Dynamics and optimal control of multibody systems using fractional generalized divide-and-conquer algorithm
In this paper, a new framework is presented for the dynamic modeling and control of fully actuated multibody systems with open and/or closed chains as well as disturbance in the position, velocity, acceleration, and control input of each joint. This approach benefits from the computed torque control...
Uložené v:
| Vydané v: | Nonlinear dynamics Ročník 102; číslo 3; s. 1611 - 1626 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Dordrecht
Springer Netherlands
01.11.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0924-090X, 1573-269X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, a new framework is presented for the dynamic modeling and control of fully actuated multibody systems with open and/or closed chains as well as disturbance in the position, velocity, acceleration, and control input of each joint. This approach benefits from the computed torque control method and embedded fractional algorithms to control the nonlinear behavior of a multibody system. The fractional Brunovsky canonical form of the tracking error is proposed for a generalized divide-and-conquer algorithm (GDCA) customized for having a shortened memory buffer and faster computational time. The suite of a GDCA is highly efficient. It lends itself easily to the parallel computing framework, that is used for the inverse and forward dynamic formulations. This technique can effectively address the issues corresponding to the inverse dynamics of fully actuated closed-chain systems. Eventually, a new stability criterion is proposed to obtain the optimal torque control using the new fractional Brunovsky canonical form. It is shown that fractional controllers can robustly stabilize the system dynamics with a smaller control effort and a better control performance compared to the traditional integer-order control laws. |
|---|---|
| AbstractList | In this paper, a new framework is presented for the dynamic modeling and control of fully actuated multibody systems with open and/or closed chains as well as disturbance in the position, velocity, acceleration, and control input of each joint. This approach benefits from the computed torque control method and embedded fractional algorithms to control the nonlinear behavior of a multibody system. The fractional Brunovsky canonical form of the tracking error is proposed for a generalized divide-and-conquer algorithm (GDCA) customized for having a shortened memory buffer and faster computational time. The suite of a GDCA is highly efficient. It lends itself easily to the parallel computing framework, that is used for the inverse and forward dynamic formulations. This technique can effectively address the issues corresponding to the inverse dynamics of fully actuated closed-chain systems. Eventually, a new stability criterion is proposed to obtain the optimal torque control using the new fractional Brunovsky canonical form. It is shown that fractional controllers can robustly stabilize the system dynamics with a smaller control effort and a better control performance compared to the traditional integer-order control laws. |
| Author | Poursina, Mohammad Dabiri, Arman Machado, J. A. Tenreiro |
| Author_xml | – sequence: 1 givenname: Arman orcidid: 0000-0002-4407-4314 surname: Dabiri fullname: Dabiri, Arman email: adabiri@siue.edu organization: Department of Mechanical and Mechatronics Engineering, Southern Illinois University Edwardsville – sequence: 2 givenname: Mohammad surname: Poursina fullname: Poursina, Mohammad organization: Department of Engineering and Science, University of Agder – sequence: 3 givenname: J. A. Tenreiro surname: Machado fullname: Machado, J. A. Tenreiro organization: Department of Electrical Engineering, Institute of Engineering, Polytechnic Institute of Porto |
| BookMark | eNp9kDtLBDEUhYMouD7-gFXAOnrz2syU4hsEGwW7kMlk1uhMsiZZYf31RlcQLKxuc77Dud8e2g4xOISOKJxQAHWaKQVFCTAgIFspCN9CMyoVJ2zePm2jGbRMEGjhaRft5fwCAJxBM0OvF-tgJm8zNqHHcVn8ZEZsYygpjjgOeFqNxXexX-O8zsVNGa-yDws8JGOLj6GmFy64ZEb_4Xrc-3ffO1LLSC15W7mEzbiIyZfn6QDtDGbM7vDn7qPHq8uH8xtyd399e352RyynbSGmsYKJFuamH1TDpOWdkpIDhYYbqbpOOd47SRsQIBohOnCOM2qVUtaKueT76HjTu0yxLshFv8RVqkuzZkJxzmqrqqlmk7Ip5pzcoK0v5uulkowfNQX9pVZv1OqqVn-r1byi7A-6TNVbWv8P8Q2UazgsXPpd9Q_1CSSZjwg |
| CitedBy_id | crossref_primary_10_1007_s11071_021_07162_z |
| Cites_doi | 10.1007/s11071-017-3654-3 10.1109/13.241614 10.1007/s11044-019-09669-1 10.1007/s12555-009-0213-9 10.1115/1.4031573 10.1007/s00500-015-1741-2 10.1115/DETC2016-60322 10.1023/B:MUBO.0000042893.00088.c9 10.1007/978-3-642-18101-6 10.1177/02783649922066628 10.1109/70.388780 10.1016/j.cpc.2012.10.029 10.1016/j.cam.2018.02.029 10.1016/j.mechmachtheory.2012.03.001 10.1007/s11044-007-9075-1 10.1007/978-1-84996-335-0 10.1115/1.4026072 10.1007/978-3-642-20545-3 10.1016/j.mechmachtheory.2017.05.004 10.1007/978-3-319-53426-8_8 10.1115/1.4027869 10.1016/j.sigpro.2006.02.020 10.1109/ACC.2016.7525339 10.1177/02783649922066619 10.1007/s11044-012-9311-1 10.1007/s11044-017-9591-6 10.23919/ACC.2018.8431823 10.1615/IntJMultCompEng.v1.i23.50 10.1016/S0947-3580(95)70014-0 10.1007/s11071-006-9083-3 10.1109/9.739144 10.1007/s00158-007-0142-2 10.1007/s11071-012-0503-2 10.1007/s11044-012-9324-9 10.1109/81.817385 10.1002/rob.4620060102 10.1109/TAC.2017.2731522 10.1016/j.mechmachtheory.2013.04.009 10.1007/s11044-009-9176-0 10.23919/ACC.2018.8431882 10.1007/978-3-642-86464-3 10.1109/TEC.2003.821821 10.1007/s11044-013-9377-4 10.1016/j.cnsns.2017.02.009 10.1016/j.apm.2017.12.012 10.1016/B978-0-12-381270-4.00003-2 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
| Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11071-020-05954-3 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1573-269X |
| EndPage | 1626 |
| ExternalDocumentID | 10_1007_s11071_020_05954_3 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-a8c424906adf7825c3b755301083a57bb7e3de5180404844b0ee321c777cc4653 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576718200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-090X |
| IngestDate | Tue Nov 04 23:15:25 EST 2025 Tue Nov 18 22:13:01 EST 2025 Sat Nov 29 03:06:26 EST 2025 Fri Feb 21 02:32:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Parallel computing Optimal control Multibody dynamics Open-chain system Fractional control PID LQR Closed-chain system Computed-torque control Divide and conquer algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a8c424906adf7825c3b755301083a57bb7e3de5180404844b0ee321c777cc4653 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4407-4314 |
| PQID | 2473327827 |
| PQPubID | 2043746 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2473327827 crossref_citationtrail_10_1007_s11071_020_05954_3 crossref_primary_10_1007_s11071_020_05954_3 springer_journals_10_1007_s11071_020_05954_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20201100 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201100 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems |
| PublicationTitle | Nonlinear dynamics |
| PublicationTitleAbbrev | Nonlinear Dyn |
| PublicationYear | 2020 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | KingsleyCPoursinaMSabetSDabiriALogarithmic complexity dynamics formulation for computed torque control of articulated multibody systemsMech. Mach. Theory2017116Suppl C481500 FeatherstoneRA divide-and-conquer articulated body algorithm for parallel o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ({n}))$$\end{document} calculation of rigid body dynamics. Part 2: trees, loops, and accuracyInt. J. Robot. Res.199918876892 ZamaniMSadatiNGhartemaniMKDesign of an H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} PID controller using particle swarm optimizationInt. J. Control Autom. Syst.200972273280 KhanIAndersonKPerformance investigation and constraint stabilization approach for the orthogonal complement-based divide-and-conquer algorithmMech. Mach. Theory201367111121 Dabiri, A., Nazari, M., Butcher, E.A.: Optimal fractional state feedback control for linear fractional periodic time-delayed systems. In: American Control Conference (ACC), Boston, MA (2016) CritchleyJHAndersonKSParallel logarithmic order algorithm for general multibody system dynamicsMultibody Syst. Dyn.20041275931062.70002 FijanyASharfID’EleuterioGMTParallel O(log N) algorithms for computation of manipulator forward dynamicsIEEE Trans. Robot. Autom.199511389400 DabiriAButcherEAPoursinaMNazariMOptimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systemsIEEE Trans. Autom. Control2018634989100237846561390.93324 MachadoJTMartins CarvalhoJDEngineering design of a multirate nonlinear controller for robot manipulatorsJ. Robot. Syst.1989611170662.70004 KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006New York, NYElsevier Science Inc.1092.45003 GaingZ-LA particle swarm optimization approach for optimum design of PID controller in AVR systemIEEE Trans. Energy Convers.2004192384391 Poursina, M., Bhalerao, K.D., Flores, S., Anderson, K.S., Laederach, A.: Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. In: Methods in Enzymology. Computer Methods Part C, Science Direct (2011) DabiriAMoghaddamBMachadoJTOptimal variable-order fractional pid controllers for dynamical systemsJ. Comput. Appl. Math.2018339404837876761392.49033 PoursinaMAndersonKSCanonical ensemble simulation of biopolymers using a coarse-grained articulated generalized divide-and-conquer schemeComput. Phys. Commun.2013184365266030070511302.82137 MachadoJTGuestJSpecial issue on fractional calculus and applicationsNonlinear Dyn.2002291–4322 DabiriAButcherEAStable fractional chebyshev differentiation matrix for numerical solution of fractional differential equationsNonlinear Dyn.201790118520137079461390.34017 ValérioDda CostaJSTuning of fractional pid controllers with Ziegler–Nichols-type rulesSig. Process.20068610277127841172.94496 OustaloupALevronFMathieuBNanotFMFrequency-band complex noninteger differentiator: characterization and synthesisIEEE Trans. Circuits Syst. I Fund. Theory Appl.20004712539 MrázLValášekMSolution of three key problems for massive parallelization of multibody dynamicsMultibody Sys.Dyn.201329121393016846 MasaratiPComputed torque control of redundant manipulators using general-purpose software in real-timeMultibody Syst. Dyn.2014324034232744431305.70008 AghababaMPOptimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithmSoft. Comput.2016201040554067 ChadajKMalczykPFraczekJA parallel Hamiltonian formulation for forward dynamics of closed-loop multibody systemsMultibody Syst. Dyn.20163912735839021404.70018 MukherjeeRAndersonKSAn orthogonal complement based divide-and-conquer algorithm for constrained multibody systemsNonlinear Dyn.20074819921523052681180.70006 FeatherstoneRA divide-and-conquer articulated body algorithm for parallel o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ({n}))$$\end{document} calculation of rigid body dynamics. Part 1: basic algorithmInt. J. Robot. Res.199918867875 MonjeCAChenYVinagreBMXueDFeliu-BatlleVFractional-Order Systems and Controls: Fundamentals and Applications2010BerlinSpringer1211.93002 Dabiri, A., Poursina, M., Butcher, E.A. : Integration of divide-and-conquer algorithm with fractional order controllers for the efficient dynamic modeling and control of multibody systems. In: American Control Conference (ACC), Milwaukee, WI, May 24–26 (2018) LaflinJAndersonKSKhanIMPoursinaMAdvances in the application of the divide-and-conquer algorithm to multibody system dynamicsJ. Comput. Nonlinear Dyn.20149041003041003 PodlubnyIFractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications1998AmsterdamElsevier0924.34008 PetrasIFractional-Order Nonlinear Systems: Modeling, Analysis and Simulation2011BerlinSpringer1228.34002 BaleanuDMachadoJATLuoACFractional Dynamics and Control2011BerlinSpringer MukherjeeRMBhaleraoKDAndersonKSA divide-and-conquer direct differentiation approach for multibody system sensitivity analysisStruct. Multidiscipl. Optim.20073541342923903761273.70012 PoursinaMAndersonKSAn extended divide-and-conquer algorithm for a generalized class of multibody constraintsMultibody Syst. Dyn.2012293235254302771810.1007/s11044-012-9324-9 PodlubnyIFractional-order systems and pi/sup/spl lambda//d/sup/spl Mu//-controllersIEEE Trans. Autom. Control199944120821416669371056.93542 LaflinJJAndersonKSGeometrically exact beam equations in the adaptive DCA frameworkMultibody Syst. Dyn.20194711939872291420.70001 Critchley, J., Anderson, K.S.: A generalized recursive coordinate reduction method for multibody system dynamics. Int. J. Multiscale Comput. Eng. 1(2&3) (2003) PoursinaMExtended divide-and-conquer algorithm for uncertainty analysis of multibody systems in polynomial chaos expansion frameworkJ. Comput. Nonlinear Dyn.2015113031015031023 HamamciSEStabilization using fractional-order PI and PID controllersNonlinear Dyn.20085113293431170.93023 BhaleraoKDPoursinaMAndersonKSAn efficient direct differentiation approach for sensitivity analysis of flexible multibody systemsMultibody Syst. Dyn.20102312114025786711379.70031 MalczykPFraczekJA divide and conquer algorithm for constrained multibody system dynamics based on augmented lagrangian method with projections-based error correctionNonlinear Dyn.20127018718892991319 BhaleraoKDCritchleyJAndersonKAn efficient parallel dynamics algorithm for simulation of large articulated robotic systemsMech. Mach. Theory2012538698 ButcherEADabiriANazariMInspergerTErsalTOroszGStability and control of fractional periodic time-delayed systemsTime Delay Systems: Theory, Numerics, Applications, and Experiments2017New YorkSpringer1071251387.34109 DabiriAButcherEAEfficient modified chebyshev differentiation matrices for fractional differential equationsCommun. Nonlinear Sci. Numer. Simul.201750284310363027707261191 Dabiri, A., Butcher, E.A., Poursina, M.: Fractional delayed control design for linear periodic systems. In: ASME 2016 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE), Charlotte, NC, Aug 21–24 (2016) DasSFunctional Fractional Calculus2011BerlinSpringer1225.26007 KingsleyCPoursinaMExtension of the divide-and-conquer algorithm for the efficient inverse dynamics analysis of multibody systemsMultibody Syst. Dyn.201842214516737465651418.70011 MachadoJATde CarvalhoJLMGalhanoAMSFAnalysis of robot dynamics and compensation using classical and computed torque techniquesIEEE Trans. Educ.1993364372379 OustaloupAMathieuBLanussePThe crone control of resonant plants: application to a flexible transmissionEur. J. Control1995121131211423.93106 MukherjeeRMAndersonKSEfficient methodology for multibody simulations with discontinuous changes in system definitionMultibody Syst Dyn20071814516823492701178.70074 LaflinJAndersonKSKhanIMPoursinaMNew and extended applications of the divide-and-conquer algorithm for multibody dynamicsJ. Comput. Nonlinear Dyn.20149041004041011 Dabiri, A., Nazari, M., Butcher, E.A.: Minimal phase-variable canonical state-space realizations and initializations for linear time-invariant multi-term fractional differential equations. In: American Control Conference (ACC), Milwaukee, WI, May 24–26 (2018) RobersonRESchwertassekRDynamics of Multibody Systems1988BerlinSpringer0654.70001 DabiriAButcherEANumerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methodsAppl. Math. Model.201856424448374495207166696 R Featherstone (5954_CR24) 1999; 18 5954_CR32 KD Bhalerao (5954_CR21) 2012; 53 AA Kilbas (5954_CR43) 2006 RM Mukherjee (5954_CR30) 2007; 18 A Dabiri (5954_CR9) 2018; 339 RM Mukherjee (5954_CR31) 2007; 35 J Laflin (5954_CR27) 2014; 9 C Kingsley (5954_CR40) 2018; 42 JAT Machado (5954_CR18) 1993; 36 D Baleanu (5954_CR6) 2011 M Zamani (5954_CR49) 2009; 7 SE Hamamci (5954_CR12) 2008; 51 JJ Laflin (5954_CR39) 2019; 47 5954_CR42 R Mukherjee (5954_CR29) 2007; 48 P Masarati (5954_CR45) 2014; 32 JT Machado (5954_CR5) 2002; 29 K Chadaj (5954_CR38) 2016; 39 M Poursina (5954_CR37) 2015; 11 I Podlubny (5954_CR44) 1998 L Mráz (5954_CR23) 2013; 29 CA Monje (5954_CR2) 2010 J Laflin (5954_CR26) 2014; 9 A Dabiri (5954_CR51) 2017; 90 M Poursina (5954_CR28) 2013; 184 JT Machado (5954_CR17) 1989; 6 5954_CR14 A Oustaloup (5954_CR11) 2000; 47 5954_CR15 I Petras (5954_CR3) 2011 A Oustaloup (5954_CR10) 1995; 1 Z-L Gaing (5954_CR47) 2004; 19 I Khan (5954_CR36) 2013; 67 C Kingsley (5954_CR41) 2017; 116 5954_CR19 RE Roberson (5954_CR46) 1988 A Dabiri (5954_CR50) 2017; 50 S Das (5954_CR1) 2011 MP Aghababa (5954_CR48) 2016; 20 M Poursina (5954_CR35) 2012; 29 KD Bhalerao (5954_CR33) 2010; 23 A Dabiri (5954_CR16) 2018; 63 R Featherstone (5954_CR25) 1999; 18 P Malczyk (5954_CR34) 2012; 70 A Dabiri (5954_CR52) 2018; 56 D Valério (5954_CR13) 2006; 86 JH Critchley (5954_CR22) 2004; 12 5954_CR8 EA Butcher (5954_CR7) 2017 A Fijany (5954_CR20) 1995; 11 I Podlubny (5954_CR4) 1999; 44 |
| References_xml | – reference: DasSFunctional Fractional Calculus2011BerlinSpringer1225.26007 – reference: PoursinaMAndersonKSCanonical ensemble simulation of biopolymers using a coarse-grained articulated generalized divide-and-conquer schemeComput. Phys. Commun.2013184365266030070511302.82137 – reference: KhanIAndersonKPerformance investigation and constraint stabilization approach for the orthogonal complement-based divide-and-conquer algorithmMech. Mach. Theory201367111121 – reference: OustaloupALevronFMathieuBNanotFMFrequency-band complex noninteger differentiator: characterization and synthesisIEEE Trans. Circuits Syst. I Fund. Theory Appl.20004712539 – reference: DabiriAMoghaddamBMachadoJTOptimal variable-order fractional pid controllers for dynamical systemsJ. Comput. Appl. Math.2018339404837876761392.49033 – reference: PetrasIFractional-Order Nonlinear Systems: Modeling, Analysis and Simulation2011BerlinSpringer1228.34002 – reference: Dabiri, A., Nazari, M., Butcher, E.A.: Minimal phase-variable canonical state-space realizations and initializations for linear time-invariant multi-term fractional differential equations. In: American Control Conference (ACC), Milwaukee, WI, May 24–26 (2018) – reference: MalczykPFraczekJA divide and conquer algorithm for constrained multibody system dynamics based on augmented lagrangian method with projections-based error correctionNonlinear Dyn.20127018718892991319 – reference: PodlubnyIFractional-order systems and pi/sup/spl lambda//d/sup/spl Mu//-controllersIEEE Trans. Autom. Control199944120821416669371056.93542 – reference: BhaleraoKDPoursinaMAndersonKSAn efficient direct differentiation approach for sensitivity analysis of flexible multibody systemsMultibody Syst. Dyn.20102312114025786711379.70031 – reference: PodlubnyIFractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications1998AmsterdamElsevier0924.34008 – reference: ValérioDda CostaJSTuning of fractional pid controllers with Ziegler–Nichols-type rulesSig. Process.20068610277127841172.94496 – reference: ZamaniMSadatiNGhartemaniMKDesign of an H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} PID controller using particle swarm optimizationInt. J. Control Autom. Syst.200972273280 – reference: MachadoJTGuestJSpecial issue on fractional calculus and applicationsNonlinear Dyn.2002291–4322 – reference: Dabiri, A., Butcher, E.A., Poursina, M.: Fractional delayed control design for linear periodic systems. In: ASME 2016 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE), Charlotte, NC, Aug 21–24 (2016) – reference: GaingZ-LA particle swarm optimization approach for optimum design of PID controller in AVR systemIEEE Trans. Energy Convers.2004192384391 – reference: CritchleyJHAndersonKSParallel logarithmic order algorithm for general multibody system dynamicsMultibody Syst. Dyn.20041275931062.70002 – reference: PoursinaMAndersonKSAn extended divide-and-conquer algorithm for a generalized class of multibody constraintsMultibody Syst. Dyn.2012293235254302771810.1007/s11044-012-9324-9 – reference: RobersonRESchwertassekRDynamics of Multibody Systems1988BerlinSpringer0654.70001 – reference: Poursina, M., Bhalerao, K.D., Flores, S., Anderson, K.S., Laederach, A.: Strategies for articulated multibody-based adaptive coarse grain simulation of RNA. In: Methods in Enzymology. Computer Methods Part C, Science Direct (2011) – reference: MasaratiPComputed torque control of redundant manipulators using general-purpose software in real-timeMultibody Syst. Dyn.2014324034232744431305.70008 – reference: BhaleraoKDCritchleyJAndersonKAn efficient parallel dynamics algorithm for simulation of large articulated robotic systemsMech. Mach. Theory2012538698 – reference: Dabiri, A., Poursina, M., Butcher, E.A. : Integration of divide-and-conquer algorithm with fractional order controllers for the efficient dynamic modeling and control of multibody systems. In: American Control Conference (ACC), Milwaukee, WI, May 24–26 (2018) – reference: BaleanuDMachadoJATLuoACFractional Dynamics and Control2011BerlinSpringer – reference: MonjeCAChenYVinagreBMXueDFeliu-BatlleVFractional-Order Systems and Controls: Fundamentals and Applications2010BerlinSpringer1211.93002 – reference: DabiriAButcherEANumerical solution of multi-order fractional differential equations with multiple delays via spectral collocation methodsAppl. Math. Model.201856424448374495207166696 – reference: LaflinJAndersonKSKhanIMPoursinaMAdvances in the application of the divide-and-conquer algorithm to multibody system dynamicsJ. Comput. Nonlinear Dyn.20149041003041003 – reference: AghababaMPOptimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithmSoft. Comput.2016201040554067 – reference: DabiriAButcherEAEfficient modified chebyshev differentiation matrices for fractional differential equationsCommun. Nonlinear Sci. Numer. Simul.201750284310363027707261191 – reference: ButcherEADabiriANazariMInspergerTErsalTOroszGStability and control of fractional periodic time-delayed systemsTime Delay Systems: Theory, Numerics, Applications, and Experiments2017New YorkSpringer1071251387.34109 – reference: KingsleyCPoursinaMExtension of the divide-and-conquer algorithm for the efficient inverse dynamics analysis of multibody systemsMultibody Syst. Dyn.201842214516737465651418.70011 – reference: LaflinJAndersonKSKhanIMPoursinaMNew and extended applications of the divide-and-conquer algorithm for multibody dynamicsJ. Comput. Nonlinear Dyn.20149041004041011 – reference: FijanyASharfID’EleuterioGMTParallel O(log N) algorithms for computation of manipulator forward dynamicsIEEE Trans. Robot. Autom.199511389400 – reference: LaflinJJAndersonKSGeometrically exact beam equations in the adaptive DCA frameworkMultibody Syst. Dyn.20194711939872291420.70001 – reference: FeatherstoneRA divide-and-conquer articulated body algorithm for parallel o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ({n}))$$\end{document} calculation of rigid body dynamics. Part 1: basic algorithmInt. J. Robot. Res.199918867875 – reference: PoursinaMExtended divide-and-conquer algorithm for uncertainty analysis of multibody systems in polynomial chaos expansion frameworkJ. Comput. Nonlinear Dyn.2015113031015031023 – reference: MukherjeeRAndersonKSAn orthogonal complement based divide-and-conquer algorithm for constrained multibody systemsNonlinear Dyn.20074819921523052681180.70006 – reference: OustaloupAMathieuBLanussePThe crone control of resonant plants: application to a flexible transmissionEur. J. Control1995121131211423.93106 – reference: MukherjeeRMAndersonKSEfficient methodology for multibody simulations with discontinuous changes in system definitionMultibody Syst Dyn20071814516823492701178.70074 – reference: KilbasAASrivastavaHMTrujilloJJTheory and Applications of Fractional Differential Equations2006New York, NYElsevier Science Inc.1092.45003 – reference: ChadajKMalczykPFraczekJA parallel Hamiltonian formulation for forward dynamics of closed-loop multibody systemsMultibody Syst. Dyn.20163912735839021404.70018 – reference: HamamciSEStabilization using fractional-order PI and PID controllersNonlinear Dyn.20085113293431170.93023 – reference: MachadoJTMartins CarvalhoJDEngineering design of a multirate nonlinear controller for robot manipulatorsJ. Robot. Syst.1989611170662.70004 – reference: MachadoJATde CarvalhoJLMGalhanoAMSFAnalysis of robot dynamics and compensation using classical and computed torque techniquesIEEE Trans. Educ.1993364372379 – reference: MrázLValášekMSolution of three key problems for massive parallelization of multibody dynamicsMultibody Sys.Dyn.201329121393016846 – reference: DabiriAButcherEAPoursinaMNazariMOptimal periodic-gain fractional delayed state feedback control for linear fractional periodic time-delayed systemsIEEE Trans. Autom. Control2018634989100237846561390.93324 – reference: Critchley, J., Anderson, K.S.: A generalized recursive coordinate reduction method for multibody system dynamics. Int. J. Multiscale Comput. Eng. 1(2&3) (2003) – reference: FeatherstoneRA divide-and-conquer articulated body algorithm for parallel o(log(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$o(\log ({n}))$$\end{document} calculation of rigid body dynamics. Part 2: trees, loops, and accuracyInt. J. Robot. Res.199918876892 – reference: MukherjeeRMBhaleraoKDAndersonKSA divide-and-conquer direct differentiation approach for multibody system sensitivity analysisStruct. Multidiscipl. Optim.20073541342923903761273.70012 – reference: Dabiri, A., Nazari, M., Butcher, E.A.: Optimal fractional state feedback control for linear fractional periodic time-delayed systems. In: American Control Conference (ACC), Boston, MA (2016) – reference: KingsleyCPoursinaMSabetSDabiriALogarithmic complexity dynamics formulation for computed torque control of articulated multibody systemsMech. Mach. Theory2017116Suppl C481500 – reference: DabiriAButcherEAStable fractional chebyshev differentiation matrix for numerical solution of fractional differential equationsNonlinear Dyn.201790118520137079461390.34017 – volume: 90 start-page: 185 issue: 1 year: 2017 ident: 5954_CR51 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3654-3 – volume: 36 start-page: 372 issue: 4 year: 1993 ident: 5954_CR18 publication-title: IEEE Trans. Educ. doi: 10.1109/13.241614 – volume: 47 start-page: 1 year: 2019 ident: 5954_CR39 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-019-09669-1 – volume: 7 start-page: 273 issue: 2 year: 2009 ident: 5954_CR49 publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-009-0213-9 – volume: 11 start-page: 031015 issue: 3 year: 2015 ident: 5954_CR37 publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4031573 – volume: 39 start-page: 1 year: 2016 ident: 5954_CR38 publication-title: Multibody Syst. Dyn. – volume: 20 start-page: 4055 issue: 10 year: 2016 ident: 5954_CR48 publication-title: Soft. Comput. doi: 10.1007/s00500-015-1741-2 – ident: 5954_CR15 doi: 10.1115/DETC2016-60322 – volume: 12 start-page: 75 year: 2004 ident: 5954_CR22 publication-title: Multibody Syst. Dyn. doi: 10.1023/B:MUBO.0000042893.00088.c9 – volume-title: Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation year: 2011 ident: 5954_CR3 doi: 10.1007/978-3-642-18101-6 – volume: 18 start-page: 876 year: 1999 ident: 5954_CR25 publication-title: Int. J. Robot. Res. doi: 10.1177/02783649922066628 – volume: 11 start-page: 389 year: 1995 ident: 5954_CR20 publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.388780 – volume: 184 start-page: 652 issue: 3 year: 2013 ident: 5954_CR28 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.10.029 – volume: 339 start-page: 40 year: 2018 ident: 5954_CR9 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.02.029 – volume: 53 start-page: 86 year: 2012 ident: 5954_CR21 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2012.03.001 – volume: 18 start-page: 145 year: 2007 ident: 5954_CR30 publication-title: Multibody Syst Dyn doi: 10.1007/s11044-007-9075-1 – volume-title: Fractional-Order Systems and Controls: Fundamentals and Applications year: 2010 ident: 5954_CR2 doi: 10.1007/978-1-84996-335-0 – volume: 9 start-page: 041003 year: 2014 ident: 5954_CR26 publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4026072 – volume-title: Functional Fractional Calculus year: 2011 ident: 5954_CR1 doi: 10.1007/978-3-642-20545-3 – volume: 116 start-page: 481 issue: Suppl C year: 2017 ident: 5954_CR41 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2017.05.004 – start-page: 107 volume-title: Time Delay Systems: Theory, Numerics, Applications, and Experiments year: 2017 ident: 5954_CR7 doi: 10.1007/978-3-319-53426-8_8 – volume: 9 start-page: 041004 year: 2014 ident: 5954_CR27 publication-title: J. Comput. Nonlinear Dyn. doi: 10.1115/1.4027869 – volume: 86 start-page: 2771 issue: 10 year: 2006 ident: 5954_CR13 publication-title: Sig. Process. doi: 10.1016/j.sigpro.2006.02.020 – ident: 5954_CR8 doi: 10.1109/ACC.2016.7525339 – volume: 18 start-page: 867 year: 1999 ident: 5954_CR24 publication-title: Int. J. Robot. Res. doi: 10.1177/02783649922066619 – volume: 29 start-page: 21 issue: 1 year: 2013 ident: 5954_CR23 publication-title: Multibody Sys.Dyn. doi: 10.1007/s11044-012-9311-1 – volume: 42 start-page: 145 issue: 2 year: 2018 ident: 5954_CR40 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-017-9591-6 – ident: 5954_CR14 doi: 10.23919/ACC.2018.8431823 – ident: 5954_CR19 doi: 10.1615/IntJMultCompEng.v1.i23.50 – volume: 1 start-page: 113 issue: 2 year: 1995 ident: 5954_CR10 publication-title: Eur. J. Control doi: 10.1016/S0947-3580(95)70014-0 – volume: 51 start-page: 329 issue: 1 year: 2008 ident: 5954_CR12 publication-title: Nonlinear Dyn. – volume: 48 start-page: 199 year: 2007 ident: 5954_CR29 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-006-9083-3 – volume: 44 start-page: 208 issue: 1 year: 1999 ident: 5954_CR4 publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.739144 – volume: 35 start-page: 413 year: 2007 ident: 5954_CR31 publication-title: Struct. Multidiscipl. Optim. doi: 10.1007/s00158-007-0142-2 – volume-title: Fractional Dynamics and Control year: 2011 ident: 5954_CR6 – volume: 70 start-page: 871 issue: 1 year: 2012 ident: 5954_CR34 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-012-0503-2 – volume: 29 start-page: 235 issue: 3 year: 2012 ident: 5954_CR35 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-012-9324-9 – volume: 47 start-page: 25 issue: 1 year: 2000 ident: 5954_CR11 publication-title: IEEE Trans. Circuits Syst. I Fund. Theory Appl. doi: 10.1109/81.817385 – volume: 6 start-page: 1 issue: 1 year: 1989 ident: 5954_CR17 publication-title: J. Robot. Syst. doi: 10.1002/rob.4620060102 – volume: 63 start-page: 989 issue: 4 year: 2018 ident: 5954_CR16 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2017.2731522 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 5954_CR43 – volume: 29 start-page: 3 issue: 1–4 year: 2002 ident: 5954_CR5 publication-title: Nonlinear Dyn. – volume: 67 start-page: 111 year: 2013 ident: 5954_CR36 publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2013.04.009 – volume: 23 start-page: 121 year: 2010 ident: 5954_CR33 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-009-9176-0 – ident: 5954_CR42 doi: 10.23919/ACC.2018.8431882 – volume-title: Dynamics of Multibody Systems year: 1988 ident: 5954_CR46 doi: 10.1007/978-3-642-86464-3 – volume: 19 start-page: 384 issue: 2 year: 2004 ident: 5954_CR47 publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2003.821821 – volume: 32 start-page: 403 year: 2014 ident: 5954_CR45 publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-013-9377-4 – volume-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications year: 1998 ident: 5954_CR44 – volume: 50 start-page: 284 year: 2017 ident: 5954_CR50 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.02.009 – volume: 56 start-page: 424 year: 2018 ident: 5954_CR52 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.12.012 – ident: 5954_CR32 doi: 10.1016/B978-0-12-381270-4.00003-2 |
| SSID | ssj0003208 |
| Score | 2.293773 |
| Snippet | In this paper, a new framework is presented for the dynamic modeling and control of fully actuated multibody systems with open and/or closed chains as well as... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1611 |
| SubjectTerms | Acceleration Algorithms Automotive Engineering Canonical forms Chains Classical Mechanics Computing time Control Control methods Control stability Control systems Control theory Dynamic models Dynamic stability Dynamical Systems Engineering Inverse dynamics Mechanical Engineering Multibody systems Nonlinear control Optimal control Original Paper Stability criteria System dynamics Torque Tracking errors Vibration |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYCBQgFRKMgDG1hqHDdORgRUTBXiS90ix3FKBTQoKUjw6zk7DgUESDDHuST-ON-L794D2NeGxEvIgDKDdLhOIioD5lFPekGCeEJGGbdiE2IwCIfD6NwVhZV1tnt9JGk99azYDZEKQl9mDm-jHqf-PCzgdhcawYaLy5t3_-szq0PXRWRh_kIMXanM9zY-b0ezGPPLsajdbfrN_73nKqy46JIcVdNhDeb0pAVNF2kSt47LFix_oCFch7uTSpa-JHKSkhydyAMacUnsJM-IzTpM8vSFVMTPJTHp8iOSFVVZBLYeVfTV41d8ji3x0hSNUTSCn1oQeT_Ki_H09mEDrvunV8dn1IkwUIWrc0plqDhCtG4g0wyjiZ7yE2GkhjyM3WRPJInQfqp7XojegIecJ12tfeYpIYRShrxtExqTfKK3gDCTcpMKxRIv5SzTEQ8kuhQmDejhjLXBq8ciVo6h3Ahl3MczbmXTtzH2bWz7NvbbcPB-z2PFz_Fr6049xLFbq2XMuPB9ht8m2nBYD-ns8s_Wtv_WfAeWmJkVtpCxA41p8aR3YVE9T8dlsWfn8BvW4-ky priority: 102 providerName: Springer Nature |
| Title | Dynamics and optimal control of multibody systems using fractional generalized divide-and-conquer algorithm |
| URI | https://link.springer.com/article/10.1007/s11071-020-05954-3 https://www.proquest.com/docview/2473327827 |
| Volume | 102 |
| WOSCitedRecordID | wos000576718200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-269X dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-269X dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-269X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003208 issn: 0924-090X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywAD5SnKSx7YwKJ23LiZEI9WTFXFS90ix3EKAhpoChL8es6OSwEJFpYscS627nz22XffB7BnLIiXVCHlNtIRJomoCjmjTLEwwXhCRZlwZBOy2231-1HPH7gVPq1y4hOdo05zbc_ID7mQQcBxPZNHT8_UskbZ21VPoTELVYuSwFzq3uWnJw64Y6RrYIxhzyP6vmimLJ3DuAcDaW6vgqOmoMH3hWm62_xxQerWnU7tvz1egkW_4yTHpYksw4wZrkDN7z6Jn9vFCix8gSZchfuzkqq-IGqYkhwdyyMK8YntJM-Iy0RM8vSNlGDQBbEp9AOSjcpSCWw9KCGt797xP67sy1AURlEIDmNE1MMAuzu-fVyD60776vScemIGqnHGjqlqaYFhWyNUaYbja-ogkZZ-iOF-TjVlkkgTpKbJWughREuIpGFMwJmWUmptAd3WoTLMh2YDCLdpOKnUPGGp4JmJRKjQzXBlAyHBeR3YRCux9qjlljzjIZ7iLVtNxqjJ2GkyDuqw__nNU4nZ8Wfr7Yn6Yj9_i3iquzocTAxg-vp3aZt_S9uCeW5tzhUzbkNlPHoxOzCnX8d3xWgXqiftbu9i11kxPi8ubz4AaGr2DQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RQCocCqUglkLxgZ7AYjPxxptDhRAfAgErJKi0t9RxnGUFm8BmW7T9Uf2NHTsJWyqVG4ee40wk53k8z555A7BlrIiXVAFHy3SEiUOuAvS4p7wgJj6hwlS4ZhOy02l3u-HlFPyqa2FsWmXtE52jTnJtz8h3UUjfR9rP5N79A7ddo-ztat1Co4TFmRk_EmUrvpwe0v_9jHh8dH1wwquuAlwT3EZctbUgztEMVJKSuZb2Y2l753gUjKiWjGNp_MS0vDbBW7SFiJvG-OhpKaXWVo2M7L6BGQojMHSpgldPnt9H1wGvSZzGnn90qyKdslSPeBYRd7RXz2FLcP_5RjiJbv-6kHX73PHC_zZDi_CuiqjZfrkE3sOUyZZgoYquWeW7iiWY_0N68QPcHo4zNejrgqksYTk5zgEZqRL3WZ4yl2kZ58mYlWLXBbMlAj2WDstSEBrdKyW7-z_pO66szXAyxskITduQqbseTc_oZrAMX19lAlZgOsszswoMbZpRIjXGXiIwNaEIFLlRVJboCcQGeDUKIl2pstvmIHfRRE_aIici5EQOOZHfgO2nd-5LTZIXR6_XcIkq_1REE6w0YKcG3OTxv62tvWxtE96eXF-cR-ennbOPMIcW765wcx2mR8PvZgNm9Y9Rvxh-ciuHwbfXBuJvBotNIQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tA03wsLICols3_MAbWGtsN24ep41q06aqEh_qW-Q4TlexJlUSkOCv39lJmjIB0rTnOJfYZ5_vZ9_9DuC9sSReUvmUWaQjTBRQ5TOPesrzI8QTKkiEKzYhJ5PRbBZMN7L4XbR7cyVZ5TRYlqa0PF3FyWmb-IaoBWEwsxe5wVBQvg27wgbSW7z--dvaFnPmatINEGXYE4lZnTbzdxl_bk2tv_ngitTtPOPO0__5JezXXic5q6bJAWyZtAud2gMl9fouuvBig57wFXy_qMrVF0SlMcnQuCxRSB3cTrKEuGjEKIt_kYoQuiA2jH5OkrxKl8DW84rWevEbv-NSvwxFYRSFYLdzou7mWb4ob5ev4ev405fzS1oXZ6AaV21J1UgLhG4DX8UJehlDzSNpSxChErgayiiShsdm6I3QSoiRENHAGM48LaXU2pK6vYGdNEvNWyDMhuLEUrPIiwVLTCB8haaGKQuGBGM98Bq9hLpmLrcFNO7ClnPZjm2IYxu6sQ15Dz6s31lVvB3_bd1v1B3Wa7gImZCcM-yb7MHHRr3t439LO3xc83ewN70YhzdXk-sjeM7sBHG5jn3YKfMf5hie6Z_loshP3NS-B5kP9Po |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+and+optimal+control+of+multibody+systems+using+fractional+generalized+divide-and-conquer+algorithm&rft.jtitle=Nonlinear+dynamics&rft.au=Dabiri+Arman&rft.au=Poursina+Mohammad&rft.au=Tenreiro%2C+Machado+J+A&rft.date=2020-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=102&rft.issue=3&rft.spage=1611&rft.epage=1626&rft_id=info:doi/10.1007%2Fs11071-020-05954-3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon |