Initial Seed Selection for Mixed Data Using Modified K-means Clustering Algorithm
Data sets to which clustering is applied may be homogeneous (numerical or categorical) or heterogeneous (numerical and categorical) in nature. Handling homogeneous data is easier than heterogeneous data. We propose a novel technique for identifying initial seeds for heterogeneous data clustering, th...
Uloženo v:
| Vydáno v: | Arabian journal for science and engineering (2011) Ročník 45; číslo 4; s. 2685 - 2703 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2020
Springer Nature B.V |
| Témata: | |
| ISSN: | 2193-567X, 1319-8025, 2191-4281 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!