Design of capability maturity model integration with cybersecurity risk severity complex prediction using bayesian-based machine learning models

Extreme complex events and the corresponding abnormal statistics of cyber security are ubiquitously observed in many real-time systems, and the development of efficient tools to explain and properly anticipate such representative features remains a great issue. Art and science must be carefully bala...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Service oriented computing and applications Ročník 17; číslo 1; s. 59 - 72
Hlavní autor: Alshammari, Fahad H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.03.2023
Springer Nature B.V
Témata:
ISSN:1863-2386, 1863-2394
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Extreme complex events and the corresponding abnormal statistics of cyber security are ubiquitously observed in many real-time systems, and the development of efficient tools to explain and properly anticipate such representative features remains a great issue. Art and science must be carefully balanced in order to determine the risk of cyberattacks. Once the risk variables have been identified, a risk assessor typically begins by gathering relevant information for each. Logs, architecture diagrams, network topology, compliance evaluations, incidents, vulnerability evaluations, threat modelling, and control assessment are all sources of information for the assessor. The assessor uses approved impact and likelihood tables to evaluate risk factors based on evidence gathered and a methodology that has been approved. Assessments that are accurate are those in which draw conclusions from large amounts of acquired data and then apply those conclusions to the calculated risk severity. Contextualizing risk requires the assessor to draw on past experience, knowledge, and observations of the system itself. Qualitative assessments of cybersecurity risks are performed. It is difficult, if not impossible, to obtain meaningful quantitative measures of cybersecurity risk variables. Risk assessments in cybersecurity cannot use quantitative estimations because they're time- and labour-intensive. A shortage of competent individuals, the quantity of staff necessary, the assessment time, and business objectives all limit the ability to scale quantitative and qualitative risk assessments. Using machine learning (ML) to forecast the severity of future risks based on previous risk assessments may provide a solution to the scalability problem in risk assessment. The intuition, insight, and skill that risk assessors use to determine the severity of a risk are all included into machine learning algorithms. As an initial step, machine learning can be used to assess risk, and if the level of risk exceeds a predetermined threshold, additional steps can be taken. The algorithm learns from each manual analysis, reducing the need for human interaction dramatically.
AbstractList Extreme complex events and the corresponding abnormal statistics of cyber security are ubiquitously observed in many real-time systems, and the development of efficient tools to explain and properly anticipate such representative features remains a great issue. Art and science must be carefully balanced in order to determine the risk of cyberattacks. Once the risk variables have been identified, a risk assessor typically begins by gathering relevant information for each. Logs, architecture diagrams, network topology, compliance evaluations, incidents, vulnerability evaluations, threat modelling, and control assessment are all sources of information for the assessor. The assessor uses approved impact and likelihood tables to evaluate risk factors based on evidence gathered and a methodology that has been approved. Assessments that are accurate are those in which draw conclusions from large amounts of acquired data and then apply those conclusions to the calculated risk severity. Contextualizing risk requires the assessor to draw on past experience, knowledge, and observations of the system itself. Qualitative assessments of cybersecurity risks are performed. It is difficult, if not impossible, to obtain meaningful quantitative measures of cybersecurity risk variables. Risk assessments in cybersecurity cannot use quantitative estimations because they're time- and labour-intensive. A shortage of competent individuals, the quantity of staff necessary, the assessment time, and business objectives all limit the ability to scale quantitative and qualitative risk assessments. Using machine learning (ML) to forecast the severity of future risks based on previous risk assessments may provide a solution to the scalability problem in risk assessment. The intuition, insight, and skill that risk assessors use to determine the severity of a risk are all included into machine learning algorithms. As an initial step, machine learning can be used to assess risk, and if the level of risk exceeds a predetermined threshold, additional steps can be taken. The algorithm learns from each manual analysis, reducing the need for human interaction dramatically.
Author Alshammari, Fahad H.
Author_xml – sequence: 1
  givenname: Fahad H.
  orcidid: 0000-0002-2175-9812
  surname: Alshammari
  fullname: Alshammari, Fahad H.
  email: Fahad.h@su.edu.sa
  organization: College of Computing and Information Technology, Shaqra University
BookMark eNp9kctu2zAQRYnABZK4-YGuCHStlA-JkpZFmkcBA90ka2JEDR2mMqWSdBv_RT65jFSkQBbmhkPMPXOJuedk5UePhHzi7JIzVn-JnNeKF0yIgjFZlUV5Qs54o2QhZFuu3upGnZKLGJ9YPlLUjarPyMs3jG7r6WipgQk6N7h0oDtI-zAXY48DdT7hNkByo6d_XHqk5tBhiGgWUXDxJ434G-eXGXfTgM90Ctg7MzP76PyWdnDIXuCLDiL22cM8Oo90QAj-tT97xY_kg4Uh4sW_e00ebq7vr-6KzY_b71dfN4WRvE0FtLI3tuedtABdXzJlRWmVbCoEa1uoa9MrqbiQXckbqLAVFa95j21jayO4XJPPy9wpjL_2GJN-GvfBZ0stRaVapbI8q5pFZcIYY0CrjUvzIlIAN2jO9GsEeolA5wj0HIEuMyreoVNwOwiH45BcoJjFfovh_6-OUH8BJ42fbA
CitedBy_id crossref_primary_10_1007_s11761_023_00372_w
crossref_primary_10_1007_s10207_024_00959_0
crossref_primary_10_1016_j_iot_2024_101267
crossref_primary_10_1016_j_jisa_2025_103970
crossref_primary_10_1080_20479700_2024_2367858
crossref_primary_10_1007_s10462_025_11292_w
crossref_primary_10_1038_s41598_025_10291_9
crossref_primary_10_1080_12265934_2024_2346166
Cites_doi 10.1093/jcde/qwaa029
10.1155/2015/703713
10.1016/j.cose.2020.101908
10.1016/j.cose.2019.101659
10.1109/ACCESS.2020.3046442
10.1109/JIOT.2022.3144127
10.1002/qre.2939
10.3390/SYM12050754
10.3390/info12080328
10.1155/2021/8873195
10.1145/3433174.3433614
10.1016/j.jnca.2021.103210
10.1109/COMST.2018.2871866
10.1177/1548512920951275
10.1109/TCYB.2019.2940940
10.1007/s00521-022-07297-z
10.1109/COMST.2015.2494502
10.1145/3440094.3440389
10.1186/s13635-019-0090-6
10.2139/ssrn.3562925
10.1007/BF02994844
10.1016/j.heliyon.2021.e05969
10.1109/ACCESS.2021.3087109
10.4018/978-1-5225-9611-0.ch001
10.1109/SEGE.2019.8859946
10.1016/j.iot.2021.100393
10.1057/s41288-022-00266-6
10.1007/978-3-319-70290-2_7
10.1109/PESGM.2018.8586334
10.1109/ICECDS.2017.8389725
10.35940/ijitee.K1040.09811S219
10.3390/su14042436
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11761-022-00354-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1863-2394
EndPage 72
ExternalDocumentID 10_1007_s11761_022_00354_4
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-a93dcfd1b3faabd406f24f6385eaff9a77cd636123b418a5e925171de98f7c213
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884192100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-2386
IngestDate Tue Oct 07 06:14:21 EDT 2025
Sat Nov 29 01:50:26 EST 2025
Tue Nov 18 22:38:47 EST 2025
Fri Feb 21 02:44:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Cybersecurity
Complex prediction
Cyber threats
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a93dcfd1b3faabd406f24f6385eaff9a77cd636123b418a5e925171de98f7c213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2175-9812
PQID 3256966171
PQPubID 2044172
PageCount 14
ParticipantIDs proquest_journals_3256966171
crossref_citationtrail_10_1007_s11761_022_00354_4
crossref_primary_10_1007_s11761_022_00354_4
springer_journals_10_1007_s11761_022_00354_4
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Service oriented computing and applications
