Dynamics and optimal control of multibody systems using fractional generalized divide-and-conquer algorithm

In this paper, a new framework is presented for the dynamic modeling and control of fully actuated multibody systems with open and/or closed chains as well as disturbance in the position, velocity, acceleration, and control input of each joint. This approach benefits from the computed torque control...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics Vol. 102; no. 3; pp. 1611 - 1626
Main Authors: Dabiri, Arman, Poursina, Mohammad, Machado, J. A. Tenreiro
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.11.2020
Springer Nature B.V
Subjects:
ISSN:0924-090X, 1573-269X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a new framework is presented for the dynamic modeling and control of fully actuated multibody systems with open and/or closed chains as well as disturbance in the position, velocity, acceleration, and control input of each joint. This approach benefits from the computed torque control method and embedded fractional algorithms to control the nonlinear behavior of a multibody system. The fractional Brunovsky canonical form of the tracking error is proposed for a generalized divide-and-conquer algorithm (GDCA) customized for having a shortened memory buffer and faster computational time. The suite of a GDCA is highly efficient. It lends itself easily to the parallel computing framework, that is used for the inverse and forward dynamic formulations. This technique can effectively address the issues corresponding to the inverse dynamics of fully actuated closed-chain systems. Eventually, a new stability criterion is proposed to obtain the optimal torque control using the new fractional Brunovsky canonical form. It is shown that fractional controllers can robustly stabilize the system dynamics with a smaller control effort and a better control performance compared to the traditional integer-order control laws.
AbstractList In this paper, a new framework is presented for the dynamic modeling and control of fully actuated multibody systems with open and/or closed chains as well as disturbance in the position, velocity, acceleration, and control input of each joint. This approach benefits from the computed torque control method and embedded fractional algorithms to control the nonlinear behavior of a multibody system. The fractional Brunovsky canonical form of the tracking error is proposed for a generalized divide-and-conquer algorithm (GDCA) customized for having a shortened memory buffer and faster computational time. The suite of a GDCA is highly efficient. It lends itself easily to the parallel computing framework, that is used for the inverse and forward dynamic formulations. This technique can effectively address the issues corresponding to the inverse dynamics of fully actuated closed-chain systems. Eventually, a new stability criterion is proposed to obtain the optimal torque control using the new fractional Brunovsky canonical form. It is shown that fractional controllers can robustly stabilize the system dynamics with a smaller control effort and a better control performance compared to the traditional integer-order control laws.
Author Poursina, Mohammad
Dabiri, Arman
Machado, J. A. Tenreiro
Author_xml – sequence: 1
  givenname: Arman
  orcidid: 0000-0002-4407-4314
  surname: Dabiri
  fullname: Dabiri, Arman
  email: adabiri@siue.edu
  organization: Department of Mechanical and Mechatronics Engineering, Southern Illinois University Edwardsville
– sequence: 2
  givenname: Mohammad
  surname: Poursina
  fullname: Poursina, Mohammad
  organization: Department of Engineering and Science, University of Agder
– sequence: 3
  givenname: J. A. Tenreiro
  surname: Machado
  fullname: Machado, J. A. Tenreiro
  organization: Department of Electrical Engineering, Institute of Engineering, Polytechnic Institute of Porto
BookMark eNp9kDtLBDEUhYMouD7-gFXAOnrz2syU4hsEGwW7kMlk1uhMsiZZYf31RlcQLKxuc77Dud8e2g4xOISOKJxQAHWaKQVFCTAgIFspCN9CMyoVJ2zePm2jGbRMEGjhaRft5fwCAJxBM0OvF-tgJm8zNqHHcVn8ZEZsYygpjjgOeFqNxXexX-O8zsVNGa-yDws8JGOLj6GmFy64ZEb_4Xrc-3ffO1LLSC15W7mEzbiIyZfn6QDtDGbM7vDn7qPHq8uH8xtyd399e352RyynbSGmsYKJFuamH1TDpOWdkpIDhYYbqbpOOd47SRsQIBohOnCOM2qVUtaKueT76HjTu0yxLshFv8RVqkuzZkJxzmqrqqlmk7Ip5pzcoK0v5uulkowfNQX9pVZv1OqqVn-r1byi7A-6TNVbWv8P8Q2UazgsXPpd9Q_1CSSZjwg
CitedBy_id crossref_primary_10_1007_s11071_021_07162_z
Cites_doi 10.1007/s11071-017-3654-3
10.1109/13.241614
10.1007/s11044-019-09669-1
10.1007/s12555-009-0213-9
10.1115/1.4031573
10.1007/s00500-015-1741-2
10.1115/DETC2016-60322
10.1023/B:MUBO.0000042893.00088.c9
10.1007/978-3-642-18101-6
10.1177/02783649922066628
10.1109/70.388780
10.1016/j.cpc.2012.10.029
10.1016/j.cam.2018.02.029
10.1016/j.mechmachtheory.2012.03.001
10.1007/s11044-007-9075-1
10.1007/978-1-84996-335-0
10.1115/1.4026072
10.1007/978-3-642-20545-3
10.1016/j.mechmachtheory.2017.05.004
10.1007/978-3-319-53426-8_8
10.1115/1.4027869
10.1016/j.sigpro.2006.02.020
10.1109/ACC.2016.7525339
10.1177/02783649922066619
10.1007/s11044-012-9311-1
10.1007/s11044-017-9591-6
10.23919/ACC.2018.8431823
10.1615/IntJMultCompEng.v1.i23.50
10.1016/S0947-3580(95)70014-0
10.1007/s11071-006-9083-3
10.1109/9.739144
10.1007/s00158-007-0142-2
10.1007/s11071-012-0503-2
10.1007/s11044-012-9324-9
10.1109/81.817385
10.1002/rob.4620060102
10.1109/TAC.2017.2731522
10.1016/j.mechmachtheory.2013.04.009
10.1007/s11044-009-9176-0
10.23919/ACC.2018.8431882
10.1007/978-3-642-86464-3
10.1109/TEC.2003.821821
10.1007/s11044-013-9377-4
10.1016/j.cnsns.2017.02.009
10.1016/j.apm.2017.12.012
10.1016/B978-0-12-381270-4.00003-2
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11071-020-05954-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 1626
ExternalDocumentID 10_1007_s11071_020_05954_3
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-a8c424906adf7825c3b755301083a57bb7e3de5180404844b0ee321c777cc4653
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576718200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Tue Nov 04 23:15:25 EST 2025
Tue Nov 18 22:13:01 EST 2025
Sat Nov 29 03:06:26 EST 2025
Fri Feb 21 02:32:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Parallel computing
Optimal control
Multibody dynamics
Open-chain system
Fractional control
PID
LQR
Closed-chain system
Computed-torque control
Divide and conquer algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a8c424906adf7825c3b755301083a57bb7e3de5180404844b0ee321c777cc4653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4407-4314
PQID 2473327827
PQPubID 2043746
PageCount 16
ParticipantIDs proquest_journals_2473327827
crossref_citationtrail_10_1007_s11071_020_05954_3
crossref_primary_10_1007_s11071_020_05954_3
springer_journals_10_1007_s11071_020_05954_3
PublicationCentury 2000
PublicationDate 20201100
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems
PublicationTitle Nonlinear dynamics
PublicationTitleAbbrev Nonlinear Dyn
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References KingsleyCPoursinaMSabetSDabiriALogarithmic complexity dynamics formulation for computed torque control of articulated multibody systemsMech. Mach. Theory2017116Suppl C481500
FeatherstoneRA divide-and-conquer articulated body algorithm for parallel o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ({n}))$$\end{document} calculation of rigid body dynamics. Part 2: trees, loops, and accuracyInt. J. Robot. Res.199918876892
ZamaniMSadatiNGhartemaniMKDesign of an H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} PID controller using particle swarm optimizationInt. J. Control Autom. Syst.200972273280
KhanIAndersonKPerformance investigation and constraint stabilization approach for the orthogonal complement-based divide-and-conquer algorithmMech. Mach. Theory201367111121
Dabiri, A., Nazari, M., Butcher, E.A.: Optimal fractional state feedback control for linear fractional periodic time-delayed systems. In: American Control Conference (ACC), Boston, MA (2016)
CritchleyJHAndersonKSParallel logarithmic order algorithm for general multibody system dynamicsMultibody Syst. Dyn.20041275931062.70002
FijanyASharfID’EleuterioGMTParallel O(log N) algorithms for computation of manipulator forward dynamicsIEEE Trans. Robot. Autom.199511389400
DabiriAButcherEAPoursinaMNazariMOptimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systemsIEEE Trans. Autom. Control2018634989100237846561390.93324
MachadoJTMartins CarvalhoJDEngineering design of a multirate nonlinear controller for robot manipulatorsJ. Robot. Syst.1989611170662.70004
KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006New York, NYElsevier Science Inc.1092.45003
GaingZ-LA particle swarm optimization approach for optimum design of PID controller in AVR systemIEEE Trans. Energy Convers.2004192384391
Poursina, M., Bhalerao, K.D., Flores, S., Anderson, K.S., Laederach, A.: Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. In: Methods in Enzymology. Computer Methods Part C, Science Direct (2011)
DabiriAMoghaddamBMachadoJTOptimal variable-order fractional pid controllers for dynamical systemsJ. Comput. Appl. Math.2018339404837876761392.49033
PoursinaMAndersonKSCanonical ensemble simulation of biopolymers using a coarse-grained articulated generalized divide-and-conquer schemeComput. Phys. Commun.2013184365266030070511302.82137
MachadoJTGuestJSpecial issue on fractional calculus and applicationsNonlinear Dyn.2002291–4322
DabiriAButcherEAStable fractional chebyshev differentiation matrix for numerical solution of fractional differential equationsNonlinear Dyn.201790118520137079461390.34017
ValérioDda CostaJSTuning of fractional pid controllers with Ziegler–Nichols-type rulesSig. Process.20068610277127841172.94496
OustaloupALevronFMathieuBNanotFMFrequency-band complex noninteger differentiator: characterization and synthesisIEEE Trans. Circuits Syst. I Fund. Theory Appl.20004712539
MrázLValášekMSolution of three key problems for massive parallelization of multibody dynamicsMultibody Sys.Dyn.201329121393016846
MasaratiPComputed torque control of redundant manipulators using general-purpose software in real-timeMultibody Syst. Dyn.2014324034232744431305.70008
AghababaMPOptimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithmSoft. Comput.2016201040554067
ChadajKMalczykPFraczekJA parallel Hamiltonian formulation for forward dynamics of closed-loop multibody systemsMultibody Syst. Dyn.20163912735839021404.70018
MukherjeeRAndersonKSAn orthogonal complement based divide-and-conquer algorithm for constrained multibody systemsNonlinear Dyn.20074819921523052681180.70006
FeatherstoneRA divide-and-conquer articulated body algorithm for parallel o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ({n}))$$\end{document} calculation of rigid body dynamics. Part 1: basic algorithmInt. J. Robot. Res.199918867875
MonjeCAChenYVinagreBMXueDFeliu-BatlleVFractional-Order Systems and Controls: Fundamentals and Applications2010BerlinSpringer1211.93002
Dabiri, A., Poursina, M., Butcher, E.A. : Integration of divide-and-conquer algorithm with fractional order controllers for the efficient dynamic modeling and control of multibody systems. In: American Control Conference (ACC), Milwaukee, WI, May 24–26 (2018)
LaflinJAndersonKSKhanIMPoursinaMAdvances in the application of the divide-and-conquer algorithm to multibody system dynamicsJ. Comput. Nonlinear Dyn.20149041003041003
PodlubnyIFractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications1998AmsterdamElsevier0924.34008
PetrasIFractional-Order Nonlinear Systems: Modeling, Analysis and Simulation2011BerlinSpringer1228.34002
BaleanuDMachadoJATLuoACFractional Dynamics and Control2011BerlinSpringer
MukherjeeRMBhaleraoKDAndersonKSA divide-and-conquer direct differentiation approach for multibody system sensitivity analysisStruct. Multidiscipl. Optim.20073541342923903761273.70012
PoursinaMAndersonKSAn extended divide-and-conquer algorithm for a generalized class of multibody constraintsMultibody Syst. Dyn.2012293235254302771810.1007/s11044-012-9324-9
PodlubnyIFractional-order systems and pi/sup/spl lambda//d/sup/spl Mu//-controllersIEEE Trans. Autom. Control199944120821416669371056.93542
LaflinJJAndersonKSGeometrically exact beam equations in the adaptive DCA frameworkMultibody Syst. Dyn.20194711939872291420.70001
Critchley, J., Anderson, K.S.: A generalized recursive coordinate reduction method for multibody system dynamics. Int. J. Multiscale Comput. Eng. 1(2&3) (2003)
PoursinaMExtended divide-and-conquer algorithm for uncertainty analysis of multibody systems in polynomial chaos expansion frameworkJ. Comput. Nonlinear Dyn.2015113031015031023
HamamciSEStabilization using fractional-order PI and PID controllersNonlinear Dyn.20085113293431170.93023
BhaleraoKDPoursinaMAndersonKSAn efficient direct differentiation approach for sensitivity analysis of flexible multibody systemsMultibody Syst. Dyn.20102312114025786711379.70031
MalczykPFraczekJA divide and conquer algorithm for constrained multibody system dynamics based on augmented lagrangian method with projections-based error correctionNonlinear Dyn.20127018718892991319
BhaleraoKDCritchleyJAndersonKAn efficient parallel dynamics algorithm for simulation of large articulated robotic systemsMech. Mach. Theory2012538698
ButcherEADabiriANazariMInspergerTErsalTOroszGStability and control of fractional periodic time-delayed systemsTime Delay Systems: Theory, Numerics, Applications, and Experiments2017New YorkSpringer1071251387.34109
DabiriAButcherEAEfficient modified chebyshev differentiation matrices for fractional differential equationsCommun. Nonlinear Sci. Numer. Simul.201750284310363027707261191
Dabiri, A., Butcher, E.A., Poursina, M.: Fractional delayed control design for linear periodic systems. In: ASME 2016 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE), Charlotte, NC, Aug 21–24 (2016)
DasSFunctional Fractional Calculus2011BerlinSpringer1225.26007
KingsleyCPoursinaMExtension of the divide-and-conquer algorithm for the efficient inverse dynamics analysis of multibody systemsMultibody Syst. Dyn.201842214516737465651418.70011
MachadoJATde CarvalhoJLMGalhanoAMSFAnalysis of robot dynamics and compensation using classical and computed torque techniquesIEEE Trans. Educ.1993364372379
OustaloupAMathieuBLanussePThe crone control of resonant plants: application to a flexible transmissionEur. J. Control1995121131211423.93106
MukherjeeRMAndersonKSEfficient methodology for multibody simulations with discontinuous changes in system definitionMultibody Syst Dyn20071814516823492701178.70074
LaflinJAndersonKSKhanIMPoursinaMNew and extended applications of the divide-and-conquer algorithm for multibody dynamicsJ. Comput. Nonlinear Dyn.20149041004041011
Dabiri, A., Nazari, M., Butcher, E.A.: Minimal phase-variable canonical state-space realizations and initializations for linear time-invariant multi-term fractional differential equations. In: American Control Conference (ACC), Milwaukee, WI, May 24–26 (2018)
RobersonRESchwertassekRDynamics of Multibody Systems1988BerlinSpringer0654.70001
DabiriAButcherEANumerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methodsAppl. Math. Model.201856424448374495207166696
R Featherstone (5954_CR24) 1999; 18
5954_CR32
KD Bhalerao (5954_CR21) 2012; 53
AA Kilbas (5954_CR43) 2006
RM Mukherjee (5954_CR30) 2007; 18
A Dabiri (5954_CR9) 2018; 339
RM Mukherjee (5954_CR31) 2007; 35
J Laflin (5954_CR27) 2014; 9
C Kingsley (5954_CR40) 2018; 42
JAT Machado (5954_CR18) 1993; 36
D Baleanu (5954_CR6) 2011
M Zamani (5954_CR49) 2009; 7
SE Hamamci (5954_CR12) 2008; 51
JJ Laflin (5954_CR39) 2019; 47
5954_CR42
R Mukherjee (5954_CR29) 2007; 48
P Masarati (5954_CR45) 2014; 32
JT Machado (5954_CR5) 2002; 29
K Chadaj (5954_CR38) 2016; 39
M Poursina (5954_CR37) 2015; 11
I Podlubny (5954_CR44) 1998
L Mráz (5954_CR23) 2013; 29
CA Monje (5954_CR2) 2010
J Laflin (5954_CR26) 2014; 9
A Dabiri (5954_CR51) 2017; 90
M Poursina (5954_CR28) 2013; 184
JT Machado (5954_CR17) 1989; 6
5954_CR14
A Oustaloup (5954_CR11) 2000; 47
5954_CR15
I Petras (5954_CR3) 2011
A Oustaloup (5954_CR10) 1995; 1
Z-L Gaing (5954_CR47) 2004; 19
I Khan (5954_CR36) 2013; 67
C Kingsley (5954_CR41) 2017; 116
5954_CR19
RE Roberson (5954_CR46) 1988
A Dabiri (5954_CR50) 2017; 50
S Das (5954_CR1) 2011
MP Aghababa (5954_CR48) 2016; 20
M Poursina (5954_CR35) 2012; 29
KD Bhalerao (5954_CR33) 2010; 23
A Dabiri (5954_CR16) 2018; 63
R Featherstone (5954_CR25) 1999; 18
P Malczyk (5954_CR34) 2012; 70
A Dabiri (5954_CR52) 2018; 56
D Valério (5954_CR13) 2006; 86
JH Critchley (5954_CR22) 2004; 12
5954_CR8
EA Butcher (5954_CR7) 2017
A Fijany (5954_CR20) 1995; 11
I Podlubny (5954_CR4) 1999; 44
References_xml – reference: DasSFunctional Fractional Calculus2011BerlinSpringer1225.26007
– reference: PoursinaMAndersonKSCanonical ensemble simulation of biopolymers using a coarse-grained articulated generalized divide-and-conquer schemeComput. Phys. Commun.2013184365266030070511302.82137
– reference: KhanIAndersonKPerformance investigation and constraint stabilization approach for the orthogonal complement-based divide-and-conquer algorithmMech. Mach. Theory201367111121
– reference: OustaloupALevronFMathieuBNanotFMFrequency-band complex noninteger differentiator: characterization and synthesisIEEE Trans. Circuits Syst. I Fund. Theory Appl.20004712539
– reference: DabiriAMoghaddamBMachadoJTOptimal variable-order fractional pid controllers for dynamical systemsJ. Comput. Appl. Math.2018339404837876761392.49033
– reference: PetrasIFractional-Order Nonlinear Systems: Modeling, Analysis and Simulation2011BerlinSpringer1228.34002
– reference: Dabiri, A., Nazari, M., Butcher, E.A.: Minimal phase-variable canonical state-space realizations and initializations for linear time-invariant multi-term fractional differential equations. In: American Control Conference (ACC), Milwaukee, WI, May 24–26 (2018)
– reference: MalczykPFraczekJA divide and conquer algorithm for constrained multibody system dynamics based on augmented lagrangian method with projections-based error correctionNonlinear Dyn.20127018718892991319
– reference: PodlubnyIFractional-order systems and pi/sup/spl lambda//d/sup/spl Mu//-controllersIEEE Trans. Autom. Control199944120821416669371056.93542
– reference: BhaleraoKDPoursinaMAndersonKSAn efficient direct differentiation approach for sensitivity analysis of flexible multibody systemsMultibody Syst. Dyn.20102312114025786711379.70031
– reference: PodlubnyIFractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications1998AmsterdamElsevier0924.34008
– reference: ValérioDda CostaJSTuning of fractional pid controllers with Ziegler–Nichols-type rulesSig. Process.20068610277127841172.94496
– reference: ZamaniMSadatiNGhartemaniMKDesign of an H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} PID controller using particle swarm optimizationInt. J. Control Autom. Syst.200972273280
– reference: MachadoJTGuestJSpecial issue on fractional calculus and applicationsNonlinear Dyn.2002291–4322
– reference: Dabiri, A., Butcher, E.A., Poursina, M.: Fractional delayed control design for linear periodic systems. In: ASME 2016 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE), Charlotte, NC, Aug 21–24 (2016)
– reference: GaingZ-LA particle swarm optimization approach for optimum design of PID controller in AVR systemIEEE Trans. Energy Convers.2004192384391
– reference: CritchleyJHAndersonKSParallel logarithmic order algorithm for general multibody system dynamicsMultibody Syst. Dyn.20041275931062.70002
– reference: PoursinaMAndersonKSAn extended divide-and-conquer algorithm for a generalized class of multibody constraintsMultibody Syst. Dyn.2012293235254302771810.1007/s11044-012-9324-9
– reference: RobersonRESchwertassekRDynamics of Multibody Systems1988BerlinSpringer0654.70001
– reference: Poursina, M., Bhalerao, K.D., Flores, S., Anderson, K.S., Laederach, A.: Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. In: Methods in Enzymology. Computer Methods Part C, Science Direct (2011)
– reference: MasaratiPComputed torque control of redundant manipulators using general-purpose software in real-timeMultibody Syst. Dyn.2014324034232744431305.70008
– reference: BhaleraoKDCritchleyJAndersonKAn efficient parallel dynamics algorithm for simulation of large articulated robotic systemsMech. Mach. Theory2012538698
– reference: Dabiri, A., Poursina, M., Butcher, E.A. : Integration of divide-and-conquer algorithm with fractional order controllers for the efficient dynamic modeling and control of multibody systems. In: American Control Conference (ACC), Milwaukee, WI, May 24–26 (2018)
– reference: BaleanuDMachadoJATLuoACFractional Dynamics and Control2011BerlinSpringer
– reference: MonjeCAChenYVinagreBMXueDFeliu-BatlleVFractional-Order Systems and Controls: Fundamentals and Applications2010BerlinSpringer1211.93002
– reference: DabiriAButcherEANumerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methodsAppl. Math. Model.201856424448374495207166696
– reference: LaflinJAndersonKSKhanIMPoursinaMAdvances in the application of the divide-and-conquer algorithm to multibody system dynamicsJ. Comput. Nonlinear Dyn.20149041003041003
– reference: AghababaMPOptimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithmSoft. Comput.2016201040554067
– reference: DabiriAButcherEAEfficient modified chebyshev differentiation matrices for fractional differential equationsCommun. Nonlinear Sci. Numer. Simul.201750284310363027707261191
– reference: ButcherEADabiriANazariMInspergerTErsalTOroszGStability and control of fractional periodic time-delayed systemsTime Delay Systems: Theory, Numerics, Applications, and Experiments2017New YorkSpringer1071251387.34109
– reference: KingsleyCPoursinaMExtension of the divide-and-conquer algorithm for the efficient inverse dynamics analysis of multibody systemsMultibody Syst. Dyn.201842214516737465651418.70011
– reference: LaflinJAndersonKSKhanIMPoursinaMNew and extended applications of the divide-and-conquer algorithm for multibody dynamicsJ. Comput. Nonlinear Dyn.20149041004041011
– reference: FijanyASharfID’EleuterioGMTParallel O(log N) algorithms for computation of manipulator forward dynamicsIEEE Trans. Robot. Autom.199511389400
– reference: LaflinJJAndersonKSGeometrically exact beam equations in the adaptive DCA frameworkMultibody Syst. Dyn.20194711939872291420.70001
– reference: FeatherstoneRA divide-and-conquer articulated body algorithm for parallel o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ({n}))$$\end{document} calculation of rigid body dynamics. Part 1: basic algorithmInt. J. Robot. Res.199918867875
– reference: PoursinaMExtended divide-and-conquer algorithm for uncertainty analysis of multibody systems in polynomial chaos expansion frameworkJ. Comput. Nonlinear Dyn.2015113031015031023
– reference: MukherjeeRAndersonKSAn orthogonal complement based divide-and-conquer algorithm for constrained multibody systemsNonlinear Dyn.20074819921523052681180.70006
– reference: OustaloupAMathieuBLanussePThe crone control of resonant plants: application to a flexible transmissionEur. J. Control1995121131211423.93106
– reference: MukherjeeRMAndersonKSEfficient methodology for multibody simulations with discontinuous changes in system definitionMultibody Syst Dyn20071814516823492701178.70074
– reference: KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006New York, NYElsevier Science Inc.1092.45003
– reference: ChadajKMalczykPFraczekJA parallel Hamiltonian formulation for forward dynamics of closed-loop multibody systemsMultibody Syst. Dyn.20163912735839021404.70018
– reference: HamamciSEStabilization using fractional-order PI and PID controllersNonlinear Dyn.20085113293431170.93023
– reference: MachadoJTMartins CarvalhoJDEngineering design of a multirate nonlinear controller for robot manipulatorsJ. Robot. Syst.1989611170662.70004
– reference: MachadoJATde CarvalhoJLMGalhanoAMSFAnalysis of robot dynamics and compensation using classical and computed torque techniquesIEEE Trans. Educ.1993364372379
– reference: MrázLValášekMSolution of three key problems for massive parallelization of multibody dynamicsMultibody Sys.Dyn.201329121393016846
– reference: DabiriAButcherEAPoursinaMNazariMOptimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systemsIEEE Trans. Autom. Control2018634989100237846561390.93324
– reference: Critchley, J., Anderson, K.S.: A generalized recursive coordinate reduction method for multibody system dynamics. Int. J. Multiscale Comput. Eng. 1(2&3) (2003)
– reference: FeatherstoneRA divide-and-conquer articulated body algorithm for parallel o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ({n}))$$\end{document} calculation of rigid body dynamics. Part 2: trees, loops, and accuracyInt. J. Robot. Res.199918876892
– reference: MukherjeeRMBhaleraoKDAndersonKSA divide-and-conquer direct differentiation approach for multibody system sensitivity analysisStruct. Multidiscipl. Optim.20073541342923903761273.70012
– reference: Dabiri, A., Nazari, M., Butcher, E.A.: Optimal fractional state feedback control for linear fractional periodic time-delayed systems. In: American Control Conference (ACC), Boston, MA (2016)
– reference: KingsleyCPoursinaMSabetSDabiriALogarithmic complexity dynamics formulation for computed torque control of articulated multibody systemsMech. Mach. Theory2017116Suppl C481500
– reference: DabiriAButcherEAStable fractional chebyshev differentiation matrix for numerical solution of fractional differential equationsNonlinear Dyn.201790118520137079461390.34017
– volume: 90
  start-page: 185
  issue: 1
  year: 2017
  ident: 5954_CR51
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3654-3
– volume: 36
  start-page: 372
  issue: 4
  year: 1993
  ident: 5954_CR18
  publication-title: IEEE Trans. Educ.
  doi: 10.1109/13.241614
– volume: 47
  start-page: 1
  year: 2019
  ident: 5954_CR39
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-019-09669-1
– volume: 7
  start-page: 273
  issue: 2
  year: 2009
  ident: 5954_CR49
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-009-0213-9
– volume: 11
  start-page: 031015
  issue: 3
  year: 2015
  ident: 5954_CR37
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4031573
– volume: 39
  start-page: 1
  year: 2016
  ident: 5954_CR38
  publication-title: Multibody Syst. Dyn.
– volume: 20
  start-page: 4055
  issue: 10
  year: 2016
  ident: 5954_CR48
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-015-1741-2
– ident: 5954_CR15
  doi: 10.1115/DETC2016-60322
– volume: 12
  start-page: 75
  year: 2004
  ident: 5954_CR22
  publication-title: Multibody Syst. Dyn.
  doi: 10.1023/B:MUBO.0000042893.00088.c9
– volume-title: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation
  year: 2011
  ident: 5954_CR3
  doi: 10.1007/978-3-642-18101-6
– volume: 18
  start-page: 876
  year: 1999
  ident: 5954_CR25
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/02783649922066628
– volume: 11
  start-page: 389
  year: 1995
  ident: 5954_CR20
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.388780
– volume: 184
  start-page: 652
  issue: 3
  year: 2013
  ident: 5954_CR28
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2012.10.029
– volume: 339
  start-page: 40
  year: 2018
  ident: 5954_CR9
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.02.029
– volume: 53
  start-page: 86
  year: 2012
  ident: 5954_CR21
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2012.03.001
– volume: 18
  start-page: 145
  year: 2007
  ident: 5954_CR30
  publication-title: Multibody Syst Dyn
  doi: 10.1007/s11044-007-9075-1
– volume-title: Fractional-Order Systems and Controls: Fundamentals and Applications
  year: 2010
  ident: 5954_CR2
  doi: 10.1007/978-1-84996-335-0
– volume: 9
  start-page: 041003
  year: 2014
  ident: 5954_CR26
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4026072
– volume-title: Functional Fractional Calculus
  year: 2011
  ident: 5954_CR1
  doi: 10.1007/978-3-642-20545-3
– volume: 116
  start-page: 481
  issue: Suppl C
  year: 2017
  ident: 5954_CR41
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2017.05.004
– start-page: 107
  volume-title: Time Delay Systems: Theory, Numerics, Applications, and Experiments
  year: 2017
  ident: 5954_CR7
  doi: 10.1007/978-3-319-53426-8_8
– volume: 9
  start-page: 041004
  year: 2014
  ident: 5954_CR27
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.4027869
– volume: 86
  start-page: 2771
  issue: 10
  year: 2006
  ident: 5954_CR13
  publication-title: Sig. Process.
  doi: 10.1016/j.sigpro.2006.02.020
– ident: 5954_CR8
  doi: 10.1109/ACC.2016.7525339
– volume: 18
  start-page: 867
  year: 1999
  ident: 5954_CR24
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/02783649922066619
– volume: 29
  start-page: 21
  issue: 1
  year: 2013
  ident: 5954_CR23
  publication-title: Multibody Sys.Dyn.
  doi: 10.1007/s11044-012-9311-1
– volume: 42
  start-page: 145
  issue: 2
  year: 2018
  ident: 5954_CR40
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-017-9591-6
– ident: 5954_CR14
  doi: 10.23919/ACC.2018.8431823
– ident: 5954_CR19
  doi: 10.1615/IntJMultCompEng.v1.i23.50
– volume: 1
  start-page: 113
  issue: 2
  year: 1995
  ident: 5954_CR10
  publication-title: Eur. J. Control
  doi: 10.1016/S0947-3580(95)70014-0
– volume: 51
  start-page: 329
  issue: 1
  year: 2008
  ident: 5954_CR12
  publication-title: Nonlinear Dyn.
– volume: 48
  start-page: 199
  year: 2007
  ident: 5954_CR29
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-006-9083-3
– volume: 44
  start-page: 208
  issue: 1
  year: 1999
  ident: 5954_CR4
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.739144
– volume: 35
  start-page: 413
  year: 2007
  ident: 5954_CR31
  publication-title: Struct. Multidiscipl. Optim.
  doi: 10.1007/s00158-007-0142-2
– volume-title: Fractional Dynamics and Control
  year: 2011
  ident: 5954_CR6
– volume: 70
  start-page: 871
  issue: 1
  year: 2012
  ident: 5954_CR34
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-012-0503-2
– volume: 29
  start-page: 235
  issue: 3
  year: 2012
  ident: 5954_CR35
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-012-9324-9
– volume: 47
  start-page: 25
  issue: 1
  year: 2000
  ident: 5954_CR11
  publication-title: IEEE Trans. Circuits Syst. I Fund. Theory Appl.
  doi: 10.1109/81.817385
– volume: 6
  start-page: 1
  issue: 1
  year: 1989
  ident: 5954_CR17
  publication-title: J. Robot. Syst.
  doi: 10.1002/rob.4620060102
– volume: 63
  start-page: 989
  issue: 4
  year: 2018
  ident: 5954_CR16
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2731522
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 5954_CR43
– volume: 29
  start-page: 3
  issue: 1–4
  year: 2002
  ident: 5954_CR5
  publication-title: Nonlinear Dyn.
– volume: 67
  start-page: 111
  year: 2013
  ident: 5954_CR36
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2013.04.009
– volume: 23
  start-page: 121
  year: 2010
  ident: 5954_CR33
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-009-9176-0
– ident: 5954_CR42
  doi: 10.23919/ACC.2018.8431882
– volume-title: Dynamics of Multibody Systems
  year: 1988
  ident: 5954_CR46
  doi: 10.1007/978-3-642-86464-3
– volume: 19
  start-page: 384
  issue: 2
  year: 2004
  ident: 5954_CR47
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2003.821821
– volume: 32
  start-page: 403
  year: 2014
  ident: 5954_CR45
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-013-9377-4
– volume-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
  year: 1998
  ident: 5954_CR44
– volume: 50
  start-page: 284
  year: 2017
  ident: 5954_CR50
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.02.009
– volume: 56
  start-page: 424
  year: 2018
  ident: 5954_CR52
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.12.012
– ident: 5954_CR32
  doi: 10.1016/B978-0-12-381270-4.00003-2
SSID ssj0003208
Score 2.2936769
Snippet In this paper, a new framework is presented for the dynamic modeling and control of fully actuated multibody systems with open and/or closed chains as well as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1611
SubjectTerms Acceleration
Algorithms
Automotive Engineering
Canonical forms
Chains
Classical Mechanics
Computing time
Control
Control methods
Control stability
Control systems
Control theory
Dynamic models
Dynamic stability
Dynamical Systems
Engineering
Inverse dynamics
Mechanical Engineering
Multibody systems
Nonlinear control
Optimal control
Original Paper
Stability criteria
System dynamics
Torque
Tracking errors
Vibration
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1xf5OBNg22SbtqTiA88iAgq7K0kabqK61a3q6C_3kmadVXQi-em05R5ZJLMfB_AbqozUUQ6oTIqFRWJRZfCTJcWEbdSGZnGyrOWXMjLy7TTya7CgVsdyipHMdEH6qIy7oz8gAnJOcP1TB4-PVPHGuVuVwOFxiRMO5SE2JfuXX9GYs48I12Eewx3HtEJTTNN6xzue3AjzdxVcJYIyr8vTONs88cFqV93zhb-O-NFmA8ZJzlqTGQJJmx_GRZC9kmCb9fLMPcFmnAFHk4aqvqaqH5BKgwsjygkFLaTqiS-ElFXxRtpwKBr4krou6QcNK0SOLrbQFrfv-N3fNuXpSiMohD8jQFRvS5Od3j3uAq3Z6c3x-c0EDNQgx47pCo1ArdtUVsVJf5fYriWjn4oxnxOJVJraXlhkzjFCCFSIXRkLWexkVIa4wDd1mCqX_XtOpBIM13Kdmwy5oDshUra3CS2VLItFcuKFsQjreQmoJY78oxePsZbdprMUZO512TOW7D3-c5Tg9nx5-itkfry4L91PtZdC_ZHBjB-_Lu0jb-lbcIsczbnmxm3YGo4eLHbMGNeh_f1YMdb7wfxsPRe
  priority: 102
  providerName: ProQuest
Title Dynamics and optimal control of multibody systems using fractional generalized divide-and-conquer algorithm
URI https://link.springer.com/article/10.1007/s11071-020-05954-3
https://www.proquest.com/docview/2473327827
Volume 102
WOSCitedRecordID wos000576718200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4V6IEeeFddCisfuFFLie2skyNQEAe0QlDQ3iLbcZYVsKmSBan99Ywdhy1ViwTnOJP4MeMZe-b7APZSnYki0gmVUamoSCyqFHq6tIi4lcrINFaeteRMDofpaJSdh6Kwpst2764kvaWeF7thpIKhL3OXt1kiKF-AJdzuUkfYcHF5_Wx_OfM8dBFGFu4UYhRKZf4t4-V2NPcx_7oW9bvNyer7_nMNVoJ3SQ7a5bAOH-x0A1aDp0mCHjcb8OkPGMJNuP3e0tI3RE0LUqERuUchIYmdVCXxWYe6Kn6RFvi5IS5dfkzKui2LwNbjFr568hu_40u8LEVhFIVgV2ui7sZVPZnd3G_B1cnxj6NTGkgYqEHtnFGVGoEhWjRQRYneRGK4lo5qKEbfTSVSa2l5YZM4RWsgUiF0ZC1nsZFSGuPA2z7D4rSa2i9AIs10KQexyZgDrRcqGXCT2FLJgVQsK3oQd3ORm4BQ7ogy7vI5trIb2xzHNvdjm_Me7D-_87PF53i19U43xXnQ1SZnQnLOsG-yB9-6KZ0__r-07bc1_wrLzK0KX8i4A4uz-sHuwkfzOJs0dR-WDo-H5xd9l3x62fcr-gmsaOzL
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1RT9RAEJ4gkigPIqDhFHUf8Ak2tLvb2_bBGCMSCMeFBEzurexut-cFroXrqTl_lL_R2W3LgYm88eBzt9Nk-s3szO7MNwBbsU5EFuiIyiBXVEQWTQojXZoF3EplZBwqP7WkJ_v9eDBIThbgd9sL48oqW5_oHXVWGndGvsuE5JzhfiY_Xl1TNzXK3a62IzRqWBzZ2U9M2aoPh3v4f98ztv_l7PMBbaYKUINwm1IVG4E5R9BVWY7iIsO1dLNzQgxGVCS1lpZnNgpjhLeIhdCBtZyFRkppjGMjQ7mP4DGGESzxpYKnN56fMz8BL8Ccxp1_DJomnbpVD_MsTNyZu3pOIkH53Y1wHt3-dSHr97n9lf9NQ8_hWRNRk0-1CazCgi3WYKWJrknju6o1WL5FvbgOF3uzQo1HpiKqyEiJjnOMQprCfVLmxFda6jKbkZrsuiKuRWBI8kndCoKrhzVl9-gXfse3tVmKwigKQbVNiLoconqm38Yv4OuDKOAlLBZlYTeABJrpXHZDkzBH1C9U1OUmsrmSXalYknUgbFGQmoaV3Q0HuUznfNIOOSkiJ_XISXkHtm_euao5Se5dvdnCJW38U5XOsdKBnRZw88f_lvbqfmnv4MnB2XEv7R32j17DU-bw7hs3N2FxOvlu38CS-TEdVZO33nIInD80EP8AwaBOKA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5BmdD2MDYGWhkwP_C2WSS2UyePaF0FAlVIwNS3yHacUgEJSrJJ49dzdlLKpg0J8RznEvt89p1933cAe7FORBboiMogV1REFk0KPV2aBdxKZWQcKl-15ESOx_Fkkpw-QvH7bPf5lWSLaXAsTUWzf5vl-wvgG0YtGAYzd5GbRILyZVgRLpHexetnPx7WYs58TboAowx3IjHpYDP_lvHn1rTwN_-6IvU7z2jt5f_8Dt52Xic5aKfJe1iyxTqsdR4o6ey7Xoc3j-gJP8DVsC1XXxNVZKTExeUGhXTJ7aTMic9G1GX2m7SE0DVxafRTklctXAJbT1ta69kdfsdDvyxFYRSFYLcroq6nZTVrLm824GL0_fzbIe2KM1CDVttQFRuBoVswUFmOXkZkuJauBBEqgatIai0tz2wUxrhKiFgIHVjLWWiklMY4UrdN6BVlYT8CCTTTuRyEJmGOzF6oaMBNZHMlB1KxJOtDONdLajrmcldA4zpdcC67sU1xbFM_tinvw5eHd25b3o4nW2_P1Z12NlynTEjOGfZN9uHrXL2Lx_-XtvW85p9h9XQ4Sk-Oxsef4DVzE8RjHbeh11Q_7Q68Mr-aWV3t-ql9D6LA9gE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+optimal+control+of+multibody+systems+using+fractional+generalized+divide-and-conquer+algorithm&rft.jtitle=Nonlinear+dynamics&rft.au=Dabiri%2C+Arman&rft.au=Poursina%2C+Mohammad&rft.au=Machado%2C+J.+A.+Tenreiro&rft.date=2020-11-01&rft.pub=Springer+Netherlands&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=102&rft.issue=3&rft.spage=1611&rft.epage=1626&rft_id=info:doi/10.1007%2Fs11071-020-05954-3&rft.externalDocID=10_1007_s11071_020_05954_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon