Design of capability maturity model integration with cybersecurity risk severity complex prediction using bayesian-based machine learning models
Extreme complex events and the corresponding abnormal statistics of cyber security are ubiquitously observed in many real-time systems, and the development of efficient tools to explain and properly anticipate such representative features remains a great issue. Art and science must be carefully bala...
Uloženo v:
| Vydáno v: | Service oriented computing and applications Ročník 17; číslo 1; s. 59 - 72 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.03.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1863-2386, 1863-2394 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Extreme complex events and the corresponding abnormal statistics of cyber security are ubiquitously observed in many real-time systems, and the development of efficient tools to explain and properly anticipate such representative features remains a great issue. Art and science must be carefully balanced in order to determine the risk of cyberattacks. Once the risk variables have been identified, a risk assessor typically begins by gathering relevant information for each. Logs, architecture diagrams, network topology, compliance evaluations, incidents, vulnerability evaluations, threat modelling, and control assessment are all sources of information for the assessor. The assessor uses approved impact and likelihood tables to evaluate risk factors based on evidence gathered and a methodology that has been approved. Assessments that are accurate are those in which draw conclusions from large amounts of acquired data and then apply those conclusions to the calculated risk severity. Contextualizing risk requires the assessor to draw on past experience, knowledge, and observations of the system itself. Qualitative assessments of cybersecurity risks are performed. It is difficult, if not impossible, to obtain meaningful quantitative measures of cybersecurity risk variables. Risk assessments in cybersecurity cannot use quantitative estimations because they're time- and labour-intensive. A shortage of competent individuals, the quantity of staff necessary, the assessment time, and business objectives all limit the ability to scale quantitative and qualitative risk assessments. Using machine learning (ML) to forecast the severity of future risks based on previous risk assessments may provide a solution to the scalability problem in risk assessment. The intuition, insight, and skill that risk assessors use to determine the severity of a risk are all included into machine learning algorithms. As an initial step, machine learning can be used to assess risk, and if the level of risk exceeds a predetermined threshold, additional steps can be taken. The algorithm learns from each manual analysis, reducing the need for human interaction dramatically. |
|---|---|
| AbstractList | Extreme complex events and the corresponding abnormal statistics of cyber security are ubiquitously observed in many real-time systems, and the development of efficient tools to explain and properly anticipate such representative features remains a great issue. Art and science must be carefully balanced in order to determine the risk of cyberattacks. Once the risk variables have been identified, a risk assessor typically begins by gathering relevant information for each. Logs, architecture diagrams, network topology, compliance evaluations, incidents, vulnerability evaluations, threat modelling, and control assessment are all sources of information for the assessor. The assessor uses approved impact and likelihood tables to evaluate risk factors based on evidence gathered and a methodology that has been approved. Assessments that are accurate are those in which draw conclusions from large amounts of acquired data and then apply those conclusions to the calculated risk severity. Contextualizing risk requires the assessor to draw on past experience, knowledge, and observations of the system itself. Qualitative assessments of cybersecurity risks are performed. It is difficult, if not impossible, to obtain meaningful quantitative measures of cybersecurity risk variables. Risk assessments in cybersecurity cannot use quantitative estimations because they're time- and labour-intensive. A shortage of competent individuals, the quantity of staff necessary, the assessment time, and business objectives all limit the ability to scale quantitative and qualitative risk assessments. Using machine learning (ML) to forecast the severity of future risks based on previous risk assessments may provide a solution to the scalability problem in risk assessment. The intuition, insight, and skill that risk assessors use to determine the severity of a risk are all included into machine learning algorithms. As an initial step, machine learning can be used to assess risk, and if the level of risk exceeds a predetermined threshold, additional steps can be taken. The algorithm learns from each manual analysis, reducing the need for human interaction dramatically. |
| Author | Alshammari, Fahad H. |
| Author_xml | – sequence: 1 givenname: Fahad H. orcidid: 0000-0002-2175-9812 surname: Alshammari fullname: Alshammari, Fahad H. email: Fahad.h@su.edu.sa organization: College of Computing and Information Technology, Shaqra University |
| BookMark | eNp9kctu2zAQRYnABZK4-YGuCHStlA-JkpZFmkcBA90ka2JEDR2mMqWSdBv_RT65jFSkQBbmhkPMPXOJuedk5UePhHzi7JIzVn-JnNeKF0yIgjFZlUV5Qs54o2QhZFuu3upGnZKLGJ9YPlLUjarPyMs3jG7r6WipgQk6N7h0oDtI-zAXY48DdT7hNkByo6d_XHqk5tBhiGgWUXDxJ434G-eXGXfTgM90Ctg7MzP76PyWdnDIXuCLDiL22cM8Oo90QAj-tT97xY_kg4Uh4sW_e00ebq7vr-6KzY_b71dfN4WRvE0FtLI3tuedtABdXzJlRWmVbCoEa1uoa9MrqbiQXckbqLAVFa95j21jayO4XJPPy9wpjL_2GJN-GvfBZ0stRaVapbI8q5pFZcIYY0CrjUvzIlIAN2jO9GsEeolA5wj0HIEuMyreoVNwOwiH45BcoJjFfovh_6-OUH8BJ42fbA |
| CitedBy_id | crossref_primary_10_1007_s11761_023_00372_w crossref_primary_10_1007_s10207_024_00959_0 crossref_primary_10_1016_j_iot_2024_101267 crossref_primary_10_1016_j_jisa_2025_103970 crossref_primary_10_1080_20479700_2024_2367858 crossref_primary_10_1007_s10462_025_11292_w crossref_primary_10_1038_s41598_025_10291_9 crossref_primary_10_1080_12265934_2024_2346166 |
| Cites_doi | 10.1093/jcde/qwaa029 10.1155/2015/703713 10.1016/j.cose.2020.101908 10.1016/j.cose.2019.101659 10.1109/ACCESS.2020.3046442 10.1109/JIOT.2022.3144127 10.1002/qre.2939 10.3390/SYM12050754 10.3390/info12080328 10.1155/2021/8873195 10.1145/3433174.3433614 10.1016/j.jnca.2021.103210 10.1109/COMST.2018.2871866 10.1177/1548512920951275 10.1109/TCYB.2019.2940940 10.1007/s00521-022-07297-z 10.1109/COMST.2015.2494502 10.1145/3440094.3440389 10.1186/s13635-019-0090-6 10.2139/ssrn.3562925 10.1007/BF02994844 10.1016/j.heliyon.2021.e05969 10.1109/ACCESS.2021.3087109 10.4018/978-1-5225-9611-0.ch001 10.1109/SEGE.2019.8859946 10.1016/j.iot.2021.100393 10.1057/s41288-022-00266-6 10.1007/978-3-319-70290-2_7 10.1109/PESGM.2018.8586334 10.1109/ICECDS.2017.8389725 10.35940/ijitee.K1040.09811S219 10.3390/su14042436 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11761-022-00354-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1863-2394 |
| EndPage | 72 |
| ExternalDocumentID | 10_1007_s11761_022_00354_4 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40E 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-a93dcfd1b3faabd406f24f6385eaff9a77cd636123b418a5e925171de98f7c213 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000884192100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-2386 |
| IngestDate | Tue Oct 07 06:14:21 EDT 2025 Sat Nov 29 01:50:26 EST 2025 Tue Nov 18 22:38:47 EST 2025 Fri Feb 21 02:44:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Cybersecurity Complex prediction Cyber threats Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a93dcfd1b3faabd406f24f6385eaff9a77cd636123b418a5e925171de98f7c213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2175-9812 |
| PQID | 3256966171 |
| PQPubID | 2044172 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3256966171 crossref_citationtrail_10_1007_s11761_022_00354_4 crossref_primary_10_1007_s11761_022_00354_4 springer_journals_10_1007_s11761_022_00354_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20230300 2023-03-00 20230301 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Service oriented computing and applications |
| PublicationTitleAbbrev | SOCA |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Dasgupta, Akhtar, Sen (CR12) 2020 Le, Hoang (CR27) 2017; 18 Ahmadi-Assalemi, Al-Khateeb, Epiphaniou, Aggoun (CR2) 2022 Coulter, Han, Pan, Zhang, Xiang (CR10) 2020; 50 CR19 MeeraGandhi, Appavoo, Srivasta (CR29) 2010; 2 Andrade, Yoo, Tello-Oquendo, Ortiz-Garces (CR4) 2020 CR17 CR39 Hossain, Nagahi, Jaradat, Shah, Buchanan, Hamilton (CR18) 2020; 7 CR38 Giudici, Raffinetti (CR16) 2022; 38 CR37 CR35 CR34 CR11 Yeboah-Ofori, Islam, Lee, Shamszaman, Muhammad, Altaf, Al-Rakhami (CR46) 2021; 9 CR31 Qi, Rasband, Zheng, Longoria (CR32) 2021 Yue, Li, Legg, Li (CR47) 2021 Kabanda (CR24) 2020 Ben Fredj, Mihoub, Krichen, Cheikhrouhou, Derhab (CR5) 2020 Buczak, Guven (CR6) 2016; 18 Radanliev, De Roure, Page, Van Kleek, Santos, Maddox, Burnap, Anthi, Maple (CR33) 2021; 2020 Wang, Neil, Fenton (CR43) 2020 Sarker, Abushark, Alsolami, Khan (CR36) 2020; 12 Debar, Dacier, Wespi (CR13) 2000; 55 Fang, Xu, Xu, Zhao (CR15) 2019 CR8 Jiang, Atif (CR23) 2021; 193 CR28 Ahmed, Hossain (CR3) 2014; 6 CR9 CR26 CR48 CR25 CR45 CR44 Jaganathan, Cherurveettil, Muthu Sivashanmugam (CR22) 2015 CR41 Hussain, Gao, Raza, Rabhi, Merigó (CR20) 2022 Husák, Komárková, Bou-Harb, Čeleda (CR21) 2019; 21 Tatam, Shanmugam, Azam, Kannoorpatti (CR42) 2021; 7 Elmrabit, Yang, Yang, Zhou (CR14) 2020 Acharya, Joshi (CR1) 2020; 17 Bukht, Raza, Awan, Ahmad (CR7) 2020; 20 Nugroho (CR30) 2013; 53 Swapna, Kumari, Murthy (CR40) 2021; 8 354_CR11 IH Sarker (354_CR36) 2020; 12 354_CR34 354_CR35 S Acharya (354_CR1) 2020; 17 P Radanliev (354_CR33) 2021; 2020 354_CR31 M Husák (354_CR21) 2019; 21 NT Le (354_CR27) 2017; 18 P Giudici (354_CR16) 2022; 38 D Dasgupta (354_CR12) 2020 Y Jiang (354_CR23) 2021; 193 M Ahmed (354_CR3) 2014; 6 G MeeraGandhi (354_CR29) 2010; 2 RO Andrade (354_CR4) 2020 AL Buczak (354_CR6) 2016; 18 V Jaganathan (354_CR22) 2015 354_CR26 354_CR48 H Debar (354_CR13) 2000; 55 354_CR28 N Elmrabit (354_CR14) 2020 G Kabanda (354_CR24) 2020 G Swapna (354_CR40) 2021; 8 354_CR44 M Tatam (354_CR42) 2021; 7 354_CR45 354_CR25 354_CR41 TFN Bukht (354_CR7) 2020; 20 NUI Hossain (354_CR18) 2020; 7 354_CR9 354_CR8 O Ben Fredj (354_CR5) 2020 X Fang (354_CR15) 2019 R Qi (354_CR32) 2021 R Coulter (354_CR10) 2020; 50 MB Nugroho (354_CR30) 2013; 53 354_CR19 Y Yue (354_CR47) 2021 G Ahmadi-Assalemi (354_CR2) 2022 W Hussain (354_CR20) 2022 J Wang (354_CR43) 2020 A Yeboah-Ofori (354_CR46) 2021; 9 354_CR37 354_CR38 354_CR17 354_CR39 |
| References_xml | – volume: 7 start-page: 352 issue: 3 year: 2020 end-page: 366 ident: CR18 article-title: Modeling and assessing cyber resilience of smart grid using Bayesian network-based approach: a system of systems problem publication-title: J Comput Des Eng doi: 10.1093/jcde/qwaa029 – ident: CR45 – volume: 20 start-page: 31 issue: 2 year: 2020 end-page: 38 ident: CR7 article-title: Analyzing cyber-attacks targeted on the Banks of Pakistan and theirSolutions publication-title: Int J Comput Sci Netw Secur – volume: 18 start-page: 277 issue: 4 year: 2017 end-page: 290 ident: CR27 article-title: Capability maturity model and metrics framework for cyber cloud security publication-title: Scal Comput – ident: CR39 – year: 2015 ident: CR22 article-title: Using a prediction model to manage cyber security threats publication-title: Sci World J doi: 10.1155/2015/703713 – ident: CR37 – volume: 8 start-page: 659 issue: 2 year: 2021 end-page: 661 ident: CR40 article-title: Analyzing and predicting cyber security violations using machine learning techniques publication-title: Eur J Mol Clin Med – year: 2020 ident: CR14 article-title: Insider threat risk prediction based on bayesian network publication-title: Comput Secur doi: 10.1016/j.cose.2020.101908 – year: 2020 ident: CR43 article-title: A Bayesian network approach for cybersecurity risk assessment implementing and extending the FAIR model publication-title: Comput Secur doi: 10.1016/j.cose.2019.101659 – volume: 53 start-page: 1689 issue: 9 year: 2013 end-page: 1699 ident: CR30 article-title: Artificial intelligence and cybersecurity: building an automotive cybersecurity framework using machine learning algorithms publication-title: J Chem Inf Model – year: 2020 ident: CR4 article-title: A comprehensive study of the IoT cybersecurity in smart cities publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3046442 – ident: CR35 – year: 2022 ident: CR2 article-title: Super learner ensemble for anomaly detection and cyber-risk quantification in industrial control systems publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3144127 – ident: CR8 – volume: 38 start-page: 1318 issue: 3 year: 2022 end-page: 1326 ident: CR16 article-title: Explainable AI methods in cyber risk management publication-title: Qual Reliab Eng Int doi: 10.1002/qre.2939 – volume: 12 start-page: 1 issue: 5 year: 2020 end-page: 15 ident: CR36 article-title: IntruDTree: a machine learning based cyber security intrusion detection model publication-title: Symmetry doi: 10.3390/SYM12050754 – ident: CR25 – year: 2021 ident: CR32 article-title: Detecting cyber attacks in smart grids using semi-supervised anomaly detection and deep representation learning publication-title: Information (Switzerland) doi: 10.3390/info12080328 – year: 2021 ident: CR47 article-title: Deep learning-based security behaviour analysis in IOT environments: a survey publication-title: Secur Commun Netw doi: 10.1155/2021/8873195 – year: 2020 ident: CR5 article-title: CyberSecurity attack prediction: a deep learning approach publication-title: ACM Int Conf Proc Ser doi: 10.1145/3433174.3433614 – ident: CR19 – ident: CR44 – ident: CR48 – ident: CR38 – ident: CR17 – volume: 193 issue: September year: 2021 ident: CR23 article-title: A selective ensemble model for cognitive cybersecurity analysis publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2021.103210 – ident: CR31 – volume: 21 start-page: 640 issue: 1 year: 2019 end-page: 660 ident: CR21 article-title: Survey of attack projection, prediction, and forecasting in cyber security publication-title: IEEE Commun Surv Tutorials doi: 10.1109/COMST.2018.2871866 – ident: CR11 – year: 2020 ident: CR12 article-title: Machine learning in cybersecurity: a comprehensive survey publication-title: J Defense Mod Simul doi: 10.1177/1548512920951275 – volume: 17 start-page: 4656 issue: 6 year: 2020 end-page: 4670 ident: CR1 article-title: Impact of cyber-attacks on banking institutions in India: a study of safety mechanisms and preventive measures publication-title: PalArch’s J Archaeol Egypt / Egyptol – ident: CR9 – ident: CR34 – volume: 50 start-page: 3081 issue: 7 year: 2020 end-page: 3093 ident: CR10 article-title: Data-driven cyber security in perspective—intelligent traffic analysis publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2940940 – year: 2022 ident: CR20 article-title: Assessing cloud QoS predictions using OWA in neural network methods publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07297-z – volume: 6 start-page: 25 issue: 1 year: 2014 ident: CR3 article-title: Cloud computing and security issues in the cloud publication-title: Int J Netw Secur Appl – volume: 2 start-page: 686 issue: 3 year: 2010 end-page: 692 ident: CR29 article-title: Effective network intrusion detection using classifiers decision trees and decision rules publication-title: Int J Adv Netw Appl – volume: 18 start-page: 1153 issue: 2 year: 2016 end-page: 1176 ident: CR6 article-title: A survey of data mining and machine learning methods for cyber security intrusion detection publication-title: IEEE Commun Surv Tutorials doi: 10.1109/COMST.2015.2494502 – ident: CR28 – ident: CR41 – year: 2020 ident: CR24 article-title: A bayesian network model for machine learning and cyber security publication-title: ACM Int Conf Proc Ser doi: 10.1145/3440094.3440389 – ident: CR26 – year: 2019 ident: CR15 article-title: A deep learning framework for predicting cyber attacks rates publication-title: Eurasip J Inf Secur doi: 10.1186/s13635-019-0090-6 – volume: 2020 start-page: 219 year: 2021 end-page: 230 ident: CR33 article-title: Design of a dynamic and self-adapting system, supported with artificial intelligence, machine learning and real-time intelligence for predictive cyber risk analytics in extreme environments—cyber risk in the colonisation of Mars publication-title: SSRN Electron J doi: 10.2139/ssrn.3562925 – volume: 55 start-page: 361 issue: 7 year: 2000 end-page: 378 ident: CR13 article-title: A revised taxonomy for intrusion detection systems publication-title: Ann Télécommun doi: 10.1007/BF02994844 – volume: 7 issue: 1 year: 2021 ident: CR42 article-title: A review of threat modelling approaches for APT-style attacks publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e05969 – volume: 9 start-page: 94318 year: 2021 end-page: 94337 ident: CR46 article-title: Cyber threat predictive analytics for improving cyber supply chain security publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3087109 – ident: 354_CR38 doi: 10.4018/978-1-5225-9611-0.ch001 – ident: 354_CR25 – volume: 2020 start-page: 219 year: 2021 ident: 354_CR33 publication-title: SSRN Electron J doi: 10.2139/ssrn.3562925 – ident: 354_CR35 doi: 10.1109/SEGE.2019.8859946 – volume: 50 start-page: 3081 issue: 7 year: 2020 ident: 354_CR10 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2019.2940940 – ident: 354_CR37 doi: 10.1016/j.iot.2021.100393 – ident: 354_CR48 – volume: 7 start-page: 352 issue: 3 year: 2020 ident: 354_CR18 publication-title: J Comput Des Eng doi: 10.1093/jcde/qwaa029 – ident: 354_CR19 – year: 2022 ident: 354_CR20 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07297-z – ident: 354_CR31 – year: 2020 ident: 354_CR43 publication-title: Comput Secur doi: 10.1016/j.cose.2019.101659 – volume: 12 start-page: 1 issue: 5 year: 2020 ident: 354_CR36 publication-title: Symmetry doi: 10.3390/SYM12050754 – ident: 354_CR11 doi: 10.1057/s41288-022-00266-6 – ident: 354_CR9 doi: 10.1007/978-3-319-70290-2_7 – volume: 55 start-page: 361 issue: 7 year: 2000 ident: 354_CR13 publication-title: Ann Télécommun doi: 10.1007/BF02994844 – volume: 18 start-page: 1153 issue: 2 year: 2016 ident: 354_CR6 publication-title: IEEE Commun Surv Tutorials doi: 10.1109/COMST.2015.2494502 – volume: 38 start-page: 1318 issue: 3 year: 2022 ident: 354_CR16 publication-title: Qual Reliab Eng Int doi: 10.1002/qre.2939 – year: 2021 ident: 354_CR32 publication-title: Information (Switzerland) doi: 10.3390/info12080328 – year: 2020 ident: 354_CR5 publication-title: ACM Int Conf Proc Ser doi: 10.1145/3433174.3433614 – year: 2015 ident: 354_CR22 publication-title: Sci World J doi: 10.1155/2015/703713 – ident: 354_CR39 – year: 2021 ident: 354_CR47 publication-title: Secur Commun Netw doi: 10.1155/2021/8873195 – ident: 354_CR44 doi: 10.1109/PESGM.2018.8586334 – year: 2020 ident: 354_CR14 publication-title: Comput Secur doi: 10.1016/j.cose.2020.101908 – year: 2019 ident: 354_CR15 publication-title: Eurasip J Inf Secur doi: 10.1186/s13635-019-0090-6 – ident: 354_CR28 doi: 10.1109/ICECDS.2017.8389725 – ident: 354_CR26 – volume: 21 start-page: 640 issue: 1 year: 2019 ident: 354_CR21 publication-title: IEEE Commun Surv Tutorials doi: 10.1109/COMST.2018.2871866 – year: 2022 ident: 354_CR2 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3144127 – year: 2020 ident: 354_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3046442 – volume: 193 issue: September year: 2021 ident: 354_CR23 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2021.103210 – volume: 53 start-page: 1689 issue: 9 year: 2013 ident: 354_CR30 publication-title: J Chem Inf Model – volume: 2 start-page: 686 issue: 3 year: 2010 ident: 354_CR29 publication-title: Int J Adv Netw Appl – ident: 354_CR8 – volume: 6 start-page: 25 issue: 1 year: 2014 ident: 354_CR3 publication-title: Int J Netw Secur Appl – ident: 354_CR34 – volume: 17 start-page: 4656 issue: 6 year: 2020 ident: 354_CR1 publication-title: PalArch’s J Archaeol Egypt / Egyptol – ident: 354_CR17 doi: 10.35940/ijitee.K1040.09811S219 – volume: 20 start-page: 31 issue: 2 year: 2020 ident: 354_CR7 publication-title: Int J Comput Sci Netw Secur – year: 2020 ident: 354_CR12 publication-title: J Defense Mod Simul doi: 10.1177/1548512920951275 – volume: 18 start-page: 277 issue: 4 year: 2017 ident: 354_CR27 publication-title: Scal Comput – volume: 9 start-page: 94318 year: 2021 ident: 354_CR46 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3087109 – year: 2020 ident: 354_CR24 publication-title: ACM Int Conf Proc Ser doi: 10.1145/3440094.3440389 – ident: 354_CR45 – ident: 354_CR41 doi: 10.3390/su14042436 – volume: 7 issue: 1 year: 2021 ident: 354_CR42 publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e05969 – volume: 8 start-page: 659 issue: 2 year: 2021 ident: 354_CR40 publication-title: Eur J Mol Clin Med |
| SSID | ssj0000327867 |
| Score | 2.362409 |
| Snippet | Extreme complex events and the corresponding abnormal statistics of cyber security are ubiquitously observed in many real-time systems, and the development of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 59 |
| SubjectTerms | Algorithms Assaults Computer Appl. in Administrative Data Processing Computer Science Computer Systems Organization and Communication Networks Cybersecurity Data acquisition e-Commerce/e-business Evaluation Fuzzy sets Infrastructure IT in Business Machine learning Management of Computing and Information Systems Network topologies Neural networks Real time Risk assessment Risk levels Risk management Software Engineering/Programming and Operating Systems Special Issue Paper Stochastic models Threats Time series Weather forecasting |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagcOCy5bGIsgX5sDewiJ3Uj9MKARUSUsWBlXqLbMeuVoK2tN3V9l_wk5lxnEa7Er1wi5XYiTQznsnM5_kIOTfSqco4yeSkUayCkJlZbwoWwJlKUUgThEtkE2o20_O5-Z4TbtsMq-z2xLRRNyuPOfIPJcyF0JwrfrH-zZA1CqurmULjIXnEheCo598UO-RYilIonUhkuZYlA-8k87mZ9vQch394hnB2rKdVrLrrm_qA816NNLme6fB_P_opOclBJ_3Yaskz8iAsn5NhR-hAs32_IH8-JzwHXUXqwYkm3Oye_sLen-kCWXNo12ACBEoxi0v93kEMmXnwKGLVKbjbkEYJsR5u6XqDBaE0B5H2C-rsPuD5TYZutIF3IKYz0ExisWjftT0ll9MvPz59ZZmygXmw5R2zpmx8bLgro7WugWghiiqCjU-CjdFYpXwjS2z54iqu7SQYbJnGm2B0VB4k-JIMlqtleEVopYN0ptQ6GvCghTACRhOhrFbGKRtHhHfCqn3uZ460Gj_rvhMzCrgGAddJwHU1Iu8Oc9ZtN4-jT487qdbZsrd1L9IRed_pRX_736u9Pr7aGXmCTPYtvG1MBrvNdXhDHvub3dV28zbp9V-oHP9C priority: 102 providerName: ProQuest |
| Title | Design of capability maturity model integration with cybersecurity risk severity complex prediction using bayesian-based machine learning models |
| URI | https://link.springer.com/article/10.1007/s11761-022-00354-4 https://www.proquest.com/docview/3256966171 |
| Volume | 17 |
| WOSCitedRecordID | wos000884192100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database (ProQuest) customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: P5Z dateStart: 20230301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: K7- dateStart: 20230301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (ProQuest) customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: M7S dateStart: 20230301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1863-2394 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: BENPR dateStart: 20230301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1863-2394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327867 issn: 1863-2386 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD54e-iL9-JaXfLgmw3s3HJ5bKsiFJbFS5G-DEkmEaFdZXcV91_0J_ecbMZFqYJ9GWaYZBKSnPlOki_nAzjQwspSW8FF1UheosvMjdM97hFMRd4T2uc2ik3Ifl9dXelBOhQ2btnu7ZZk_FPPD7tlOOXmxD6n7a-Sl4uwjHCnyBzPzn88raz0ilyqKB2bKVFwxCSRTsv8-zPPEWnuZr7YGY2Ac7L2f1Vdh9XkYLIvsxGxAQt-uAlrrXgDS7a8BX-OIneD3QbmEDAjR3bKflOcz3hDCjmsDSaBncdoxZa5qUV_MWneMeKlM4RWH58iO90_srsRbf7EPMSqv2bWTD2d1eQEmQ2WQfxNz5JgxfWsrPE2XJ4cX3w75UmegTu02wk3umhcaDJbBGNsg55ByMuA9lx5E4I2UrpGFBTexZaZMpXXFB4ta7xWQbo8Kz7C0vB26HeAlcoLqwulgka07OU6x6cql0ZJbaUJHcjaLqpdil1OEhq_6nnUZWryGpu8jk1elx04fMpzN4vc8Wbqvbbn62TF47rA8YrTQax0Bz63PT1__frXdt-X_BN8IBX7GbVtD5Ymo3u_DyvuYXIzHnVh-etxf3DWhcXvkneJnHqO10H1sxvH_V9kFvnI |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VgkQvlK-qgQI-wAkssvbGHweEEKVqlRJxKFJvi-21KySapEmgzb_gl_AbmfHuNgKJ3nrgttaubcn77Hm2Z-YBPLfK69J6xdWg1rxEysxdsH0e0Zgq0Vc2Cp_FJvRoZI6P7ac1-NXFwpBbZbcm5oW6ngQ6I38tsS5S80IXb6dnnFSj6Ha1k9BoYDGMy3Pcss3fHOzi_30hxN6Ho_f7vFUV4AHhtuDOyjqkuvAyOedrNGhJlAlhOIguJeu0DrWSlJXEl4Vxg2gpq1dRR2uSDqKQ2O4NuFlKoylX_1DzyzOdvhTaZNHawijJ0RqqNk6nidYrtMK9O-7-6P6u5OWftnBFcP-6k82mbm_zfxuku3CnJdXsXTML7sFaHN-HzU6wgrXr1wP4uZv9VdgksYAkIfsFL9kp5TbND6QKxLoEGghYRqfULCw9cuRW54-RLz5DOhFzKXvkxws2ndGFV65DkQQnzLtlpPhUTjShxj7IZzWyVqTjpOlr_hA-X8u4bMH6eDKO28BKE5W30phkkSH0hRVYGgjtjLZeu9SDogNHFdp87SQb8q1aZZomQFUIqCoDqip78PKyzrTJVnLl1zsdiqp25ZpXKwj14FWHw9Xrf7f26OrWnsHt_aOPh9XhwWj4GDYEcsXGlW8H1hez7_EJ3Ao_Fl_ns6d5TjH4ct34_A3bLF29 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5RqCou5VGqpqXgAzdqkd11_DhWpREIFCHxELeV7bUjpDZESaiaf9Gf3BnvLgHUIlW9rbV-yR5rxp5v5gPYM9IpYZzkslcpLtBk5tabLg-oTGXelSbkLpFNqMFAX1-bswdR_Ant3rok65gGytI0mh2Mq3iwCHzL8PrNCYlOrjDBxQtYEUQaRPf186v7V5ZukSudaGQzLQuO-kk2kTN_7uaxdlqYnE-8pEn59Nf-f9rr8LoxPNnnWlI2YCmMNmGtJXVgzRl_A78OE6aD3UbmUZEm7Oycfaf8n-mDmHNYm2QCN5XRSy7zc4d2ZMOFxwivzlDlhlRKqPXwk40n5BRKbQhtP2TOzgPFcHJSpRWOQbjOwBoii2E91nQLLvtfL74c8Ya2gXs8zzNuTVH5WGWuiNa6Ci2GmIuI57wXbIzGKuUrWVDaFycybXvBUNq0rApGR-XzrHgLy6PbUXgHTOggnSm0jga1aDc3OZZ6ubJaGads7EDWblfpm5zmRK3xrVxkY6YlL3HJy7TkpejA_n2bcZ3R49na260UlM3pnpYFyjFeE3HSHfjU7vri9997e_9v1Xfh1dlhvzw9Hpx8gFUiuq_Rb9uwPJvchY_w0v-Y3UwnO0nofwNuiQE9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+capability+maturity+model+integration+with+cybersecurity+risk+severity+complex+prediction+using+bayesian-based+machine+learning+models&rft.jtitle=Service+oriented+computing+and+applications&rft.au=Alshammari%2C+Fahad+H.&rft.date=2023-03-01&rft.pub=Springer+London&rft.issn=1863-2386&rft.eissn=1863-2394&rft.volume=17&rft.issue=1&rft.spage=59&rft.epage=72&rft_id=info:doi/10.1007%2Fs11761-022-00354-4&rft.externalDocID=10_1007_s11761_022_00354_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2386&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2386&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2386&client=summon |