PublicationTitleAbbrev SOCA
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Dasgupta, Akhtar, Sen (CR12) 2020
Le, Hoang (CR27) 2017; 18
Ahmadi-Assalemi, Al-Khateeb, Epiphaniou, Aggoun (CR2) 2022
Coulter, Han, Pan, Zhang, Xiang (CR10) 2020; 50
CR19
MeeraGandhi, Appavoo, Srivasta (CR29) 2010; 2
Andrade, Yoo, Tello-Oquendo, Ortiz-Garces (CR4) 2020
CR17
CR39
Hossain, Nagahi, Jaradat, Shah, Buchanan, Hamilton (CR18) 2020; 7
CR38
Giudici, Raffinetti (CR16) 2022; 38
CR37
CR35
CR34
CR11
Yeboah-Ofori, Islam, Lee, Shamszaman, Muhammad, Altaf, Al-Rakhami (CR46) 2021; 9
CR31
Qi, Rasband, Zheng, Longoria (CR32) 2021
Yue, Li, Legg, Li (CR47) 2021
Kabanda (CR24) 2020
Ben Fredj, Mihoub, Krichen, Cheikhrouhou, Derhab (CR5) 2020
Buczak, Guven (CR6) 2016; 18
Radanliev, De Roure, Page, Van Kleek, Santos, Maddox, Burnap, Anthi, Maple (CR33) 2021; 2020
Wang, Neil, Fenton (CR43) 2020
Sarker, Abushark, Alsolami, Khan (CR36) 2020; 12
Debar, Dacier, Wespi (CR13) 2000; 55
Fang, Xu, Xu, Zhao (CR15) 2019
CR8
Jiang, Atif (CR23) 2021; 193
CR28
Ahmed, Hossain (CR3) 2014; 6
CR9
CR26
CR48
CR25
CR45
CR44
Jaganathan, Cherurveettil, Muthu Sivashanmugam (CR22) 2015
CR41
Hussain, Gao, Raza, Rabhi, Merigó (CR20) 2022
Husák, Komárková, Bou-Harb, Čeleda (CR21) 2019; 21
Tatam, Shanmugam, Azam, Kannoorpatti (CR42) 2021; 7
Elmrabit, Yang, Yang, Zhou (CR14) 2020
Acharya, Joshi (CR1) 2020; 17
Bukht, Raza, Awan, Ahmad (CR7) 2020; 20
Nugroho (CR30) 2013; 53
Swapna, Kumari, Murthy (CR40) 2021; 8
354_CR11
IH Sarker (354_CR36) 2020; 12
354_CR34
354_CR35
S Acharya (354_CR1) 2020; 17
P Radanliev (354_CR33) 2021; 2020
354_CR31
M Husák (354_CR21) 2019; 21
NT Le (354_CR27) 2017; 18
P Giudici (354_CR16) 2022; 38
D Dasgupta (354_CR12) 2020
Y Jiang (354_CR23) 2021; 193
M Ahmed (354_CR3) 2014; 6
G MeeraGandhi (354_CR29) 2010; 2
RO Andrade (354_CR4) 2020
AL Buczak (354_CR6) 2016; 18
V Jaganathan (354_CR22) 2015
354_CR26
354_CR48
H Debar (354_CR13) 2000; 55
354_CR28
N Elmrabit (354_CR14) 2020
G Kabanda (354_CR24) 2020
G Swapna (354_CR40) 2021; 8
354_CR44
M Tatam (354_CR42) 2021; 7
354_CR45
354_CR25
354_CR41
TFN Bukht (354_CR7) 2020; 20
NUI Hossain (354_CR18) 2020; 7
354_CR9
354_CR8
O Ben Fredj (354_CR5) 2020
X Fang (354_CR15) 2019
R Qi (354_CR32) 2021
R Coulter (354_CR10) 2020; 50
MB Nugroho (354_CR30) 2013; 53
354_CR19
Y Yue (354_CR47) 2021
G Ahmadi-Assalemi (354_CR2) 2022
W Hussain (354_CR20) 2022
J Wang (354_CR43) 2020
A Yeboah-Ofori (354_CR46) 2021; 9
354_CR37
354_CR38
354_CR17
354_CR39
References_xml – volume: 7
  start-page: 352
  issue: 3
  year: 2020
  end-page: 366
  ident: CR18
  article-title: Modeling and assessing cyber resilience of smart grid using Bayesian network-based approach: a system of systems problem
  publication-title: J Comput Des Eng
  doi: 10.1093/jcde/qwaa029
– ident: CR45
– volume: 20
  start-page: 31
  issue: 2
  year: 2020
  end-page: 38
  ident: CR7
  article-title: Analyzing cyber-attacks targeted on the Banks of Pakistan and theirSolutions
  publication-title: Int J Comput Sci Netw Secur
– volume: 18
  start-page: 277
  issue: 4
  year: 2017
  end-page: 290
  ident: CR27
  article-title: Capability maturity model and metrics framework for cyber cloud security
  publication-title: Scal Comput
– ident: CR39
– year: 2015
  ident: CR22
  article-title: Using a prediction model to manage cyber security threats
  publication-title: Sci World J
  doi: 10.1155/2015/703713
– ident: CR37
– volume: 8
  start-page: 659
  issue: 2
  year: 2021
  end-page: 661
  ident: CR40
  article-title: Analyzing and predicting cyber security violations using machine learning techniques
  publication-title: Eur J Mol Clin Med
– year: 2020
  ident: CR14
  article-title: Insider threat risk prediction based on bayesian network
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2020.101908
– year: 2020
  ident: CR43
  article-title: A Bayesian network approach for cybersecurity risk assessment implementing and extending the FAIR model
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2019.101659
– volume: 53
  start-page: 1689
  issue: 9
  year: 2013
  end-page: 1699
  ident: CR30
  article-title: Artificial intelligence and cybersecurity: building an automotive cybersecurity framework using machine learning algorithms
  publication-title: J Chem Inf Model
– year: 2020
  ident: CR4
  article-title: A comprehensive study of the IoT cybersecurity in smart cities
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3046442
– ident: CR35
– year: 2022
  ident: CR2
  article-title: Super learner ensemble for anomaly detection and cyber-risk quantification in industrial control systems
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3144127
– ident: CR8
– volume: 38
  start-page: 1318
  issue: 3
  year: 2022
  end-page: 1326
  ident: CR16
  article-title: Explainable AI methods in cyber risk management
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2939
– volume: 12
  start-page: 1
  issue: 5
  year: 2020
  end-page: 15
  ident: CR36
  article-title: IntruDTree: a machine learning based cyber security intrusion detection model
  publication-title: Symmetry
  doi: 10.3390/SYM12050754
– ident: CR25
– year: 2021
  ident: CR32
  article-title: Detecting cyber attacks in smart grids using semi-supervised anomaly detection and deep representation learning
  publication-title: Information (Switzerland)
  doi: 10.3390/info12080328
– year: 2021
  ident: CR47
  article-title: Deep learning-based security behaviour analysis in IOT environments: a survey
  publication-title: Secur Commun Netw
  doi: 10.1155/2021/8873195
– year: 2020
  ident: CR5
  article-title: CyberSecurity attack prediction: a deep learning approach
  publication-title: ACM Int Conf Proc Ser
  doi: 10.1145/3433174.3433614
– ident: CR19
– ident: CR44
– ident: CR48
– ident: CR38
– ident: CR17
– volume: 193
  issue: September
  year: 2021
  ident: CR23
  article-title: A selective ensemble model for cognitive cybersecurity analysis
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2021.103210
– ident: CR31
– volume: 21
  start-page: 640
  issue: 1
  year: 2019
  end-page: 660
  ident: CR21
  article-title: Survey of attack projection, prediction, and forecasting in cyber security
  publication-title: IEEE Commun Surv Tutorials
  doi: 10.1109/COMST.2018.2871866
– ident: CR11
– year: 2020
  ident: CR12
  article-title: Machine learning in cybersecurity: a comprehensive survey
  publication-title: J Defense Mod Simul
  doi: 10.1177/1548512920951275
– volume: 17
  start-page: 4656
  issue: 6
  year: 2020
  end-page: 4670
  ident: CR1
  article-title: Impact of cyber-attacks on banking institutions in India: a study of safety mechanisms and preventive measures
  publication-title: PalArch’s J Archaeol Egypt / Egyptol
– ident: CR9
– ident: CR34
– volume: 50
  start-page: 3081
  issue: 7
  year: 2020
  end-page: 3093
  ident: CR10
  article-title: Data-driven cyber security in perspective—intelligent traffic analysis
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2940940
– year: 2022
  ident: CR20
  article-title: Assessing cloud QoS predictions using OWA in neural network methods
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07297-z
– volume: 6
  start-page: 25
  issue: 1
  year: 2014
  ident: CR3
  article-title: Cloud computing and security issues in the cloud
  publication-title: Int J Netw Secur Appl
– volume: 2
  start-page: 686
  issue: 3
  year: 2010
  end-page: 692
  ident: CR29
  article-title: Effective network intrusion detection using classifiers decision trees and decision rules
  publication-title: Int J Adv Netw Appl
– volume: 18
  start-page: 1153
  issue: 2
  year: 2016
  end-page: 1176
  ident: CR6
  article-title: A survey of data mining and machine learning methods for cyber security intrusion detection
  publication-title: IEEE Commun Surv Tutorials
  doi: 10.1109/COMST.2015.2494502
– ident: CR28
– ident: CR41
– year: 2020
  ident: CR24
  article-title: A bayesian network model for machine learning and cyber security
  publication-title: ACM Int Conf Proc Ser
  doi: 10.1145/3440094.3440389
– ident: CR26
– year: 2019
  ident: CR15
  article-title: A deep learning framework for predicting cyber attacks rates
  publication-title: Eurasip J Inf Secur
  doi: 10.1186/s13635-019-0090-6
– volume: 2020
  start-page: 219
  year: 2021
  end-page: 230
  ident: CR33
  article-title: Design of a dynamic and self-adapting system, supported with artificial intelligence, machine learning and real-time intelligence for predictive cyber risk analytics in extreme environments—cyber risk in the colonisation of Mars
  publication-title: SSRN Electron J
  doi: 10.2139/ssrn.3562925
– volume: 55
  start-page: 361
  issue: 7
  year: 2000
  end-page: 378
  ident: CR13
  article-title: A revised taxonomy for intrusion detection systems
  publication-title: Ann Télécommun
  doi: 10.1007/BF02994844
– volume: 7
  issue: 1
  year: 2021
  ident: CR42
  article-title: A review of threat modelling approaches for APT-style attacks
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e05969
– volume: 9
  start-page: 94318
  year: 2021
  end-page: 94337
  ident: CR46
  article-title: Cyber threat predictive analytics for improving cyber supply chain security
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3087109
– ident: 354_CR38
  doi: 10.4018/978-1-5225-9611-0.ch001
– ident: 354_CR25
– volume: 2020
  start-page: 219
  year: 2021
  ident: 354_CR33
  publication-title: SSRN Electron J
  doi: 10.2139/ssrn.3562925
– ident: 354_CR35
  doi: 10.1109/SEGE.2019.8859946
– volume: 50
  start-page: 3081
  issue: 7
  year: 2020
  ident: 354_CR10
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2019.2940940
– ident: 354_CR37
  doi: 10.1016/j.iot.2021.100393
– ident: 354_CR48
– volume: 7
  start-page: 352
  issue: 3
  year: 2020
  ident: 354_CR18
  publication-title: J Comput Des Eng
  doi: 10.1093/jcde/qwaa029
– ident: 354_CR19
– year: 2022
  ident: 354_CR20
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07297-z
– ident: 354_CR31
– year: 2020
  ident: 354_CR43
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2019.101659
– volume: 12
  start-page: 1
  issue: 5
  year: 2020
  ident: 354_CR36
  publication-title: Symmetry
  doi: 10.3390/SYM12050754
– ident: 354_CR11
  doi: 10.1057/s41288-022-00266-6
– ident: 354_CR9
  doi: 10.1007/978-3-319-70290-2_7
– volume: 55
  start-page: 361
  issue: 7
  year: 2000
  ident: 354_CR13
  publication-title: Ann Télécommun
  doi: 10.1007/BF02994844
– volume: 18
  start-page: 1153
  issue: 2
  year: 2016
  ident: 354_CR6
  publication-title: IEEE Commun Surv Tutorials
  doi: 10.1109/COMST.2015.2494502
– volume: 38
  start-page: 1318
  issue: 3
  year: 2022
  ident: 354_CR16
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.2939
– year: 2021
  ident: 354_CR32
  publication-title: Information (Switzerland)
  doi: 10.3390/info12080328
– year: 2020
  ident: 354_CR5
  publication-title: ACM Int Conf Proc Ser
  doi: 10.1145/3433174.3433614
– year: 2015
  ident: 354_CR22
  publication-title: Sci World J
  doi: 10.1155/2015/703713
– ident: 354_CR39
– year: 2021
  ident: 354_CR47
  publication-title: Secur Commun Netw
  doi: 10.1155/2021/8873195
– ident: 354_CR44
  doi: 10.1109/PESGM.2018.8586334
– year: 2020
  ident: 354_CR14
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2020.101908
– year: 2019
  ident: 354_CR15
  publication-title: Eurasip J Inf Secur
  doi: 10.1186/s13635-019-0090-6
– ident: 354_CR28
  doi: 10.1109/ICECDS.2017.8389725
– ident: 354_CR26
– volume: 21
  start-page: 640
  issue: 1
  year: 2019
  ident: 354_CR21
  publication-title: IEEE Commun Surv Tutorials
  doi: 10.1109/COMST.2018.2871866
– year: 2022
  ident: 354_CR2
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3144127
– year: 2020
  ident: 354_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3046442
– volume: 193
  issue: September
  year: 2021
  ident: 354_CR23
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2021.103210
– volume: 53
  start-page: 1689
  issue: 9
  year: 2013
  ident: 354_CR30
  publication-title: J Chem Inf Model
– volume: 2
  start-page: 686
  issue: 3
  year: 2010
  ident: 354_CR29
  publication-title: Int J Adv Netw Appl
– ident: 354_CR8
– volume: 6
  start-page: 25
  issue: 1
  year: 2014
  ident: 354_CR3
  publication-title: Int J Netw Secur Appl
– ident: 354_CR34
– volume: 17
  start-page: 4656
  issue: 6
  year: 2020
  ident: 354_CR1
  publication-title: PalArch’s J Archaeol Egypt / Egyptol
– ident: 354_CR17
  doi: 10.35940/ijitee.K1040.09811S219
– volume: 20
  start-page: 31
  issue: 2
  year: 2020
  ident: 354_CR7
  publication-title: Int J Comput Sci Netw Secur
– year: 2020
  ident: 354_CR12
  publication-title: J Defense Mod Simul
  doi: 10.1177/1548512920951275
– volume: 18
  start-page: 277
  issue: 4
  year: 2017
  ident: 354_CR27
  publication-title: Scal Comput
– volume: 9
  start-page: 94318
  year: 2021
  ident: 354_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3087109
– year: 2020
  ident: 354_CR24
  publication-title: ACM Int Conf Proc Ser
  doi: 10.1145/3440094.3440389
– ident: 354_CR45
– ident: 354_CR41
  doi: 10.3390/su14042436
– volume: 7
  issue: 1
  year: 2021
  ident: 354_CR42
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e05969
– volume: 8
  start-page: 659
  issue: 2
  year: 2021
  ident: 354_CR40
  publication-title: Eur J Mol Clin Med
SSID ssj0000327867
Score 2.362409
Snippet Extreme complex events and the corresponding abnormal statistics of cyber security are ubiquitously observed in many real-time systems, and the development of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms Algorithms
Assaults
Computer Appl. in Administrative Data Processing
Computer Science
Computer Systems Organization and Communication Networks
Cybersecurity
Data acquisition
e-Commerce/e-business
Evaluation
Fuzzy sets
Infrastructure
IT in Business
Machine learning
Management of Computing and Information Systems
Network topologies
Neural networks
Real time
Risk assessment
Risk levels
Risk management
Software Engineering/Programming and Operating Systems
Special Issue Paper
Stochastic models
Threats
Time series
Weather forecasting
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagcOCy5bGIsgX5sDewiJ3Uj9MKARUSUsWBlXqLbMeuVoK2tN3V9l_wk5lxnEa7Er1wi5XYiTQznsnM5_kIOTfSqco4yeSkUayCkJlZbwoWwJlKUUgThEtkE2o20_O5-Z4TbtsMq-z2xLRRNyuPOfIPJcyF0JwrfrH-zZA1CqurmULjIXnEheCo598UO-RYilIonUhkuZYlA-8k87mZ9vQch394hnB2rKdVrLrrm_qA816NNLme6fB_P_opOclBJ_3Yaskz8iAsn5NhR-hAs32_IH8-JzwHXUXqwYkm3Oye_sLen-kCWXNo12ACBEoxi0v93kEMmXnwKGLVKbjbkEYJsR5u6XqDBaE0B5H2C-rsPuD5TYZutIF3IKYz0ExisWjftT0ll9MvPz59ZZmygXmw5R2zpmx8bLgro7WugWghiiqCjU-CjdFYpXwjS2z54iqu7SQYbJnGm2B0VB4k-JIMlqtleEVopYN0ptQ6GvCghTACRhOhrFbGKRtHhHfCqn3uZ460Gj_rvhMzCrgGAddJwHU1Iu8Oc9ZtN4-jT487qdbZsrd1L9IRed_pRX_736u9Pr7aGXmCTPYtvG1MBrvNdXhDHvub3dV28zbp9V-oHP9C
  priority: 102
  providerName: ProQuest
Title Design of capability maturity model integration with cybersecurity risk severity complex prediction using bayesian-based machine learning models
URI https://link.springer.com/article/10.1007/s11761-022-00354-4
https://www.proquest.com/docview/3256966171
Volume 17
WOSCitedRecordID wos000884192100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database (ProQuest)
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: P5Z
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: K7-
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (ProQuest)
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: M7S
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: BENPR
  dateStart: 20230301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1863-2394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327867
  issn: 1863-2386
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD54e-iL9-JaXfLgmw3s3HJ5bKsiFJbFS5G-DEkmEaFdZXcV91_0J_ecbMZFqYJ9GWaYZBKSnPlOki_nAzjQwspSW8FF1UheosvMjdM97hFMRd4T2uc2ik3Ifl9dXelBOhQ2btnu7ZZk_FPPD7tlOOXmxD6n7a-Sl4uwjHCnyBzPzn88raz0ilyqKB2bKVFwxCSRTsv8-zPPEWnuZr7YGY2Ac7L2f1Vdh9XkYLIvsxGxAQt-uAlrrXgDS7a8BX-OIneD3QbmEDAjR3bKflOcz3hDCjmsDSaBncdoxZa5qUV_MWneMeKlM4RWH58iO90_srsRbf7EPMSqv2bWTD2d1eQEmQ2WQfxNz5JgxfWsrPE2XJ4cX3w75UmegTu02wk3umhcaDJbBGNsg55ByMuA9lx5E4I2UrpGFBTexZaZMpXXFB4ta7xWQbo8Kz7C0vB26HeAlcoLqwulgka07OU6x6cql0ZJbaUJHcjaLqpdil1OEhq_6nnUZWryGpu8jk1elx04fMpzN4vc8Wbqvbbn62TF47rA8YrTQax0Bz63PT1__frXdt-X_BN8IBX7GbVtD5Ymo3u_DyvuYXIzHnVh-etxf3DWhcXvkneJnHqO10H1sxvH_V9kFvnI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VgkQvlK-qgQI-wAkssvbGHweEEKVqlRJxKFJvi-21KySapEmgzb_gl_AbmfHuNgKJ3nrgttaubcn77Hm2Z-YBPLfK69J6xdWg1rxEysxdsH0e0Zgq0Vc2Cp_FJvRoZI6P7ac1-NXFwpBbZbcm5oW6ngQ6I38tsS5S80IXb6dnnFSj6Ha1k9BoYDGMy3Pcss3fHOzi_30hxN6Ho_f7vFUV4AHhtuDOyjqkuvAyOedrNGhJlAlhOIguJeu0DrWSlJXEl4Vxg2gpq1dRR2uSDqKQ2O4NuFlKoylX_1DzyzOdvhTaZNHawijJ0RqqNk6nidYrtMK9O-7-6P6u5OWftnBFcP-6k82mbm_zfxuku3CnJdXsXTML7sFaHN-HzU6wgrXr1wP4uZv9VdgksYAkIfsFL9kp5TbND6QKxLoEGghYRqfULCw9cuRW54-RLz5DOhFzKXvkxws2ndGFV65DkQQnzLtlpPhUTjShxj7IZzWyVqTjpOlr_hA-X8u4bMH6eDKO28BKE5W30phkkSH0hRVYGgjtjLZeu9SDogNHFdp87SQb8q1aZZomQFUIqCoDqip78PKyzrTJVnLl1zsdiqp25ZpXKwj14FWHw9Xrf7f26OrWnsHt_aOPh9XhwWj4GDYEcsXGlW8H1hez7_EJ3Ao_Fl_ns6d5TjH4ct34_A3bLF29
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RqCou5VGqpqXgAzdqkd11_DhWpREIFCHxELeV7bUjpDZESaiaf9Gf3BnvLgHUIlW9rbV-yR5rxp5v5gPYM9IpYZzkslcpLtBk5tabLg-oTGXelSbkLpFNqMFAX1-bswdR_Ant3rok65gGytI0mh2Mq3iwCHzL8PrNCYlOrjDBxQtYEUQaRPf186v7V5ZukSudaGQzLQuO-kk2kTN_7uaxdlqYnE-8pEn59Nf-f9rr8LoxPNnnWlI2YCmMNmGtJXVgzRl_A78OE6aD3UbmUZEm7Oycfaf8n-mDmHNYm2QCN5XRSy7zc4d2ZMOFxwivzlDlhlRKqPXwk40n5BRKbQhtP2TOzgPFcHJSpRWOQbjOwBoii2E91nQLLvtfL74c8Ya2gXs8zzNuTVH5WGWuiNa6Ci2GmIuI57wXbIzGKuUrWVDaFycybXvBUNq0rApGR-XzrHgLy6PbUXgHTOggnSm0jga1aDc3OZZ6ubJaGads7EDWblfpm5zmRK3xrVxkY6YlL3HJy7TkpejA_n2bcZ3R49na260UlM3pnpYFyjFeE3HSHfjU7vri9997e_9v1Xfh1dlhvzw9Hpx8gFUiuq_Rb9uwPJvchY_w0v-Y3UwnO0nofwNuiQE9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+capability+maturity+model+integration+with+cybersecurity+risk+severity+complex+prediction+using+bayesian-based+machine+learning+models&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Alshammari%2C+Fahad+H.&rft.date=2023-03-01&rft.pub=Springer+London&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=17&rft.issue=1&rft.spage=59&rft.epage=72&rft_id=info:doi/10.1007%2Fs11761-022-00354-4&rft.externalDocID=10_1007_s11761_022_00354_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon