Enhanced whale optimization algorithm-based modeling and simulation analysis for industrial system parameter identification

Parameter identification for complex systems of nonlinear nature is challenging due to the complicated process structure and large number of parameters with different identifiability. The scope of this work is to develop a model-based parameter identification method for a nonlinear industrial windin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 79; číslo 13; s. 14489 - 14544
Hlavní autoři: Braik, Malik, Awadallah, Mohammed, Al-Betar, Mohammed Azmi, Al-Hiary, Heba
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2023
Springer Nature B.V
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Parameter identification for complex systems of nonlinear nature is challenging due to the complicated process structure and large number of parameters with different identifiability. The scope of this work is to develop a model-based parameter identification method for a nonlinear industrial winding system. The proposed parameter identification method consists of two key steps: First, enhanced whale optimization algorithm (EWOA) was proposed to alleviate the issues of low search performance and premature convergence of WOA, for which the following enhancements were made to WOA: (1) improvements to the bubble-net strategy of its mathematical model, (2) amendments to the humpback whales’ movements in the direction of the best whales, and (3) imitation of the schooling behavior of humpback whales when chasing prey. Second, EWOA was acted as a training method for artificial neural networks (ANNs)-type multilayer perceptron (MLP), a method referred to as EWOA-MLP. In this, EWOA was applied to train ANNs in order to mitigate the main difficulties of ANNs due to their nonlinear nature and unknown optimal set of control parameters (i.e., weights and biases). The performance of the proposed EWOA-MLP was assessed in modeling the subsystems of the winding process under study and in solving fifteen classification datasets. The effectiveness of EWOA-MLP in both modeling and classification studies was judged by several pertinent assessment metrics. Results of comparison of the proposed EWOA-MLP with other promising methods firmly confirm the promising performance of EWOA-MLP for both local optima avoidance and convergence rate, proving its value and superiority. Moreover, EWOA-MLP was able to outperform other algorithms in modeling the winding process and solving many classification problems.
AbstractList Parameter identification for complex systems of nonlinear nature is challenging due to the complicated process structure and large number of parameters with different identifiability. The scope of this work is to develop a model-based parameter identification method for a nonlinear industrial winding system. The proposed parameter identification method consists of two key steps: First, enhanced whale optimization algorithm (EWOA) was proposed to alleviate the issues of low search performance and premature convergence of WOA, for which the following enhancements were made to WOA: (1) improvements to the bubble-net strategy of its mathematical model, (2) amendments to the humpback whales’ movements in the direction of the best whales, and (3) imitation of the schooling behavior of humpback whales when chasing prey. Second, EWOA was acted as a training method for artificial neural networks (ANNs)-type multilayer perceptron (MLP), a method referred to as EWOA-MLP. In this, EWOA was applied to train ANNs in order to mitigate the main difficulties of ANNs due to their nonlinear nature and unknown optimal set of control parameters (i.e., weights and biases). The performance of the proposed EWOA-MLP was assessed in modeling the subsystems of the winding process under study and in solving fifteen classification datasets. The effectiveness of EWOA-MLP in both modeling and classification studies was judged by several pertinent assessment metrics. Results of comparison of the proposed EWOA-MLP with other promising methods firmly confirm the promising performance of EWOA-MLP for both local optima avoidance and convergence rate, proving its value and superiority. Moreover, EWOA-MLP was able to outperform other algorithms in modeling the winding process and solving many classification problems.
Author Al-Betar, Mohammed Azmi
Braik, Malik
Awadallah, Mohammed
Al-Hiary, Heba
Author_xml – sequence: 1
  givenname: Malik
  surname: Braik
  fullname: Braik, Malik
  email: mbraik@bau.edu.jo
  organization: Department of Computer Science, Al-Balqa Applied University
– sequence: 2
  givenname: Mohammed
  surname: Awadallah
  fullname: Awadallah, Mohammed
  organization: Department of Computer Science, Al-Aqsa University, Artificial Intelligence Research Center (AIRC), Ajman University
– sequence: 3
  givenname: Mohammed Azmi
  surname: Al-Betar
  fullname: Al-Betar, Mohammed Azmi
  organization: Artificial Intelligence Research Center (AIRC), Ajman University, Department of Information Technology, Al-Balqa Applied University
– sequence: 4
  givenname: Heba
  surname: Al-Hiary
  fullname: Al-Hiary, Heba
  organization: Department of Computer Information Systems, Al-Balqa Applied University
BookMark eNp9kMtKAzEUhoMoWC8v4CrgejSXSTOzFKkXENzoOpzm0kZmkpqkSPXlja0guOjqEM73JX_-E3QYYrAIXVByRQmR15lSxmRDGG-IYFQ09ABNqJD12HbtIZqQnpGmEy07Ric5vxFCWi75BH3NwhKCtgZ_LGGwOK6KH_0nFB8DhmERky_LsZlDrsgYjR18WGAIBmc_rodfLsCwyT5jFxP2waxzSR4GnDe52BGvIMFoi607Y0Pxzuutd4aOHAzZnv_OU_R6N3u5fWienu8fb2-eGs1pXxqA-ZRJYSQHJuWcS00dgakUvHeSEDp1lnVat1R2pm8tE1PXGV1RTY3rQfBTdLm7d5Xi-9rmot7iOtXMWfFKC9G2UlaK7SidYs7JOrVKfoS0UZSon5LVrmRVS1bbkhWtUvdP0r5sP1cS-GG_yndqru-EhU1_qfZY39cLlhU
CitedBy_id crossref_primary_10_1007_s10586_024_04950_1
crossref_primary_10_1371_journal_pone_0311602
crossref_primary_10_1007_s10462_023_10680_4
crossref_primary_10_1007_s00521_024_10806_x
Cites_doi 10.1007/s10489-016-0767-1
10.1631/jzus.C11a0278
10.1016/j.knosys.2015.12.022
10.1007/s11063-021-10530-w
10.1007/s40092-014-0094-2
10.1007/s10845-022-02009-9
10.1023/A:1021251113462
10.1016/S0967-0661(98)00069-0
10.1016/j.array.2022.100173
10.1007/s10845-021-01900-1
10.1007/s40092-018-0295-1
10.1016/j.advengsoft.2017.01.004
10.1007/s10586-022-03920-9
10.1016/j.chemolab.2020.103932
10.1016/j.advengsoft.2017.07.002
10.1109/TNNLS.2016.2542866
10.1016/j.ins.2014.01.038
10.1007/s12652-019-01373-4
10.1007/978-1-4471-4866-1_13
10.1016/B978-0-323-91781-0.00005-3
10.1007/s40092-017-0183-0
10.1016/j.knosys.2015.07.006
10.32604/cmc.2022.020449
10.1007/s10845-015-1143-4
10.1007/s40092-017-0222-x
10.1080/03610918.2014.931971
10.1007/s00521-020-05145-6
10.1007/s10586-022-03708-x
10.1016/j.eswa.2017.10.028
10.1007/s10462-022-10164-x
10.1016/j.patrec.2008.08.001
10.1007/s00170-019-03621-5
10.1007/978-1-84882-653-3
10.1016/j.scs.2018.05.050
10.1016/j.advengsoft.2016.01.008
10.1007/s00500-017-2909-8
10.1016/j.swevo.2019.03.004
10.1002/cpe.4962
10.1155/2015/931256
10.1007/s12652-020-02623-6
10.18201/ijisae.2019252786
10.1016/j.knosys.2022.108457
10.1080/01621459.1937.10503522
10.1007/s00500-020-05464-9
10.1109/CEC.2000.870323
10.1016/j.neucom.2019.04.086
10.1109/ICNN.1995.488968
10.1016/j.est.2022.104092
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-023-05215-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 14544
ExternalDocumentID 10_1007_s11227_023_05215_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-aab6275d73a277b37c1f0a67539f70016fe28cc4178d94e256f8dc277c1df9a53
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000964994700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Sun Nov 30 04:07:43 EST 2025
Sat Nov 29 04:27:44 EST 2025
Tue Nov 18 19:39:50 EST 2025
Fri Feb 21 02:43:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Industrial winding process
Whale optimization algorithm
Artificial neural network
Multilayer Perceptron
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-aab6275d73a277b37c1f0a67539f70016fe28cc4178d94e256f8dc277c1df9a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256554477
PQPubID 2043774
PageCount 56
ParticipantIDs proquest_journals_3256554477
crossref_primary_10_1007_s11227_023_05215_1
crossref_citationtrail_10_1007_s11227_023_05215_1
springer_journals_10_1007_s11227_023_05215_1
PublicationCentury 2000
PublicationDate 20230900
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GharehchopoghFSGholizadehHA comprehensive survey: whale optimization algorithm and its applicationsSwarm Evol Comput201948124
ZinggDWNemecMPulliamTHA comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimizationEur J Comput Mech2008171–21031261292.76062
BraikMHammouriAAtwanJAl-BetarMAAwadallahMAWhite shark optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problemsKnowl-Based Syst2022243
SadatiNChinnamRBNezhadMZObservational data-driven modeling and optimization of manufacturing processesExpert Syst Appl201893456464
Kennedy J, Eberhart R (1995) Particle swarm optimization (pso). In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp 1942–1948
FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ Am Stat Assoc19373220067570163.1098.02
FarisHAljarahIMirjaliliSTraining feedforward neural networks using multi-verse optimizer for binary classification problemsAppl Intell2016452322332
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat, pp 65–70
ZhangLGaoTCaiGHaiKLResearch on electric vehicle charging safety warning model based on back propagation neural network optimized by improved gray wolf algorithmJ Energy Storage202249
Refonaa J, Huy DTN, Trung ND, Van Thuc H, Raj R, Haq MA, Kumar A (2022) Probabilistic methods and neural networks in structural engineering. Int J Adv Manuf Technol 1–9
HoY-CPepyneDLSimple explanation of the no-free-lunch theorem and its implicationsJ Optim Theory Appl2002115354957019635681031.91018
SaritasMMYasarAPerformance analysis of ann and naive bayes classification algorithm for data classificationInt J Intell Syst Appl Eng2019728891
TorresPJRMercadoESRifónLAProbabilistic boolean network modeling of an industrial machineJ Intell Manuf2018294875890
CanoJ-RGarcíaSHerreraFSubgroup discover in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classesPattern Recogn Lett2008291621562164
Movassagh AA, Alzubi JA, Gheisari M, Rahimi M, Mohan S, Abbasi AA, Nabipour N (2021) Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. J Ambient Intell Humaniz Comput 1–9
Awadallah MA, Abu-Doush I, Al-Betar MA, Braik MS (2023) Metaheuristics for optimizing weights in neural networks. In: Comprehensive Metaheuristics. Elsevier, pp 359–377
MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191
MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl Based Syst201696120133
BacaninNAlhazmiKZivkovicMVenkatachalamKBezdanTNebhenJTraining multi-layer perceptron with enhanced brain storm optimization metaheuristicsComput Materials Contin202270241994215
Al-Betar MA, Awadallah MA, Doush IA, Alomari OA, Abasi AK, Makhadmeh SN, Alyasseri ZAA (2022) Boosting the training of neural networks through hybrid metaheuristics. Cluster Comput 1–23
BastogneTNouraHSibillePRichardAMultivariable identification of a winding process by subspace methods for tension controlControl Eng Pract19986910771088
ArunkumarNMohammedMAMostafaSAIbrahimDARodriguesJJde AlbuquerqueVHCFully automatic model-based segmentation and classification approach for mri brain tumor using artificial neural networksConcurr Comput Pract Exp2020321
BraikMAl-ZoubiHAl-HiaryHArtificial neural networks training via bio-inspired optimisation algorithms: modelling industrial winding process, case studySoft Comput20212545454569
Noura H, Theilliol D, Ponsart J-C, Chamseddine A (2009) Fault-tolerant control systems: design and practical applications. Springer Science & Business Media
MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst201589228249
KhosraviAKouryRMachadoLPabonJPrediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference systemSustain Energy Technol Assess201825146160
ChangP-CWuJ-LXuYZhangMLuX-YBike sharing demand prediction using artificial immune system and artificial neural networkSoft Comput2019232613626
Al-Azzeh J, Alqadi Z, Abuzalata M (2019) Performance analysis of artificial neural networks used for color image recognition and retrieving. Int J Comput Sci Mobile Comput 8(2)
MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167
MosaviAShirzadiAChoubinBTaromidehFHosseiniFSBorjiMShahabiHSalvatiADinevaAATowards an ensemble machine learning model of random subspace based functional tree classifier for snow avalanche susceptibility mappingIEEE Access20208145968
TianZGanWZouXZhangYGaoWPerformance prediction of a cryogenic organic rankine cycle based on back propagation neural network optimized by genetic algorithmEnergy2022254
BraikMShetaAAl-HiaryHA novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithmNeural Comput Appl20213325152547
Braik M (2022) Hybrid enhanced whale optimization algorithm for contrast and detail enhancement of color images. Cluster Comput 1–37
NikabadiMNaderiRA hybrid algorithm for unrelated parallel machines schedulingInt J Ind Eng Comput201674681702
Owusu P (2020) Microstrip butterworth lowpass filter design
YeZKimMKPredicting electricity consumption in a building using an optimized back-propagation and levenberg-marquardt back-propagation neural network: Case study of a shopping mall in chinaSustain Cities Soc201842176183
KhanAShahRImranMKhanABangashJIShahKAn alternative approach to neural network training based on hybrid bio meta-heuristic algorithmJ Ambient Intell Humaniz Comput2019101038213830
SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw20171053047
NozariHABanadakiHDMokhtareMVahedSHIntelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networksJ Zhejiang Univ SCIENCE C2012136403412
Wang Y, Li H, Qi C (2020) An adaptive mode convolutional neural network based on bar-shaped structures and its operation modeling to complex industrial processes. Chemom Intell Lab Syst, p 103932
Wang Z, Rosen D (2022) Manufacturing process classification based on heat kernel signature and convolutional neural networks. J Intell Manuf 1–23
Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015
DaoSDAbharyKMarianROptimisation of assembly scheduling in vcim systems using genetic algorithmJ Ind Eng Int2017133275296
BraikMAl-ZoubiHRyalatMShetaAAlzubiOMemory based hybrid crow search algorithm for solving numerical and constrained global optimization problemsArtif Intell Rev20235612799
MoslemipourGA hybrid cs-sa intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demandsJ Ind Eng Int2018142429442
RojasMGOliveraACVidalPJOptimising multilayer perceptron weights and biases through a cellular genetic algorithm for medical data classificationArray202214
YıldızARHybrid taguchi-harmony search algorithm for solving engineering optimization problemsInt J Ind Eng2008153286293
Hussian A, Sheta A, Kamel M, Telbaney M, Abdelwahab A (2000) Modeling of a winding machine using genetic programming. In: Evolutionary Computation, Proceedings of the 2000 Congress on IEEE 1:398–402
Braik M, Sheta A, Al-Hiary H, Aljahdali S (2022) Enhanced cuckoo search algorithm for industrial winding process modeling. J Intell Manuf 1–30
XuFPunC-MLiHZhangYSongYGaoHTraining feed-forward artificial neural networks with a modified artificial bee colony algorithmNeurocomputing20204166984
Sheta A F, Braik M, Öznergiz E, Ayesh A, Masud M (2013) Design and automation for manufacturing processes: An intelligent business modeling using adaptive neuro-fuzzy inference systems. Bus Intell Perform Manag, Springer, pp 191–208
PereiraDGAfonsoAMedeirosFMOverview of friedman’s test and post-hoc analysisCommun Stat Simul Comput201544102636265333661931474.62288
DixitSRDasSRDhupalDParametric optimization of nd: Yag laser microgrooving on aluminum oxide using integrated rsm-ann-ga approachJ Ind Eng Int2019152333349
Wdaa ASI, Sttar A (2008) Differential evolution for neural networks learning enhancement. In: Ph.D. Dissertation, Universiti Teknologi Malaysia Johor Bahru
AyoughAKhorshidvandBDesigning a manufacturing cell system by assigning workforceJ Ind Eng Manag20191211326
SunKHuangS-HWongDS-HJangS-SDesign and application of a variable selection method for multilayer perceptron neural network with lassoIEEE Trans Neural Netw Learn Syst201628613861396
BraikMA hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case studyNeural Process Lett202153428732916
MousaviSHNazemiAHafezalkotobAUsing and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generatorsJ Ind Eng Int20151115972
MirjaliliSMirjaliliSMLewisALet a biogeography-based optimizer train your multi-layer perceptronInf Sci20142691882093180809
Sheta A, Braik M, Al-Hiary H (2019) Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn). Int J Adv Manuf Technol 1–22
AR Yıldız (5215_CR43) 2008; 15
PJR Torres (5215_CR33) 2018; 29
SR Dixit (5215_CR40) 2019; 15
M Braik (5215_CR9) 2023; 56
A Khosravi (5215_CR28) 2018; 25
5215_CR30
5215_CR34
S Mirjalili (5215_CR54) 2015; 89
H Faris (5215_CR8) 2016; 45
S Mirjalili (5215_CR55) 2016; 96
S Mirjalili (5215_CR49) 2014; 269
5215_CR5
G Moslemipour (5215_CR42) 2018; 14
SD Dao (5215_CR41) 2017; 13
N Sadati (5215_CR32) 2018; 93
5215_CR4
5215_CR1
M Friedman (5215_CR51) 1937; 32
5215_CR47
5215_CR48
A Ayough (5215_CR38) 2019; 12
M Braik (5215_CR18) 2021; 25
MM Saritas (5215_CR6) 2019; 7
J-R Cano (5215_CR53) 2008; 29
5215_CR52
Y-C Ho (5215_CR21) 2002; 115
DG Pereira (5215_CR60) 2015; 44
F Xu (5215_CR16) 2020; 416
S Saremi (5215_CR50) 2017; 105
5215_CR14
5215_CR58
P-C Chang (5215_CR3) 2019; 23
5215_CR15
Z Ye (5215_CR35) 2018; 42
5215_CR19
FS Gharehchopogh (5215_CR23) 2019; 48
M Nikabadi (5215_CR37) 2016; 7
MG Rojas (5215_CR12) 2022; 14
S Mirjalili (5215_CR56) 2017; 114
A Mosavi (5215_CR46) 2020; 8
Z Tian (5215_CR13) 2022; 254
5215_CR20
M Braik (5215_CR11) 2021; 53
5215_CR24
M Braik (5215_CR59) 2022; 243
K Sun (5215_CR44) 2016; 28
5215_CR27
DW Zingg (5215_CR36) 2008; 17
A Khan (5215_CR17) 2019; 10
S Mirjalili (5215_CR22) 2016; 95
5215_CR25
M Braik (5215_CR57) 2021; 33
N Bacanin (5215_CR10) 2022; 70
5215_CR26
L Zhang (5215_CR7) 2022; 49
5215_CR29
T Bastogne (5215_CR45) 1998; 6
HA Nozari (5215_CR31) 2012; 13
SH Mousavi (5215_CR39) 2015; 11
N Arunkumar (5215_CR2) 2020; 32
References_xml – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization (pso). In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp 1942–1948
– reference: SaremiSMirjaliliSLewisAGrasshopper optimisation algorithm: theory and applicationAdv Eng Softw20171053047
– reference: Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015
– reference: CanoJ-RGarcíaSHerreraFSubgroup discover in large size data sets preprocessed using stratified instance selection for increasing the presence of minority classesPattern Recogn Lett2008291621562164
– reference: MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp swarm algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw2017114163191
– reference: HoY-CPepyneDLSimple explanation of the no-free-lunch theorem and its implicationsJ Optim Theory Appl2002115354957019635681031.91018
– reference: Movassagh AA, Alzubi JA, Gheisari M, Rahimi M, Mohan S, Abbasi AA, Nabipour N (2021) Artificial neural networks training algorithm integrating invasive weed optimization with differential evolutionary model. J Ambient Intell Humaniz Comput 1–9
– reference: TorresPJRMercadoESRifónLAProbabilistic boolean network modeling of an industrial machineJ Intell Manuf2018294875890
– reference: KhanAShahRImranMKhanABangashJIShahKAn alternative approach to neural network training based on hybrid bio meta-heuristic algorithmJ Ambient Intell Humaniz Comput2019101038213830
– reference: ArunkumarNMohammedMAMostafaSAIbrahimDARodriguesJJde AlbuquerqueVHCFully automatic model-based segmentation and classification approach for mri brain tumor using artificial neural networksConcurr Comput Pract Exp2020321
– reference: Sheta A, Braik M, Al-Hiary H (2019) Modeling the tennessee eastman chemical process reactor using bio-inspired feedforward neural network (bi-ff-nn). Int J Adv Manuf Technol 1–22
– reference: Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat, pp 65–70
– reference: MirjaliliSMoth-flame optimization algorithm: a novel nature-inspired heuristic paradigmKnowl-Based Syst201589228249
– reference: PereiraDGAfonsoAMedeirosFMOverview of friedman’s test and post-hoc analysisCommun Stat Simul Comput201544102636265333661931474.62288
– reference: ZhangLGaoTCaiGHaiKLResearch on electric vehicle charging safety warning model based on back propagation neural network optimized by improved gray wolf algorithmJ Energy Storage202249
– reference: Al-Betar MA, Awadallah MA, Doush IA, Alomari OA, Abasi AK, Makhadmeh SN, Alyasseri ZAA (2022) Boosting the training of neural networks through hybrid metaheuristics. Cluster Comput 1–23
– reference: BraikMAl-ZoubiHAl-HiaryHArtificial neural networks training via bio-inspired optimisation algorithms: modelling industrial winding process, case studySoft Comput20212545454569
– reference: MirjaliliSSca: a sine cosine algorithm for solving optimization problemsKnowl Based Syst201696120133
– reference: Braik M (2022) Hybrid enhanced whale optimization algorithm for contrast and detail enhancement of color images. Cluster Comput 1–37
– reference: SunKHuangS-HWongDS-HJangS-SDesign and application of a variable selection method for multilayer perceptron neural network with lassoIEEE Trans Neural Netw Learn Syst201628613861396
– reference: BraikMHammouriAAtwanJAl-BetarMAAwadallahMAWhite shark optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problemsKnowl-Based Syst2022243
– reference: FriedmanMThe use of ranks to avoid the assumption of normality implicit in the analysis of varianceJ Am Stat Assoc19373220067570163.1098.02
– reference: MirjaliliSLewisAThe whale optimization algorithmAdv Eng Softw2016955167
– reference: MousaviSHNazemiAHafezalkotobAUsing and comparing metaheuristic algorithms for optimizing bidding strategy viewpoint of profit maximization of generatorsJ Ind Eng Int20151115972
– reference: SaritasMMYasarAPerformance analysis of ann and naive bayes classification algorithm for data classificationInt J Intell Syst Appl Eng2019728891
– reference: FarisHAljarahIMirjaliliSTraining feedforward neural networks using multi-verse optimizer for binary classification problemsAppl Intell2016452322332
– reference: DixitSRDasSRDhupalDParametric optimization of nd: Yag laser microgrooving on aluminum oxide using integrated rsm-ann-ga approachJ Ind Eng Int2019152333349
– reference: MoslemipourGA hybrid cs-sa intelligent approach to solve uncertain dynamic facility layout problems considering dependency of demandsJ Ind Eng Int2018142429442
– reference: NozariHABanadakiHDMokhtareMVahedSHIntelligent non-linear modelling of an industrial winding process using recurrent local linear neuro-fuzzy networksJ Zhejiang Univ SCIENCE C2012136403412
– reference: BraikMA hybrid multi-gene genetic programming with capuchin search algorithm for modeling a nonlinear challenge problem: Modeling industrial winding process, case studyNeural Process Lett202153428732916
– reference: Refonaa J, Huy DTN, Trung ND, Van Thuc H, Raj R, Haq MA, Kumar A (2022) Probabilistic methods and neural networks in structural engineering. Int J Adv Manuf Technol 1–9
– reference: ZinggDWNemecMPulliamTHA comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimizationEur J Comput Mech2008171–21031261292.76062
– reference: Al-Azzeh J, Alqadi Z, Abuzalata M (2019) Performance analysis of artificial neural networks used for color image recognition and retrieving. Int J Comput Sci Mobile Comput 8(2)
– reference: Hussian A, Sheta A, Kamel M, Telbaney M, Abdelwahab A (2000) Modeling of a winding machine using genetic programming. In: Evolutionary Computation, Proceedings of the 2000 Congress on IEEE 1:398–402
– reference: Wang Y, Li H, Qi C (2020) An adaptive mode convolutional neural network based on bar-shaped structures and its operation modeling to complex industrial processes. Chemom Intell Lab Syst, p 103932
– reference: YeZKimMKPredicting electricity consumption in a building using an optimized back-propagation and levenberg-marquardt back-propagation neural network: Case study of a shopping mall in chinaSustain Cities Soc201842176183
– reference: Noura H, Theilliol D, Ponsart J-C, Chamseddine A (2009) Fault-tolerant control systems: design and practical applications. Springer Science & Business Media
– reference: SadatiNChinnamRBNezhadMZObservational data-driven modeling and optimization of manufacturing processesExpert Syst Appl201893456464
– reference: BastogneTNouraHSibillePRichardAMultivariable identification of a winding process by subspace methods for tension controlControl Eng Pract19986910771088
– reference: KhosraviAKouryRMachadoLPabonJPrediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference systemSustain Energy Technol Assess201825146160
– reference: Wdaa ASI, Sttar A (2008) Differential evolution for neural networks learning enhancement. In: Ph.D. Dissertation, Universiti Teknologi Malaysia Johor Bahru
– reference: TianZGanWZouXZhangYGaoWPerformance prediction of a cryogenic organic rankine cycle based on back propagation neural network optimized by genetic algorithmEnergy2022254
– reference: Braik M, Sheta A, Al-Hiary H, Aljahdali S (2022) Enhanced cuckoo search algorithm for industrial winding process modeling. J Intell Manuf 1–30
– reference: DaoSDAbharyKMarianROptimisation of assembly scheduling in vcim systems using genetic algorithmJ Ind Eng Int2017133275296
– reference: Sheta A F, Braik M, Öznergiz E, Ayesh A, Masud M (2013) Design and automation for manufacturing processes: An intelligent business modeling using adaptive neuro-fuzzy inference systems. Bus Intell Perform Manag, Springer, pp 191–208
– reference: BraikMShetaAAl-HiaryHA novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithmNeural Comput Appl20213325152547
– reference: AyoughAKhorshidvandBDesigning a manufacturing cell system by assigning workforceJ Ind Eng Manag20191211326
– reference: MosaviAShirzadiAChoubinBTaromidehFHosseiniFSBorjiMShahabiHSalvatiADinevaAATowards an ensemble machine learning model of random subspace based functional tree classifier for snow avalanche susceptibility mappingIEEE Access20208145968
– reference: RojasMGOliveraACVidalPJOptimising multilayer perceptron weights and biases through a cellular genetic algorithm for medical data classificationArray202214
– reference: XuFPunC-MLiHZhangYSongYGaoHTraining feed-forward artificial neural networks with a modified artificial bee colony algorithmNeurocomputing20204166984
– reference: ChangP-CWuJ-LXuYZhangMLuX-YBike sharing demand prediction using artificial immune system and artificial neural networkSoft Comput2019232613626
– reference: GharehchopoghFSGholizadehHA comprehensive survey: whale optimization algorithm and its applicationsSwarm Evol Comput201948124
– reference: MirjaliliSMirjaliliSMLewisALet a biogeography-based optimizer train your multi-layer perceptronInf Sci20142691882093180809
– reference: NikabadiMNaderiRA hybrid algorithm for unrelated parallel machines schedulingInt J Ind Eng Comput201674681702
– reference: BacaninNAlhazmiKZivkovicMVenkatachalamKBezdanTNebhenJTraining multi-layer perceptron with enhanced brain storm optimization metaheuristicsComput Materials Contin202270241994215
– reference: Wang Z, Rosen D (2022) Manufacturing process classification based on heat kernel signature and convolutional neural networks. J Intell Manuf 1–23
– reference: YıldızARHybrid taguchi-harmony search algorithm for solving engineering optimization problemsInt J Ind Eng2008153286293
– reference: BraikMAl-ZoubiHRyalatMShetaAAlzubiOMemory based hybrid crow search algorithm for solving numerical and constrained global optimization problemsArtif Intell Rev20235612799
– reference: Awadallah MA, Abu-Doush I, Al-Betar MA, Braik MS (2023) Metaheuristics for optimizing weights in neural networks. In: Comprehensive Metaheuristics. Elsevier, pp 359–377
– reference: Owusu P (2020) Microstrip butterworth lowpass filter design
– volume: 45
  start-page: 322
  issue: 2
  year: 2016
  ident: 5215_CR8
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0767-1
– volume: 13
  start-page: 403
  issue: 6
  year: 2012
  ident: 5215_CR31
  publication-title: J Zhejiang Univ SCIENCE C
  doi: 10.1631/jzus.C11a0278
– volume: 96
  start-page: 120
  year: 2016
  ident: 5215_CR55
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 53
  start-page: 2873
  issue: 4
  year: 2021
  ident: 5215_CR11
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-021-10530-w
– volume: 11
  start-page: 59
  issue: 1
  year: 2015
  ident: 5215_CR39
  publication-title: J Ind Eng Int
  doi: 10.1007/s40092-014-0094-2
– ident: 5215_CR4
  doi: 10.1007/s10845-022-02009-9
– volume: 115
  start-page: 549
  issue: 3
  year: 2002
  ident: 5215_CR21
  publication-title: J Optim Theory Appl
  doi: 10.1023/A:1021251113462
– volume: 6
  start-page: 1077
  issue: 9
  year: 1998
  ident: 5215_CR45
  publication-title: Control Eng Pract
  doi: 10.1016/S0967-0661(98)00069-0
– volume: 14
  year: 2022
  ident: 5215_CR12
  publication-title: Array
  doi: 10.1016/j.array.2022.100173
– ident: 5215_CR25
  doi: 10.1007/s10845-021-01900-1
– volume: 15
  start-page: 333
  issue: 2
  year: 2019
  ident: 5215_CR40
  publication-title: J Ind Eng Int
  doi: 10.1007/s40092-018-0295-1
– volume: 105
  start-page: 30
  year: 2017
  ident: 5215_CR50
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.01.004
– ident: 5215_CR52
– ident: 5215_CR24
  doi: 10.1007/s10586-022-03920-9
– ident: 5215_CR34
  doi: 10.1016/j.chemolab.2020.103932
– ident: 5215_CR47
– volume: 254
  year: 2022
  ident: 5215_CR13
  publication-title: Energy
– volume: 114
  start-page: 163
  year: 2017
  ident: 5215_CR56
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 15
  start-page: 286
  issue: 3
  year: 2008
  ident: 5215_CR43
  publication-title: Int J Ind Eng
– volume: 28
  start-page: 1386
  issue: 6
  year: 2016
  ident: 5215_CR44
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2542866
– volume: 269
  start-page: 188
  year: 2014
  ident: 5215_CR49
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.01.038
– volume: 10
  start-page: 3821
  issue: 10
  year: 2019
  ident: 5215_CR17
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-019-01373-4
– ident: 5215_CR27
  doi: 10.1007/978-1-4471-4866-1_13
– ident: 5215_CR20
  doi: 10.1016/B978-0-323-91781-0.00005-3
– volume: 13
  start-page: 275
  issue: 3
  year: 2017
  ident: 5215_CR41
  publication-title: J Ind Eng Int
  doi: 10.1007/s40092-017-0183-0
– volume: 89
  start-page: 228
  year: 2015
  ident: 5215_CR54
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 70
  start-page: 4199
  issue: 2
  year: 2022
  ident: 5215_CR10
  publication-title: Comput Materials Contin
  doi: 10.32604/cmc.2022.020449
– volume: 29
  start-page: 875
  issue: 4
  year: 2018
  ident: 5215_CR33
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-015-1143-4
– volume: 14
  start-page: 429
  issue: 2
  year: 2018
  ident: 5215_CR42
  publication-title: J Ind Eng Int
  doi: 10.1007/s40092-017-0222-x
– volume: 44
  start-page: 2636
  issue: 10
  year: 2015
  ident: 5215_CR60
  publication-title: Commun Stat Simul Comput
  doi: 10.1080/03610918.2014.931971
– volume: 12
  start-page: 13
  issue: 1
  year: 2019
  ident: 5215_CR38
  publication-title: J Ind Eng Manag
– volume: 33
  start-page: 2515
  year: 2021
  ident: 5215_CR57
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-05145-6
– ident: 5215_CR19
  doi: 10.1007/s10586-022-03708-x
– volume: 93
  start-page: 456
  year: 2018
  ident: 5215_CR32
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.10.028
– ident: 5215_CR48
– volume: 56
  start-page: 27
  issue: 1
  year: 2023
  ident: 5215_CR9
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10164-x
– volume: 29
  start-page: 2156
  issue: 16
  year: 2008
  ident: 5215_CR53
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2008.08.001
– ident: 5215_CR26
  doi: 10.1007/s00170-019-03621-5
– ident: 5215_CR30
  doi: 10.1007/978-1-84882-653-3
– volume: 42
  start-page: 176
  year: 2018
  ident: 5215_CR35
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2018.05.050
– volume: 95
  start-page: 51
  year: 2016
  ident: 5215_CR22
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 23
  start-page: 613
  issue: 2
  year: 2019
  ident: 5215_CR3
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2909-8
– volume: 48
  start-page: 1
  year: 2019
  ident: 5215_CR23
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.03.004
– volume: 32
  issue: 1
  year: 2020
  ident: 5215_CR2
  publication-title: Concurr Comput Pract Exp
  doi: 10.1002/cpe.4962
– ident: 5215_CR15
  doi: 10.1155/2015/931256
– volume: 8
  start-page: 145
  year: 2020
  ident: 5215_CR46
  publication-title: IEEE Access
– ident: 5215_CR14
  doi: 10.1007/s12652-020-02623-6
– volume: 7
  start-page: 88
  issue: 2
  year: 2019
  ident: 5215_CR6
  publication-title: Int J Intell Syst Appl Eng
  doi: 10.18201/ijisae.2019252786
– volume: 243
  year: 2022
  ident: 5215_CR59
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.108457
– ident: 5215_CR5
– volume: 7
  start-page: 681
  issue: 4
  year: 2016
  ident: 5215_CR37
  publication-title: Int J Ind Eng Comput
– ident: 5215_CR1
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 5215_CR51
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1937.10503522
– volume: 25
  start-page: 4545
  year: 2021
  ident: 5215_CR18
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-05464-9
– volume: 17
  start-page: 103
  issue: 1–2
  year: 2008
  ident: 5215_CR36
  publication-title: Eur J Comput Mech
– volume: 25
  start-page: 146
  year: 2018
  ident: 5215_CR28
  publication-title: Sustain Energy Technol Assess
– ident: 5215_CR29
  doi: 10.1109/CEC.2000.870323
– volume: 416
  start-page: 69
  year: 2020
  ident: 5215_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.086
– ident: 5215_CR58
  doi: 10.1109/ICNN.1995.488968
– volume: 49
  year: 2022
  ident: 5215_CR7
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104092
SSID ssj0004373
Score 2.350548
Snippet Parameter identification for complex systems of nonlinear nature is challenging due to the complicated process structure and large number of parameters with...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14489
SubjectTerms Algorithms
Artificial neural networks
Classification
Compilers
Complex systems
Computer Science
Convergence
Datasets
Genetic algorithms
Heuristic
Identification methods
Interpreters
Mathematical models
Modelling
Multilayer perceptrons
Network management systems
Nonlinear systems
Optimization
Optimization algorithms
Optimization techniques
Parameter identification
Processor Architectures
Programming Languages
Subsystems
System theory
Whales & whaling
Winding
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgZWChfIpCQR7YwCL-aB1PCFARA6oqBBJb5NgJrURTIAEG_jznxGkEEiyMUWLLyp39bN_dewgd0SS0AQ8DAlgZEJEGkihtKLGxEQNGRSwr1ZIbORqFDw9q7C_ccp9WWa-J5UJt58bdkZ9ywGaAPiHl2fMLcapRLrrqJTSWUdsxlYGfty-Go_FtUxnJqxizgkNS2BfMl81UxXOUMUkAs4grYO0T-h2amv3mjxBpiTxXnf-OeR2t-T0nPq-cZAMtJdkm6tR6DthP7y30OcwmZUIA_pgAbuA5LCczX6eJ9dMjdF1MZsQBn8WlhA6MF-vM4nw68zJg8FixnGDYDePpQhgEV5TR2FGNz1wKDp5an6hUtttG91fDu8tr4sUZiIFZWxCtY0dwbCXXTMqYS0PTQMPxg6vUxbIHacJCYwSVoVUigT-RhtbAp4baVOk-30GtbJ4luwjDoYYFwlEfpnC8Y4lSQnFuA5oO4kCzpItobZfIeOZyJ6DxFDWcy86WEdgyKm0Z0S46XrR5rng7_vy6Vxsw8nM4jxrrddFJ7QLN69972_u7t320ykqvc4lqPdQqXt-SA7Ri3otp_nroPfgLMPH3UQ
  priority: 102
  providerName: ProQuest
Title Enhanced whale optimization algorithm-based modeling and simulation analysis for industrial system parameter identification
URI https://link.springer.com/article/10.1007/s11227-023-05215-1
https://www.proquest.com/docview/3256554477
Volume 79
WOSCitedRecordID wos000964994700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61wKGXQoGKpbDyoTdqKX5kHR-hWoQEWq1KQYhL5NhJNxKbrXYXOPDnGScOUREg0UskK7ZljR8zo5n5PoDvLE9cJJKIoq6MqCwiRbWxjLrMygFnMlMNa8mZGo2Sqys9DkVhizbbvQ1J1i91V-zGOFcUdQz1BacxRZ9nNfZoM95HP7_sqiFFE1fW6BglseShVOblOf5VR52N-SwsWmub4_X_W-cGfA7WJTlsjsMX-JBXm7DeMjeQcJG34GFYTerQP7mfoIYgM3w4pqEik5ibP7N5uZxMqVdxjtRkObgCYipHFuU0EH5hs8EzIWj3kvKJAoQ04NDEg4pPfbINKV1ISarHbcPF8fD3zxMaaBioxfu5pMZkHsrYKWG4UplQlhWRQUdD6MJHrQdFzhNrJVOJ0zJHG6pInMWulrlCm1h8hZVqVuU7QNB94ZH0IIcFOnI811pqIVzEikEWGZ73gLW7kdqAUe6pMm7SDl3ZSzdF6aa1dFPWg4OnMX8bhI43e--1m5yG27pIBa4ZzSqpVA9-tJva_X59tt33df8Gn3h9LnyK2h6sLOe3-T6s2btluZj3YfVoOBr_6sPHU0X7Pgn1HL_j-Lpfn-9HDC7wKw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41DSR2YbAxUdjABzhtFvFH6_iApglWbWpXcSjSbpljO2ulNS1rYUL8J37jXifOIpDYbQeOUWxHcR6_H3k_HoB3zKcuEWlCUVcmVBaJotpYRl1uZY8zmauatWSoRqP0_Fx_WYPfTS1MSKtsZGIlqN3chn_kHwTqZlR9UqnDxTcaWKNCdLWh0KhhMfA_b9BlW348_Yzf9z3n_ePxpxMaWQWoRbitqDF56MzrlDBcqVwoy4rEoN0sdBGCsL3C89RayVTqtPT42CJ1Foda5gptAksEivxHUqS9cKIGirZ1mKKOaGt0ydKu5LFIpy7VY5wrihqShnLZLmV_KsLWuv0rIFvpuf7m_7ZDz-BptKjJUX0EnsOaL7dgs2GrIFF4bcOv43JSpTuQmwlqRTJHYTmLVajEXF3iq6wmMxrUuiMVQRDuDzGlI8vpLJKc4WXdw4WgrU-md7QnpG6ITUIj9VlIMCJTF9Owqnkv4OuDbMEOrJfz0r8Egi4bT2Ro7Fig88q91lIL4RJW9PLEcN8B1uAgs7Eve6AHucrajtIBOxliJ6uwk7EO7N_NWdRdSe4dvdsAJosSapm1aOnAQQO59va_V3t1_2pv4cnJ-GyYDU9Hg9ewwSvEh5S8XVhfXX_3e_DY_lhNl9dvqrND4OKhoXgLwEpSEA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQoIoLz1Zsy8MHbmARP3YdHxGwAoFWCGjFLXLsmI20m0W7oRz48x0nDgFEK1Uco9iW5dfMaOb7PoT2aBbbiMcRAVsZEeEiSZQ2lNjUiB6jIpW1asmlHAziuzt19QrFX1W7NynJGtPgWZqK8vDBusMW-EYZkwTsDfHg0y6B-GdBQCTji7qub361yEhe55gVBElxV7AAm_l4jLemqfU336VIK8vTX_n8nFfRcvA68VF9TNbQXFaso5VG0QGHC76Bnk-LYVUSgJ-GYDnwBB6UcUBqYj26n0zzcjgm3vRZXInowGywLiye5eMgBAafNc8JBn8Y5y_SILgmjcaebHzsi3BwbkOpUtXvK_rZP709PiNBnoEYuLcl0Tr1FMdWcs2kTLk01EUaAhCunM9m91zGYmMElbFVIgPfysXWQFNDrVO6y7-h-WJSZJsIQ1jDIuHJDx0EeCxTSijObURdL400yzqINjuTmMBd7iU0RknLuuxXN4HVTarVTWgH7b_0eaiZO_7ZeqvZ8CTc4lnCYc7gbgkpO-ig2eD2999H-_5_zXfRl6uTfnJ5Prj4gZZYdUR8FdsWmi-nj9k2WjS_y3w23akO9x_QbPeR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+whale+optimization+algorithm-based+modeling+and+simulation+analysis+for+industrial+system+parameter+identification&rft.jtitle=The+Journal+of+supercomputing&rft.au=Braik%2C+Malik&rft.au=Awadallah%2C+Mohammed&rft.au=Al-Betar%2C+Mohammed+Azmi&rft.au=Al-Hiary%2C+Heba&rft.date=2023-09-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=79&rft.issue=13&rft.spage=14489&rft.epage=14544&rft_id=info:doi/10.1007%2Fs11227-023-05215-1&rft.externalDocID=10_1007_s11227_023_05215_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon