulos, Xoplaki (CR45) 2012; 114 CR13 Bucchignani, Mercogliano, Panitz, Montesarchio (CR8) 2018; 9 Hoerling, Eischeid, Kumar, Leung, Mariotti, Mo, Seager (CR30) 2014; 95 Yuan, Van Der Wiele, Khorram (CR102) 2009; 1 Le, Perez, Solomatine, Nguyen (CR39) 2016; 154 Mathbout, Lopez-Bustins, Martin-Vide, Bech, Rodrigo (CR50) 2018; 200 Lehner, Döll, Alcamo, Henrichs, Kaspar (CR44) 2006; 75 Lee, Ryu, Won, Park (CR43) 2014; 71 Worqlul, Yen, Collick, Tilahun, Langan, Steenhuis (CR101) 2017; 152 Uno, Prasher, Lacroix, Goel, Karimi, Viau, Patel (CR91) 2005; 47 Basse, Omrani, Charif, Gerber, Bódis (CR5) 2014; 53 Leasor, Quiring, Svoboda (CR40) 2020; 59 Kwarteng, Dorvlo, Vijaya Kumar (CR38) 2009; 29 Sönmez, Koemuescue, Erkan, Turgu (CR81) 2005; 35 Panda, Ames, Panigrahi (CR66) 2010; 2 Sheffield, Wood, Roderick (CR79) 2012; 491 Raziei, Daryabari, Bordi, Pereira (CR72) 2014; 115 Dai, Trenberth, Qian (CR18) 2004; 5 Mishra, Singh (CR55) 2010; 391 Rockström (CR74) 2003; 28 CR104 Mishra, Desai (CR54) 2006; 198 Charabi, Al-Hatrushi (CR11) 2010; 95 CR105 Kim, Valdés (CR36) 2003; 8 Swann, Hoffman, Koven, Randerson (CR86) 2016; 113 van Dijk, Beck, Crosbie, de Jeu, Liu, Podger, Viney (CR92) 2013; 49 CR108 CR109 CR106 CR107 M Pedro-Monzonís (1958_CR67) 2015; 527 FK Sönmez (1958_CR81) 2005; 35 JS Pal (1958_CR65) 2016; 6 P Woli (1958_CR100) 2013; 105 1958_CR13 J Zhang (1958_CR103) 2000; 13 W Terink (1958_CR88) 2013; 33 1958_CR16 B Pradhan (1958_CR68) 2009; 4 A Dai (1958_CR17) 2004; 5 M Mokhtarzade (1958_CR56) 2007; 9 DA Wilhite (1958_CR99) 2014; 3 AW Worqlul (1958_CR101) 2017; 152 AL Swann (1958_CR86) 2016; 113 M Freiwan (1958_CR27) 2008; 28 M Dehghani (1958_CR20) 2014; 34 J Sheffield (1958_CR79) 2012; 491 AM Subyani (1958_CR84) 2016; 9 A Dai (1958_CR18) 2004; 5 BS Razavi (1958_CR71) 2014; 6 OMAM Agha (1958_CR1) 2016; 9 S Lee (1958_CR43) 2014; 71 SSB Brito (1958_CR7) 2018; 38 M Liu (1958_CR48) 2010; 106 DL Ficklin (1958_CR26) 2015; 10 ZT Leasor (1958_CR40) 2020; 59 CE Imrie (1958_CR33) 2000; 233 A Mishra (1958_CR54) 2006; 198 DG Groves (1958_CR28) 2008 M Rezaeianzadeh (1958_CR73) 2016; 30 S Lee (1958_CR42) 2003; 28 SM Charlesworth (1958_CR12) 2010; 1 F Danson (1958_CR19) 2003; 24 SA Kalogirou (1958_CR34) 2000; 25 M Fauth (1958_CR25) 2015; 11 H Carrão (1958_CR10) 2018; 50 S Lee (1958_CR41) 2006; 6 B Li (1958_CR46) 2000; 47 Y Liu (1958_CR47) 2009; 9 1958_CR87 O Okwuashi (1958_CR62) 2012; 4 G Nagy (1958_CR60) 1991; 2 J El Kharraz (1958_CR22) 2012; 33 J Lelieveld (1958_CR45) 2012; 114 J Sowers (1958_CR82) 2011; 104 D Wilhite (1958_CR98) 2008; 80 TBMJ Ouarda (1958_CR64) 2014; 514 Y Uno (1958_CR91) 2005; 47 AY Kwarteng (1958_CR38) 2009; 29 M Trombetti (1958_CR90) 2008; 112 B Mueller (1958_CR59) 2012; 109 V Srinivasan (1958_CR83) 2013; 23 E Bucchignani (1958_CR8) 2018; 9 Y Charabi (1958_CR11) 2010; 95 1958_CR105 1958_CR104 S Siebert (1958_CR80) 2005; 62 1958_CR107 1958_CR106 1958_CR109 1958_CR61 1958_CR108 1958_CR53 S Coats (1958_CR15) 2020; 33 1958_CR57 FF Ahmadi (1958_CR2) 2015; 26 B Quesada (1958_CR70) 2012; 2 RM Basse (1958_CR5) 2014; 53 WS McCulloch (1958_CR51) 1943; 5 B Lehner (1958_CR44) 2006; 75 M Almazroui (1958_CR3) 2013; 113 TM Hamill (1958_CR29) 2013; 94 H Yuan (1958_CR102) 2009; 1 DA Wilhite (1958_CR97) 1985; 10 SS Panda (1958_CR66) 2010; 2 MH Le (1958_CR39) 2016; 154 MR Mezaal (1958_CR52) 2017; 7 S Mathbout (1958_CR50) 2018; 200 1958_CR63 S Saha (1958_CR76) 2010; 91 H Sujana (1958_CR85) 1996; 22 D Seng (1958_CR78) 2017; 32 J Rockström (1958_CR74) 2003; 28 V Blauhut (1958_CR6) 2016; 20 SM Vicente-Serrano (1958_CR96) 2014; 9 AI van Dijk (1958_CR92) 2013; 49 M Savari (1958_CR77) 2021; 23 NW Arnell (1958_CR4) 2014; 122 T Raziei (1958_CR72) 2014; 115 Y Hong (1958_CR31) 2004; 43 V Kodogiannis (1958_CR37) 2002; 11 SM Vicente-Serrano (1958_CR95) 2010; 23 T-W Kim (1958_CR36) 2003; 8 DE Rumelhart (1958_CR75) 1986; 323 AK Mishra (1958_CR55) 2010; 391 M Hoerling (1958_CR30) 2014; 95 J Choi (1958_CR14) 2012; 124 Y Ding (1958_CR21) 2012; 3 G-B Huang (1958_CR32) 2015; 7 JA Marengo (1958_CR49) 2017; 129 MTH van Vliet (1958_CR93) 2016; 11 HA Kazem (1958_CR35) 2017; 76 Y Qiang (1958_CR69) 2015; 187 KE Trenberth (1958_CR89) 2014; 4 W Buytaert (1958_CR9) 2010; 14 FS Erbek (1958_CR23) 2004; 25 S Morid (1958_CR58) 2007; 27 JP Evans (1958_CR24) 2009; 92 SM Vicente-Serrano (1958_CR94) 2005 |
| References_xml | – volume: 7 start-page: 730 issue: 7 year: 2017 ident: CR52 article-title: Optimized neural architecture for automatic landslide detection from high-resolution airborne laser scanning data publication-title: Appl Sci – volume: 6 start-page: 197 issue: 2 year: 2016 end-page: 200 ident: CR65 article-title: Future temperature in southwest Asia projected to exceed a threshold for human adaptability publication-title: Nat Clim Change doi: 10.1038/nclimate2833 – volume: 1 start-page: 243 issue: 3 year: 2009 end-page: 265 ident: CR102 article-title: An automated artificial neural network system for land use/land cover classification from Landsat TM imagery publication-title: Remote Sensing – volume: 5 start-page: 1117 issue: 6 year: 2004 end-page: 1130 ident: CR18 article-title: A global dataset of palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming publication-title: J Hydrometeorol doi: 10.1175/jhm-386.1 – ident: CR16 – volume: 47 start-page: 1060 issue: 5 year: 2000 end-page: 1069 ident: CR46 article-title: Neural-network-based motor rolling bearing fault diagnosis publication-title: IEEE Trans Industr Electron – volume: 95 start-page: 269 issue: 2 year: 2014 end-page: 282 ident: CR30 article-title: Causes and predictability of the 2012 great plains drought publication-title: Bull Am Meteorol Soc – volume: 200 start-page: 153 year: 2018 end-page: 168 ident: CR50 article-title: Spatial and temporal analysis of drought variability at several time scales in Syria during 1961–2012 publication-title: Atmos Res doi: 10.1016/j.atmosres.2017.09.016 – volume: 9 start-page: 122 issue: 2 year: 2016 ident: CR84 article-title: Rainfall analysis in the contest of climate change for Jeddah area Western Saudi Arabia publication-title: Arab J Geosci doi: 10.1007/s12517-015-2102-2 – volume: 10 start-page: 111 issue: 3 year: 1985 end-page: 120 ident: CR97 article-title: Understanding: the drought phenomenon: the role of definitions publication-title: Water Int doi: 10.1080/02508068508686328 – volume: 47 start-page: 149 issue: 2 year: 2005 end-page: 161 ident: CR91 article-title: Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data publication-title: Comput Electron Agric – volume: 50 start-page: 2137 issue: 5 year: 2018 end-page: 2155 ident: CR10 article-title: Global projections of drought hazard in a warming climate: a prime for disaster risk management publication-title: Clim Dyn doi: 10.1007/s00382-017-3740-8 – volume: 80 start-page: 141 year: 2008 end-page: 148 ident: CR98 article-title: Drought management planning: conditions for success publication-title: Options Mediterr Ser A – ident: CR106 – volume: 11 issue: 1 year: 2015 ident: CR25 article-title: The formation of multi-synaptic connections by the interaction of synaptic and structural plasticity and their functional consequences publication-title: PLoS Comput Biol – volume: 9 start-page: 044001 issue: 4 year: 2014 ident: CR96 article-title: Evidence of increasing drought severity caused by temperature rise in southern Europe publication-title: Environ Res Lett doi: 10.1088/1748-9326/9/4/044001 – volume: 24 start-page: 4891 issue: 23 year: 2003 end-page: 4905 ident: CR19 article-title: Training a neural network with a canopy reflectance model to estimate crop leaf area index publication-title: Int J Remote Sens – volume: 32 start-page: 216 issue: 14 year: 2017 end-page: 224 ident: CR78 article-title: 37. Granular computing in the short-term traffic prediction publication-title: Rev Fac Ing – volume: 152 start-page: 242 year: 2017 end-page: 251 ident: CR101 article-title: Evaluation of CFSR, TMPA 3B42 and ground-based rainfall data as input for hydrological models, in data-scarce regions: the upper Blue Nile Basin, Ethiopia publication-title: CATENA doi: 10.1016/j.catena.2017.01.019 – volume: 491 start-page: 435 issue: 7424 year: 2012 end-page: 438 ident: CR79 article-title: Little change in global drought over the past 60 years publication-title: Nature doi: 10.1038/nature11575 – volume: 75 start-page: 273 issue: 3 year: 2006 end-page: 299 ident: CR44 article-title: Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis publication-title: Clim Change – year: 2008 ident: CR28 article-title: Developing and applying uncertain global climate change projections for regional water management planning publication-title: Water Res Res doi: 10.1029/2008WR006964 – volume: 4 start-page: 1 issue: 1 year: 2009 end-page: 15 ident: CR68 article-title: Landslide risk analysis using artificial neural network model focussing on different training sites publication-title: Int J Phys Sci – volume: 6 start-page: 687 issue: 5 year: 2006 end-page: 695 ident: CR41 article-title: Earthquake-induced landslide-susceptibility mapping using an artificial neural network publication-title: Nat Hazards Earth Syst Sci – volume: 115 start-page: 531 issue: 3 year: 2014 end-page: 540 ident: CR72 article-title: Spatial patterns and temporal trends of precipitation in Iran publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-0919-8 – volume: 9 start-page: 302 issue: 4 year: 2016 ident: CR1 article-title: Spatial and temporal patterns of climate variables in Iraq publication-title: Arab J Geosci doi: 10.1007/s12517-016-2324-y – year: 2005 ident: CR94 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-9-523-2005 – volume: 33 start-page: 14 year: 2012 end-page: 29 ident: CR22 article-title: Water scarcity and drought in WANA countries publication-title: Proced Eng – ident: CR57 – volume: 33 start-page: 9883 issue: 22 year: 2020 end-page: 9903 ident: CR15 article-title: Paleoclimate constraints on the spatiotemporal character of past and future droughts publication-title: J Clim – volume: 4 start-page: 94 issue: 2 year: 2012 ident: CR62 article-title: GIS cellular automata using artificial neural network for land use change simulation of Lagos publication-title: Nigeria. J Geogr Geol – volume: 8 start-page: 319 issue: 6 year: 2003 end-page: 328 ident: CR36 article-title: Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks publication-title: J Hydrol Eng – volume: 9 start-page: 66 issue: 1 year: 2018 end-page: 80 ident: CR8 article-title: Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions publication-title: Adv Clim Change Res doi: 10.1016/j.accre.2018.01.004 – volume: 198 start-page: 127 issue: 1–2 year: 2006 end-page: 138 ident: CR54 article-title: Drought forecasting using feed-forward recursive neural network publication-title: Ecol Model – ident: CR109 – volume: 2 start-page: 736 issue: 10 year: 2012 end-page: 741 ident: CR70 article-title: Asymmetric European summer heat predictability from wet and dry southern winters and springs publication-title: Nat Clim Change doi: 10.1038/nclimate1536 – volume: 9 start-page: 5558 issue: 7 year: 2009 end-page: 5579 ident: CR47 article-title: An improved cloud classification algorithm for China’s FY-2C multi-channel images using artificial neural network publication-title: Sensors – volume: 25 start-page: 479 issue: 5 year: 2000 end-page: 491 ident: CR34 article-title: Artificial neural networks for the prediction of the energy consumption of a passive solar building publication-title: Energy – volume: 23 start-page: 229 issue: 1 year: 2013 end-page: 239 ident: CR83 article-title: The impact of urbanization on water vulnerability: a coupled human–environment system approach for Chennai publication-title: India Global Environ Change – volume: 28 start-page: 869 issue: 20–27 year: 2003 end-page: 877 ident: CR74 article-title: Resilience building and water demand management for drought mitigation publication-title: Phys Chem Earth, Parts a/b/c – volume: 3 start-page: 740 issue: 1 year: 2012 ident: CR21 article-title: Multiple exposures to drought 'train' transcriptional responses in Arabidopsis publication-title: Nat Commun doi: 10.1038/ncomms1732 – volume: 1 start-page: 165 issue: 3 year: 2010 end-page: 180 ident: CR12 article-title: A review of the adaptation and mitigation of global climate change using sustainable drainage in cities publication-title: J Water Clim Change – volume: 43 start-page: 1834 issue: 12 year: 2004 end-page: 1853 ident: CR31 article-title: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system publication-title: J Appl Meteorol – volume: 10 start-page: 044009 issue: 4 year: 2015 ident: CR26 article-title: A climatic deconstruction of recent drought trends in the United States publication-title: Environ Res Lett doi: 10.1088/1748-9326/10/4/044009 – ident: CR63 – ident: CR108 – volume: 34 start-page: 1169 issue: 4 year: 2014 end-page: 1180 ident: CR20 article-title: Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation publication-title: Int J Climatol – volume: 28 start-page: 521 issue: 4 year: 2008 end-page: 535 ident: CR27 article-title: Spatial and temporal analysis of climatological data in Jordan publication-title: Int J Climatol doi: 10.1002/joc.1562 – ident: CR13 – volume: 28 start-page: 1361 issue: 12 year: 2003 end-page: 1376 ident: CR42 article-title: Landslide susceptibility analysis using GIS and artificial neural network publication-title: Earth Surf Process Landf J Br Geomorphol Res Group – volume: 527 start-page: 482 year: 2015 end-page: 493 ident: CR67 article-title: A review of water scarcity and drought indexes in water resources planning and management publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.05.003 – volume: 91 start-page: 1015 issue: 8 year: 2010 end-page: 1058 ident: CR76 article-title: The NCEP climate forecast system reanalysis publication-title: Bull Am Meteorol Soc doi: 10.1175/2010BAMS3001.1 – volume: 187 start-page: 57 issue: 3 year: 2015 ident: CR69 article-title: Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata publication-title: Environ Monit Assess – volume: 59 start-page: 455 issue: 3 year: 2020 end-page: 475 ident: CR40 article-title: Utilizing objective drought severity thresholds to improve drought monitoring publication-title: J Appl Meteorol Climatol – volume: 4 start-page: 17 issue: 1 year: 2014 end-page: 22 ident: CR89 article-title: Global warming and changes in drought publication-title: Nat Clim Chang – volume: 94 start-page: 1553 issue: 10 year: 2013 end-page: 1565 ident: CR29 article-title: NOAA's second-generation global medium-range ensemble reforecast dataset publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-12-00014.1 – volume: 106 start-page: 223 issue: 3 year: 2010 end-page: 233 ident: CR48 article-title: Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices publication-title: Biosyst Eng – volume: 71 start-page: 289 issue: 3–4 year: 2014 end-page: 302 ident: CR43 article-title: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network publication-title: Eng Geol – volume: 49 start-page: 1040 issue: 2 year: 2013 end-page: 1057 ident: CR92 article-title: The Millennium Drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society publication-title: Water Resour Res – volume: 95 start-page: 470 issue: 4 year: 2010 end-page: 486 ident: CR11 article-title: Synoptic aspects of winter rainfall variability in Oman publication-title: Atmos Res doi: 10.1016/j.atmosres.2009.11.009 – volume: 92 start-page: 417 issue: 3 year: 2009 end-page: 432 ident: CR24 article-title: 21st century climate change in the Middle East publication-title: Clim Change doi: 10.1007/s10584-008-9438-5 – volume: 129 start-page: 1189 issue: 3 year: 2017 end-page: 1200 ident: CR49 article-title: Drought in Northeast Brazil—past, present, and future publication-title: Theor Appl Climatol doi: 10.1007/s00704-016-1840-8 – ident: CR87 – volume: 112 start-page: 203 issue: 1 year: 2008 end-page: 215 ident: CR90 article-title: Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA publication-title: Remote Sens Environ – volume: 113 start-page: 10019 issue: 36 year: 2016 end-page: 10024 ident: CR86 article-title: Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity publication-title: Proc Natl Acad Sci – volume: 11 start-page: 124021 issue: 12 year: 2016 ident: CR93 article-title: Impacts of recent drought and warm years on water resources and electricity supply worldwide publication-title: Environ Res Lett doi: 10.1088/1748-9326/11/12/124021 – ident: CR61 – volume: 53 start-page: 160 year: 2014 end-page: 171 ident: CR5 article-title: Land use changes modelling using advanced methods: cellular automata and artificial neural networks. the spatial and explicit representation of land cover dynamics at the cross-border region scale publication-title: Appl Geogr – volume: 154 start-page: 1169 year: 2016 end-page: 1175 ident: CR39 article-title: Meteorological drought forecasting based on climate signals using artificial neural network–a case study in Khanhhoa Province Vietnam publication-title: Proced Eng – volume: 114 start-page: 667 issue: 3 year: 2012 end-page: 687 ident: CR45 article-title: Climate change and impacts in the Eastern Mediterranean and the Middle East publication-title: Clim Change doi: 10.1007/s10584-012-0418-4 – volume: 122 start-page: 127 issue: 1–2 year: 2014 end-page: 140 ident: CR4 article-title: The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios publication-title: Clim Change – volume: 13 start-page: 745 issue: 7 year: 2000 end-page: 753 ident: CR103 article-title: Global stability analysis in delayed Hopfield neural network models publication-title: Neural Netw – volume: 323 start-page: 533 issue: 6088 year: 1986 end-page: 536 ident: CR75 article-title: Learning representations by back-propagating errors publication-title: Nature – volume: 9 start-page: 32 issue: 1 year: 2007 end-page: 40 ident: CR56 article-title: Road detection from high-resolution satellite images using artificial neural networks publication-title: Int J Appl Earth Obs Geoinf – volume: 27 start-page: 2103 issue: 15 year: 2007 end-page: 2111 ident: CR58 article-title: Drought forecasting using artificial neural networks and time series of drought indices publication-title: Int J Climatol J R Meteorol Soc – ident: CR105 – volume: 23 start-page: 1696 issue: 7 year: 2010 end-page: 1718 ident: CR95 article-title: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index publication-title: J Clim doi: 10.1175/2009jcli2909.1 – volume: 14 start-page: 1247 issue: 7 year: 2010 end-page: 1258 ident: CR9 article-title: Uncertainties in climate change projections and regional downscaling in the tropical Andes: implications for water resources management publication-title: Hydrol Earth Syst Sci – volume: 62 start-page: 177 issue: 1 year: 2005 end-page: 197 ident: CR80 article-title: Agricultural, architectural and archaeological evidence for the role and ecological adaptation of a scattered mountain oasis in Oman publication-title: J Arid Environ – volume: 5 start-page: 1117 issue: 6 year: 2004 end-page: 1130 ident: CR17 article-title: A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming publication-title: J Hydrometeorol – volume: 29 start-page: 605 issue: 4 year: 2009 end-page: 617 ident: CR38 article-title: Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman publication-title: Int J Climatol doi: 10.1002/joc.1727 – volume: 391 start-page: 202 issue: 1 year: 2010 end-page: 216 ident: CR55 article-title: A review of drought concepts publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.07.012 – volume: 109 start-page: 12398 issue: 31 year: 2012 end-page: 12403 ident: CR59 article-title: Hot days induced by precipitation deficits at the global scale publication-title: Proceed Nat Acad Sci doi: 10.1073/pnas.1204330109 – volume: 2 start-page: 673 issue: 3 year: 2010 end-page: 696 ident: CR66 article-title: Application of vegetation indices for agricultural crop yield prediction using neural network techniques publication-title: Remote Sens – volume: 124 start-page: 12 year: 2012 end-page: 23 ident: CR14 article-title: Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS publication-title: Eng Geol – ident: CR53 – volume: 3 start-page: 4 year: 2014 end-page: 13 ident: CR99 article-title: Managing drought risk in a changing climate: the role of national drought policy publication-title: Weather Clim Extremes – volume: 22 start-page: 1177 issue: 9 year: 1996 end-page: 1181 ident: CR85 article-title: Application of artificial neural networks for the classification of liver lesions by image texture parameters publication-title: Ultrasound Med Biol – volume: 11 start-page: 90 issue: 2 year: 2002 end-page: 102 ident: CR37 article-title: Forecasting financial time series using neural network and fuzzy system-based techniques publication-title: Neural Comput Appl – volume: 33 start-page: 3055 issue: 14 year: 2013 end-page: 3072 ident: CR88 article-title: Climate change projections of precipitation and reference evapotranspiration for the Middle East and Northern Africa until 2050 publication-title: Int J Climatol doi: 10.1002/joc.3650 – volume: 105 start-page: 150 issue: 1 year: 2013 end-page: 160 ident: CR100 article-title: Assessing the agricultural reference index for drought (ARID) using uncertainty and sensitivity analyses publication-title: Agron J doi: 10.2134/agronj2012.0033 – volume: 6 start-page: 215 issue: 4 year: 2014 end-page: 226 ident: CR71 article-title: Predicting the trend of land use changes using artificial neural network and markov chain model (case study: Kermanshah City) publication-title: Res J Environ Earth Sci – volume: 26 start-page: 1311 issue: 6 year: 2015 end-page: 1320 ident: CR2 article-title: Integration of artificial neural network and geographical information system for intelligent assessment of land suitability for the cultivation of a selected crop publication-title: Neural Comput Appl – volume: 23 start-page: 4949 year: 2021 end-page: 4972 ident: CR77 article-title: Factors influencing farmers’ adaptation strategies in confronting the drought in Iran publication-title: Environ Dev Sustain – volume: 20 start-page: 2779 issue: 7 year: 2016 end-page: 2800 ident: CR6 article-title: Estimating drought risk across Europe from reported drought impacts, drought indices, and vulnerability factors publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-20-2779-2016 – ident: CR104 – volume: 7 start-page: 263 issue: 3 year: 2015 end-page: 278 ident: CR32 article-title: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle publication-title: Cogn Comput – volume: 113 start-page: 585 issue: 3 year: 2013 end-page: 598 ident: CR3 article-title: Detecting climate change signals in Saudi Arabia using mean annual surface air temperatures publication-title: Theor Appl Climatol doi: 10.1007/s00704-012-0812-x – volume: 514 start-page: 258 year: 2014 end-page: 270 ident: CR64 article-title: Evolution of the rainfall regime in the United Arab Emirates publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.04.032 – volume: 104 start-page: 599 issue: 3 year: 2011 end-page: 627 ident: CR82 article-title: Climate change, water resources, and the politics of adaptation in the Middle East and North Africa publication-title: Clim Change doi: 10.1007/s10584-010-9835-4 – volume: 233 start-page: 138 issue: 1–4 year: 2000 end-page: 153 ident: CR33 article-title: River flow prediction using artificial neural networks: generalisation beyond the calibration range publication-title: J Hydrol – volume: 30 start-page: 2245 issue: 7 year: 2016 end-page: 2259 ident: CR73 article-title: Drought forecasting using Markov chain model and artificial neural networks publication-title: Water Resour Manage – volume: 38 start-page: 517 issue: 2 year: 2018 end-page: 529 ident: CR7 article-title: Frequency, duration and severity of drought in the Semiarid Northeast Brazil region publication-title: Int J Climatol doi: 10.1002/joc.5225 – volume: 5 start-page: 115 issue: 4 year: 1943 end-page: 133 ident: CR51 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Math Biophys – volume: 76 start-page: 555 issue: C year: 2017 end-page: 576 ident: CR35 article-title: Climate change: the game changer in the gulf cooperation council region publication-title: Renew Sustain Energy Rev – volume: 35 start-page: 243 issue: 2 year: 2005 end-page: 264 ident: CR81 article-title: An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index publication-title: Nat Hazards – ident: CR107 – volume: 25 start-page: 1733 issue: 9 year: 2004 end-page: 1748 ident: CR23 article-title: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities publication-title: Int J Remote Sens – volume: 2 start-page: 316 issue: 2 year: 1991 end-page: 318 ident: CR60 article-title: Neural networks-then and now publication-title: IEEE Trans Neural Netw – volume: 323 start-page: 533 issue: 6088 year: 1986 ident: 1958_CR75 publication-title: Nature doi: 10.1038/323533a0 – volume: 10 start-page: 111 issue: 3 year: 1985 ident: 1958_CR97 publication-title: Water Int doi: 10.1080/02508068508686328 – volume: 2 start-page: 673 issue: 3 year: 2010 ident: 1958_CR66 publication-title: Remote Sens doi: 10.3390/rs2030673 – volume: 34 start-page: 1169 issue: 4 year: 2014 ident: 1958_CR20 publication-title: Int J Climatol doi: 10.1002/joc.3754 – volume: 114 start-page: 667 issue: 3 year: 2012 ident: 1958_CR45 publication-title: Clim Change doi: 10.1007/s10584-012-0418-4 – ident: 1958_CR108 doi: 10.1016/B978-0-12-815998-9.00002-6 – volume: 11 issue: 1 year: 2015 ident: 1958_CR25 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004031 – volume: 1 start-page: 165 issue: 3 year: 2010 ident: 1958_CR12 publication-title: J Water Clim Change doi: 10.2166/wcc.2010.035 – volume: 3 start-page: 740 issue: 1 year: 2012 ident: 1958_CR21 publication-title: Nat Commun doi: 10.1038/ncomms1732 – volume: 6 start-page: 197 issue: 2 year: 2016 ident: 1958_CR65 publication-title: Nat Clim Change doi: 10.1038/nclimate2833 – ident: 1958_CR53 doi: 10.7551/mitpress/11301.001.0001 – volume: 32 start-page: 216 issue: 14 year: 2017 ident: 1958_CR78 publication-title: Rev Fac Ing – volume: 35 start-page: 243 issue: 2 year: 2005 ident: 1958_CR81 publication-title: Nat Hazards doi: 10.1007/s11069-004-5704-7 – volume: 28 start-page: 869 issue: 20–27 year: 2003 ident: 1958_CR74 publication-title: Phys Chem Earth, Parts a/b/c doi: 10.1016/j.pce.2003.08.009 – volume: 22 start-page: 1177 issue: 9 year: 1996 ident: 1958_CR85 publication-title: Ultrasound Med Biol doi: 10.1016/S0301-5629(96)00144-5 – volume: 33 start-page: 9883 issue: 22 year: 2020 ident: 1958_CR15 publication-title: J Clim doi: 10.1175/JCLI-D-20-0004.1 – volume: 3 start-page: 4 year: 2014 ident: 1958_CR99 publication-title: Weather Clim Extremes doi: 10.1016/j.wace.2014.01.002 – volume: 113 start-page: 585 issue: 3 year: 2013 ident: 1958_CR3 publication-title: Theor Appl Climatol doi: 10.1007/s00704-012-0812-x – volume: 94 start-page: 1553 issue: 10 year: 2013 ident: 1958_CR29 publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-12-00014.1 – volume: 91 start-page: 1015 issue: 8 year: 2010 ident: 1958_CR76 publication-title: Bull Am Meteorol Soc doi: 10.1175/2010BAMS3001.1 – volume: 13 start-page: 745 issue: 7 year: 2000 ident: 1958_CR103 publication-title: Neural Netw doi: 10.1016/S0893-6080(00)00050-2 – volume: 50 start-page: 2137 issue: 5 year: 2018 ident: 1958_CR10 publication-title: Clim Dyn doi: 10.1007/s00382-017-3740-8 – ident: 1958_CR107 doi: 10.1111/jawr.12182 – volume: 62 start-page: 177 issue: 1 year: 2005 ident: 1958_CR80 publication-title: J Arid Environ doi: 10.1016/j.jaridenv.2004.09.023 – volume: 9 start-page: 5558 issue: 7 year: 2009 ident: 1958_CR47 publication-title: Sensors doi: 10.3390/s90705558 – volume: 20 start-page: 2779 issue: 7 year: 2016 ident: 1958_CR6 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-20-2779-2016 – volume: 122 start-page: 127 issue: 1–2 year: 2014 ident: 1958_CR4 publication-title: Clim Change doi: 10.1007/s10584-013-0948-4 – volume: 53 start-page: 160 year: 2014 ident: 1958_CR5 publication-title: Appl Geogr doi: 10.1016/j.apgeog.2014.06.016 – year: 2008 ident: 1958_CR28 publication-title: Water Res Res doi: 10.1029/2008WR006964 – volume: 124 start-page: 12 year: 2012 ident: 1958_CR14 publication-title: Eng Geol doi: 10.1016/j.enggeo.2011.09.011 – volume: 26 start-page: 1311 issue: 6 year: 2015 ident: 1958_CR2 publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1801-z – ident: 1958_CR87 doi: 10.1007/978-94-015-9472-1_3 – volume: 113 start-page: 10019 issue: 36 year: 2016 ident: 1958_CR86 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1604581113 – volume: 233 start-page: 138 issue: 1–4 year: 2000 ident: 1958_CR33 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00228-6 – volume: 59 start-page: 455 issue: 3 year: 2020 ident: 1958_CR40 publication-title: J Appl Meteorol Climatol doi: 10.1175/JAMC-D-19-0217.1 – volume: 154 start-page: 1169 year: 2016 ident: 1958_CR39 publication-title: Proced Eng doi: 10.1016/j.proeng.2016.07.528 – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 1958_CR51 publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – volume: 6 start-page: 687 issue: 5 year: 2006 ident: 1958_CR41 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-6-687-2006 – volume: 10 start-page: 044009 issue: 4 year: 2015 ident: 1958_CR26 publication-title: Environ Res Lett doi: 10.1088/1748-9326/10/4/044009 – volume: 2 start-page: 316 issue: 2 year: 1991 ident: 1958_CR60 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.80343 – ident: 1958_CR106 – ident: 1958_CR57 – volume: 49 start-page: 1040 issue: 2 year: 2013 ident: 1958_CR92 publication-title: Water Resour Res doi: 10.1002/wrcr.20123 – volume: 9 start-page: 122 issue: 2 year: 2016 ident: 1958_CR84 publication-title: Arab J Geosci doi: 10.1007/s12517-015-2102-2 – volume: 5 start-page: 1117 issue: 6 year: 2004 ident: 1958_CR18 publication-title: J Hydrometeorol doi: 10.1175/jhm-386.1 – volume: 33 start-page: 14 year: 2012 ident: 1958_CR22 publication-title: Proced Eng doi: 10.1016/j.proeng.2012.01.1172 – ident: 1958_CR63 – volume: 6 start-page: 215 issue: 4 year: 2014 ident: 1958_CR71 publication-title: Res J Environ Earth Sci – volume: 514 start-page: 258 year: 2014 ident: 1958_CR64 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.04.032 – volume: 25 start-page: 479 issue: 5 year: 2000 ident: 1958_CR34 publication-title: Energy doi: 10.1016/S0360-5442(99)00086-9 – volume: 9 start-page: 302 issue: 4 year: 2016 ident: 1958_CR1 publication-title: Arab J Geosci doi: 10.1007/s12517-016-2324-y – volume: 95 start-page: 269 issue: 2 year: 2014 ident: 1958_CR30 publication-title: Bull Am Meteorol Soc doi: 10.1175/BAMS-D-13-00055.1 – volume: 23 start-page: 229 issue: 1 year: 2013 ident: 1958_CR83 publication-title: India Global Environ Change doi: 10.1016/j.gloenvcha.2012.10.002 – volume: 47 start-page: 149 issue: 2 year: 2005 ident: 1958_CR91 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2004.11.014 – ident: 1958_CR16 doi: 10.1201/9781315404219-1 – volume: 7 start-page: 730 issue: 7 year: 2017 ident: 1958_CR52 publication-title: Appl Sci doi: 10.3390/app7070730 – volume: 4 start-page: 17 issue: 1 year: 2014 ident: 1958_CR89 publication-title: Nat Clim Chang doi: 10.1038/nclimate2067 – ident: 1958_CR109 – ident: 1958_CR61 doi: 10.5479/sil.538961.39088011475779 – volume: 33 start-page: 3055 issue: 14 year: 2013 ident: 1958_CR88 publication-title: Int J Climatol doi: 10.1002/joc.3650 – volume: 23 start-page: 1696 issue: 7 year: 2010 ident: 1958_CR95 publication-title: J Clim doi: 10.1175/2009jcli2909.1 – volume: 76 start-page: 555 issue: C year: 2017 ident: 1958_CR35 publication-title: Renew Sustain Energy Rev – volume: 198 start-page: 127 issue: 1–2 year: 2006 ident: 1958_CR54 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2006.04.017 – volume: 80 start-page: 141 year: 2008 ident: 1958_CR98 publication-title: Options Mediterr Ser A – volume: 527 start-page: 482 year: 2015 ident: 1958_CR67 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.05.003 – volume: 38 start-page: 517 issue: 2 year: 2018 ident: 1958_CR7 publication-title: Int J Climatol doi: 10.1002/joc.5225 – volume: 24 start-page: 4891 issue: 23 year: 2003 ident: 1958_CR19 publication-title: Int J Remote Sens doi: 10.1080/0143116031000070319 – ident: 1958_CR105 doi: 10.1002/joc.6126 – volume: 105 start-page: 150 issue: 1 year: 2013 ident: 1958_CR100 publication-title: Agron J doi: 10.2134/agronj2012.0033 – volume: 9 start-page: 32 issue: 1 year: 2007 ident: 1958_CR56 publication-title: Int J Appl Earth Obs Geoinf – volume: 187 start-page: 57 issue: 3 year: 2015 ident: 1958_CR69 publication-title: Environ Monit Assess doi: 10.1007/s10661-015-4298-8 – volume: 2 start-page: 736 issue: 10 year: 2012 ident: 1958_CR70 publication-title: Nat Clim Change doi: 10.1038/nclimate1536 – year: 2005 ident: 1958_CR94 doi: 10.5194/hess-9-523-2005 – volume: 5 start-page: 1117 issue: 6 year: 2004 ident: 1958_CR17 publication-title: J Hydrometeorol doi: 10.1175/JHM-386.1 – volume: 11 start-page: 90 issue: 2 year: 2002 ident: 1958_CR37 publication-title: Neural Comput Appl doi: 10.1007/s005210200021 – volume: 28 start-page: 1361 issue: 12 year: 2003 ident: 1958_CR42 publication-title: Earth Surf Process Landf J Br Geomorphol Res Group doi: 10.1002/esp.593 – ident: 1958_CR104 – volume: 28 start-page: 521 issue: 4 year: 2008 ident: 1958_CR27 publication-title: Int J Climatol doi: 10.1002/joc.1562 – volume: 200 start-page: 153 year: 2018 ident: 1958_CR50 publication-title: Atmos Res doi: 10.1016/j.atmosres.2017.09.016 – volume: 4 start-page: 94 issue: 2 year: 2012 ident: 1958_CR62 publication-title: Nigeria. J Geogr Geol – volume: 23 start-page: 4949 year: 2021 ident: 1958_CR77 publication-title: Environ Dev Sustain doi: 10.1007/s10668-020-00798-8 – ident: 1958_CR13 – volume: 30 start-page: 2245 issue: 7 year: 2016 ident: 1958_CR73 publication-title: Water Resour Manage doi: 10.1007/s11269-016-1283-0 – volume: 491 start-page: 435 issue: 7424 year: 2012 ident: 1958_CR79 publication-title: Nature doi: 10.1038/nature11575 – volume: 43 start-page: 1834 issue: 12 year: 2004 ident: 1958_CR31 publication-title: J Appl Meteorol doi: 10.1175/JAM2173.1 – volume: 391 start-page: 202 issue: 1 year: 2010 ident: 1958_CR55 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2010.07.012 – volume: 14 start-page: 1247 issue: 7 year: 2010 ident: 1958_CR9 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-14-1247-2010 – volume: 27 start-page: 2103 issue: 15 year: 2007 ident: 1958_CR58 publication-title: Int J Climatol J R Meteorol Soc doi: 10.1002/joc.1498 – volume: 129 start-page: 1189 issue: 3 year: 2017 ident: 1958_CR49 publication-title: Theor Appl Climatol doi: 10.1007/s00704-016-1840-8 – volume: 152 start-page: 242 year: 2017 ident: 1958_CR101 publication-title: CATENA doi: 10.1016/j.catena.2017.01.019 – volume: 7 start-page: 263 issue: 3 year: 2015 ident: 1958_CR32 publication-title: Cogn Comput doi: 10.1007/s12559-015-9333-0 – volume: 25 start-page: 1733 issue: 9 year: 2004 ident: 1958_CR23 publication-title: Int J Remote Sens doi: 10.1080/0143116031000150077 – volume: 8 start-page: 319 issue: 6 year: 2003 ident: 1958_CR36 publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2003)8:6(319) – volume: 29 start-page: 605 issue: 4 year: 2009 ident: 1958_CR38 publication-title: Int J Climatol doi: 10.1002/joc.1727 – volume: 106 start-page: 223 issue: 3 year: 2010 ident: 1958_CR48 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2009.12.008 – volume: 11 start-page: 124021 issue: 12 year: 2016 ident: 1958_CR93 publication-title: Environ Res Lett doi: 10.1088/1748-9326/11/12/124021 – volume: 1 start-page: 243 issue: 3 year: 2009 ident: 1958_CR102 publication-title: Remote Sensing doi: 10.3390/rs1030243 – volume: 115 start-page: 531 issue: 3 year: 2014 ident: 1958_CR72 publication-title: Theor Appl Climatol doi: 10.1007/s00704-013-0919-8 – volume: 9 start-page: 66 issue: 1 year: 2018 ident: 1958_CR8 publication-title: Adv Clim Change Res doi: 10.1016/j.accre.2018.01.004 – volume: 92 start-page: 417 issue: 3 year: 2009 ident: 1958_CR24 publication-title: Clim Change doi: 10.1007/s10584-008-9438-5 – volume: 71 start-page: 289 issue: 3–4 year: 2014 ident: 1958_CR43 publication-title: Eng Geol – volume: 109 start-page: 12398 issue: 31 year: 2012 ident: 1958_CR59 publication-title: Proceed Nat Acad Sci doi: 10.1073/pnas.1204330109 – volume: 9 start-page: 044001 issue: 4 year: 2014 ident: 1958_CR96 publication-title: Environ Res Lett doi: 10.1088/1748-9326/9/4/044001 – volume: 95 start-page: 470 issue: 4 year: 2010 ident: 1958_CR11 publication-title: Atmos Res doi: 10.1016/j.atmosres.2009.11.009 – volume: 112 start-page: 203 issue: 1 year: 2008 ident: 1958_CR90 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2007.04.013 – volume: 75 start-page: 273 issue: 3 year: 2006 ident: 1958_CR44 publication-title: Clim Change doi: 10.1007/s10584-006-6338-4 – volume: 4 start-page: 1 issue: 1 year: 2009 ident: 1958_CR68 publication-title: Int J Phys Sci – volume: 104 start-page: 599 issue: 3 year: 2011 ident: 1958_CR82 publication-title: Clim Change doi: 10.1007/s10584-010-9835-4 – volume: 47 start-page: 1060 issue: 5 year: 2000 ident: 1958_CR46 publication-title: IEEE Trans Industr Electron doi: 10.1109/41.873214 |
| SSID | ssj0001626699 |
| Score | 2.3157082 |
| Snippet | Drought is one of the most devastating natural disasters, and its consequences affect various human and environmental aspects. In both arid and semi-arid... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3411 |
| SubjectTerms | Air temperature Algorithms Arid zones Artificial neural networks Biodiversity Chemistry and Earth Sciences Climate change Climate system Computer Science Dependent variables Disasters Drought Earth and Environmental Science Earth Sciences Earth System Sciences Economic activities Ecosystems Emergency preparedness Environment Environmental aspects Environmental impact Evapotranspiration Food production Geographic information systems Geographical information systems Hydroelectric power Independent variables Information systems Livelihoods Machine learning Math. Appl. in Environmental Science Mathematical Applications in the Physical Sciences Mitigation Natural disasters Neural networks Original Article Physics Plant cover Precipitation Rainy season Relative humidity Remote sensing Semi arid areas Semiarid zones Socioeconomic aspects Statistics for Engineering Variables Vegetation cover Water management Water resources Water resources management Water supply Wet season Wind speed |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA66KfjiXZxOyYNvGuwtTeuLqGxTkDm8MZ9Km6QycN1cq-C_9yRLVxTci2-FJqH0O8k5Ocn5PoSOmJ2GXshTIrnrEk9yRkIepMRKeeimDhW-Jnt-vmXdbtDvhz2TcMvNtcpyTdQLtRhxlSM_dbXvhIDbOR-_E6UapU5XjYTGIqorpjKw8_plq9u7r7IsEK_7WkTSUQeWvmO5pnJG1895EC8FBNwUUXVzMPN_eqcq5Px1SqqdT3vtv5-9jlZN2IkvpnaygRZktomWO1rW92sLvcBTru5WQxutjaOK1PEoxUKr-BR4rGk4sxwPMnw3jLMz3Ll5IMoFChxnAg_1nUyJjQjFKy65yrfRU7v1eHVNjOgC4TAbCxInCQOXntg09iDwFjIUPmOCUclkHAsquCq-DgSEQeAAE99lUgQ2AMu5gM0Pd3dQLRtlchdhW3BmUaEY8xJFpBY4CXUo57BFsVJK4wayy58dccNIroQx3qIZl7IGKAKAIg1QFDbQ8azPeMrHMbd1s0QlMnMzjypIGuikxLV6_fdoe_NH20crjjYllaJpolox-ZAHaIl_FoN8cmgs8xvDKOeR priority: 102 providerName: ProQuest |
| Title | Geospatial modelling of drought patterns in Oman: GIS-based and machine learning approach |
| URI | https://link.springer.com/article/10.1007/s40808-024-01958-9 https://www.proquest.com/docview/3064390962 |
| Volume | 10 |
| WOSCitedRecordID | wos001173453700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2363-6211 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0001626699 issn: 2363-6203 databaseCode: PCBAR dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2363-6211 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0001626699 issn: 2363-6203 databaseCode: PATMY dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2363-6211 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0001626699 issn: 2363-6203 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2363-6211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001626699 issn: 2363-6203 databaseCode: RSV dateStart: 20150601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50U_DF6VScTsmDbxpYf6RpfVPZpiBzOB3zqbRJKgPXjXUK_vdesnZDUUHfSpuGcsn17nJ33wdwwq0kcAORUCUch7pKcBoIP6GNRAROYjPpGbDn_i3vdPzBIOjmTWFZUe1epCTNn3rR7Oaic-NTtClUN7mhmq5CmWm0GR2j9_rLkxX00T1DHGnrJKVnN5y8W-b7aT5bpKWb-SUzagxOq_K_T92CzdzBJBfzHbENKyqtQqUgbyC5LldhvW04fd_xylSBimwHnvBepkuscQJDkaN71ck4IdKQ-czIxKBxphkZpuRuFKXnpH3To9oSShKlkoxMaaYiORfFMykgy3fhsdV8uLqmOfcCFaiUMxrFMUfLHlssctH_liqQHueSM8VVFEkmhe7B9iV6Q2gHY8_hSvoWrq8QEmMg4exBKR2nah-IJQVvMKmB82KNp-bbMbOZEBipNBLGohpYhfxDkQOTa36Ml3ABqWzkGaI8QyPPMKjB6eKdyRyW49fR9WJZw1xFs9AxzhhGcHYNzoplXD7-ebaDvw0_hA3b7AR9clOH0mz6qo5gTbzNhtn0GMqXzU73_ths4Q92qudM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB5BAcGFXV6ivNaH5QQWjRPHCRJawfKqKAXxUjmFxHYQEqSFFBB_an8jYzehAgluHPYWKY6VxJ9nxh7P9wH8Fk4aeqFMqZauSz0tBQ1lkNJaKkM3ZVz5luz5oiGazaDVCo8H4F9ZC2OOVZY20Rpq1ZZmj3zNtb4TA272p3NPjWqUya6WEho9WBzol2dcsuUb9W0c32XGdnfO_u7TQlWASoRbl8ZJItBnJQ6PPYwslQ6VL4QSXAsdx4oraaqLA4V-Hi184rtCq8DBN5dSYXQvXex3EIY81_N5BYa2dprHJ_1dHVwf-Fa0kpkEqc9qblGpY-v1PIzPAopukZo6PbQ0771hP8T9kJW1zm73x__2m37CeBFWk83ePJiAAZ1NwsielS1-mYJLvMrN2XFsY7V_TBE-aadEWZWiLulYmtEsJzcZObqLs3WyVz-lxsUrEmeK3Nkzp5oUIhvXpORin4bzb_muGahk7UzPAnGUFDWuDCNgYojiApZwxqXEJVgt5TyuglMObiQLxnUj_HEbvXFFW0BECIjIAiIKq7Dy9kynxzfyZeuFEgVRYXvyqA-BKqyWOOrf_ry3ua97-wWj-2eHjahRbx7MwxizMDbbUQtQ6T486kUYlk_dm_xhqZgVBK6-G2GvxjRE-Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8xhc_puJ0ah5807D1I03rm6jT4ZjiVOZTaZNUBK1jrYL_vZes3VRUEN9Km4aSy3G_a-5-P4BdbiWBG4iEKuE41FWC00D4CW0kInASm0nPkD3ftnmn4_d6weWHLn5T7V4eSQ57GjRLU5rX-zKpjxrfXAQ6PsX4QnXDG7rsJEy7mMnooq6r7u34Lwvidc-ISNr6wNKzG07ROfP9NJ-j0xhyfjklNcGnufj_z16ChQJ4ksPhTlmGCZVWYLEUdSCFj1dg9tRo_b7hlakOFdkK3OG9TJde4wRGOkf3sJPnhEgj8pOTvmHpTDPykJKLpyg9IKetLtURUpIoleTJlGwqUmhU3JOSynwVbpon10dntNBkoAKdNadRHHOM-LHFIhdxuVSB9DiXnCmuokgyKXRvti8RJWF8jD2HK-lbaHchJOZGwlmDqfQ5VetALCl4g0lNqBdrnjXfjpnNhMAMppEwFlXBKm0RioKwXOtmPIYjqmWzniGuZ2jWMwyqsDd6pz-k6_h1dK00cVi4bhY6BqRhZmdXYb806fjxz7Nt_G34DsxdHjfDdqtzvgnzttkU-udODabywYvaghnxmj9kg22zo98Bmzvxeg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geospatial+modelling+of+drought+patterns+in+Oman%3A+GIS-based+and+machine+learning+approach&rft.jtitle=Modeling+earth+systems+and+environment&rft.au=Mansour%2C+Shawky&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=2363-6203&rft.eissn=2363-6211&rft.volume=10&rft.issue=3&rft.spage=3411&rft.epage=3431&rft_id=info:doi/10.1007%2Fs40808-024-01958-9&rft.externalDocID=10_1007_s40808_024_01958_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2363-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2363-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2363-6203&client=summon |