Optimizing software reliability growth models through simulated annealing algorithm: parameters estimation and performance analysis

In artificial intelligence (AI), optimization techniques are used to solve several problems in different fields. One of these areas is software reliability verification, which is an important part of software products, as it helps determine how reliable the software is to complete its functions. Thi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of supercomputing Ročník 80; číslo 11; s. 16173 - 16201
Hlavní autori: Bahnam, Baydaa Sulaiman, Dawwod, Suhair Abd, Younis, Mohammed Chachan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.07.2024
Springer Nature B.V
Predmet:
ISSN:0920-8542, 1573-0484
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In artificial intelligence (AI), optimization techniques are used to solve several problems in different fields. One of these areas is software reliability verification, which is an important part of software products, as it helps determine how reliable the software is to complete its functions. This is done by estimating the parameters of software reliability growth models (SRGMs). SRGMs predict the expected number of failures after completion, while also serving as an indicator of software readiness for delivery. Therefore, this study aims to optimize the estimation of these parameters based on the available failure data using one of the stochastic optimization algorithms, the simulated annealing algorithm (SA) due to its power and effectiveness. Three SRGMs’ models are studied: delayed S-shaped, Musa-Okumoto logarithmic and Power models, to examine the feasibility of the proposed algorithm using five different data sets. The results were compared and analyzed with several algorithms: Particle swarm optimization (PSO), cuckoo search (CS), modify whale optimization algorithm (MWOA), S-shaped model with logistic TEF and social spider algorithm (SSA). A comparison was also made with recent SRGMs that do not rely on AI techniques. The results showed that the proposed algorithm based on SA outperformed all other methods in finding the optimal parameters.
AbstractList In artificial intelligence (AI), optimization techniques are used to solve several problems in different fields. One of these areas is software reliability verification, which is an important part of software products, as it helps determine how reliable the software is to complete its functions. This is done by estimating the parameters of software reliability growth models (SRGMs). SRGMs predict the expected number of failures after completion, while also serving as an indicator of software readiness for delivery. Therefore, this study aims to optimize the estimation of these parameters based on the available failure data using one of the stochastic optimization algorithms, the simulated annealing algorithm (SA) due to its power and effectiveness. Three SRGMs’ models are studied: delayed S-shaped, Musa-Okumoto logarithmic and Power models, to examine the feasibility of the proposed algorithm using five different data sets. The results were compared and analyzed with several algorithms: Particle swarm optimization (PSO), cuckoo search (CS), modify whale optimization algorithm (MWOA), S-shaped model with logistic TEF and social spider algorithm (SSA). A comparison was also made with recent SRGMs that do not rely on AI techniques. The results showed that the proposed algorithm based on SA outperformed all other methods in finding the optimal parameters.
Author Dawwod, Suhair Abd
Younis, Mohammed Chachan
Bahnam, Baydaa Sulaiman
Author_xml – sequence: 1
  givenname: Baydaa Sulaiman
  surname: Bahnam
  fullname: Bahnam, Baydaa Sulaiman
  email: baydaa_sulaiman@uomosul.edu.iq
  organization: Department of Software, College of Computer Sciences and Mathematics, University of Mosul
– sequence: 2
  givenname: Suhair Abd
  surname: Dawwod
  fullname: Dawwod, Suhair Abd
  organization: Department Management Information Systems, College of Administration and Economics, University of Mosul
– sequence: 3
  givenname: Mohammed Chachan
  surname: Younis
  fullname: Younis, Mohammed Chachan
  organization: Department of Computer Sciences, College of Computer Sciences and Mathematics, University of Mosul
BookMark eNp9kE1r3DAQhkVIIZtt_kBOgp7d6stru7cS2rQQyCU9i1ntyKsgW-5IS9he-8erZAuFHHIaBt5neOe5ZOdzmpGxayk-SiG6T1lKpbpGKNOIjTCbxpyxlWw73QjTm3O2EoMSTd8adcEuc34UQhjd6RX7c7-UMIXfYR55Tr48ASEnjAG2IYZy5COlp7LnU9phzLzsKR3GPc9hOkQouOMwzwjxGYc4JgplP33mCxBMWJAyx1zvQwlprtEdX5B8oglmh3WHeMwhv2fvPMSMV__mmv389vXh5ntzd3_74-bLXeO0HEoDHXi3Fb7zph36Yddr5bTrN6hAKg2DNkriVvTaOz8o9EZ4lOAc1vS2N6jX7MPp7kLp16EWs4_pQLVEtlq1m3bQuhpbs_6UcpRyJvTWhfLyQCEI0Uphn5Xbk3JbldsX5dZUVL1CF6rP0_FtSJ-gXMPziPS_1RvUXzdnmoI
CitedBy_id crossref_primary_10_1007_s11227_025_07784_9
crossref_primary_10_33693_2313_223X_2024_11_2_22_28
crossref_primary_10_15832_ankutbd_1611010
crossref_primary_10_3390_biomimetics10040195
Cites_doi 10.1007/978-3-319-91086-4_1
10.3390/axioms12050459
10.1142/12360
10.55524/NCDICM.2023.11.1.3
10.3390/math9090985
10.14569/IJACSA.2016.070465
10.1016/B978-0-12-818366-3.00010-1
10.3390/app11156998
10.3390/software2010001
10.1142/S0218126624501615
10.1007/978-981-16-0025-8
10.1177/1748006X211033713
10.3390/math11163491
10.1080/09617353.2021.1921547
10.1109/TR.2007.895301
10.5815/ijcnis.2023.01.07
10.3390/math8081366
10.1177/17483026211034442
10.5120/ijca2018917499
10.7753/IJCATR0306.1013
10.1155/2022/3752264
10.1007/s00500-023-08761-1
10.48550/arXiv.2001.09924
10.1016/j.jss.2015.01.001
10.3390/sym14030593
10.1080/03772063.2022.2069603
10.3390/data4010004
10.48550/arXiv.2003.04770
10.1007/s40747-020-00205-9
10.1002/qre.3220
10.9734/ajpas/2022/v16i330402
10.3390/app122312383
10.1109/ISCON57294.2023.10112061
10.1109/ACCESS.2023.3292301
10.1109/SEAA56994.2022.00047
10.1109/ICAIS53314.2022.9743129
10.48550/arXiv.2203.02201
10.1109/CEC.2006.1688697
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11227-024-06046-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest MSED
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 16201
ExternalDocumentID 10_1007_s11227_024_06046_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-a7afcb0f7f45989d832c3c86e2a123a93421eb083fcf92ef40fe1acce598b84e3
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221525000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Sun Nov 30 04:39:30 EST 2025
Sat Nov 29 04:27:47 EST 2025
Tue Nov 18 21:45:50 EST 2025
Fri Feb 21 02:40:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Delayed S-shaped model
Simulated annealing algorithm (SA)
Artificial intelligence (AI)
Power model
Musa-Okumoto logarithmic model
Swarm intelligence (SI)
Software reliability growth models (SRGMs)
Parameters estimation
Comparative analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a7afcb0f7f45989d832c3c86e2a123a93421eb083fcf92ef40fe1acce598b84e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3256593357
PQPubID 2043774
PageCount 29
ParticipantIDs proquest_journals_3256593357
crossref_citationtrail_10_1007_s11227_024_06046_4
crossref_primary_10_1007_s11227_024_06046_4
springer_journals_10_1007_s11227_024_06046_4
PublicationCentury 2000
PublicationDate 20240700
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 7
  year: 2024
  text: 20240700
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Lu, Ma (CR17) 2021
Pradhan, Kumar, Dhar (CR9) 2022; 236
Lee, Chang, Pham (CR25) 2020; 8
Kumar, Kaswan (CR23) 2022
Yaghoobi, Leung (CR6) 2023; 11
Huang, Kuo, Lyu (CR14) 2007; 56
Batarseh, Mohod, Kumar, Bui, Batarseh, Yang (CR2) 2020
Moskalenko, Moskalenko, Korobov, Semashko (CR37) 2019; 4
CR38
AL-Saati, Alabajee (CR16) 2018
CR13
Tyagi, Bharti, Kumar (CR27) 2023
CR12
CR34
Kim, Lee, Baik (CR31) 2015; 102
Delahaye, Chaimatanan, Mongeau, Gendreau, Potvin (CR32) 2018
CR10
Li, Dohi, Okamura (CR30) 2023; 2
Chang, Lin, Shi, Meen (CR26) 2022; 14
Hanagal, Bhalerao (CR28) 2021
Li, Pham (CR18) 2021; 11
Felfernig, Kalech, Abreu, Last (CR1) 2021
Zhang, Jiang (CR24) 2023
AL-Saati, Alabajee (CR15) 2016
CR4
Okamura, Dohi (CR29) 2021; 9
Li, Wang, Gao, Song, Li (CR33) 2021; 7
Raamesh, Jothi, Radhika (CR11) 2022
Giri (CR36) 2023
Raheem, Akthar (CR19) 2023; 15
Alabajee, Alreffaee (CR22) 2018
Sheta, Abdel-Raouf (CR21) 2016
Haque, Ahmad (CR7) 2021; 40
Lee, Chang, Pham (CR39) 2022; 12
Oveisi, Moeini, Mirzaei, Farsi (CR8) 2023; 39
Yadav, Yadav (CR3) 2022; 11
Diwaker, Goyat (CR20) 2014; 3
Hanifatu, Nasiru, Dioggban (CR5) 2022; 16
Gonzalez-Ayala, Alejo-Reyes, Cuevas, Mendoza (CR35) 2023; 12
S Oveisi (6046_CR8) 2023; 39
DH Lee (6046_CR39) 2022; 12
MN Hanifatu (6046_CR5) 2022; 16
S Tyagi (6046_CR27) 2023
N Kumar (6046_CR23) 2022
Q Li (6046_CR18) 2021; 11
K Lu (6046_CR17) 2021
Y Li (6046_CR33) 2021; 7
C Diwaker (6046_CR20) 2014; 3
T Kim (6046_CR31) 2015; 102
A Felfernig (6046_CR1) 2021
L Raamesh (6046_CR11) 2022
AF Sheta (6046_CR21) 2016
NA AL-Saati (6046_CR15) 2016
S Li (6046_CR30) 2023; 2
W Zhang (6046_CR24) 2023
6046_CR12
6046_CR34
6046_CR10
6046_CR38
6046_CR13
JM Giri (6046_CR36) 2023
N Yadav (6046_CR3) 2022; 11
H Okamura (6046_CR29) 2021; 9
FA Batarseh (6046_CR2) 2020
C-Y Huang (6046_CR14) 2007; 56
MA Alabajee (6046_CR22) 2018
T Yaghoobi (6046_CR6) 2023; 11
D Delahaye (6046_CR32) 2018
DH Lee (6046_CR25) 2020; 8
6046_CR4
AR Raheem (6046_CR19) 2023; 15
V Moskalenko (6046_CR37) 2019; 4
DD Hanagal (6046_CR28) 2021
T-C Chang (6046_CR26) 2022; 14
P Gonzalez-Ayala (6046_CR35) 2023; 12
MA Haque (6046_CR7) 2021; 40
V Pradhan (6046_CR9) 2022; 236
NA AL-Saati (6046_CR16) 2018
References_xml – year: 2018
  ident: CR32
  article-title: Simulated annealing: from basics to applications,"
  publication-title: Handbook of metaheuristics
  doi: 10.1007/978-3-319-91086-4_1
– volume: 12
  start-page: 459
  issue: 5
  year: 2023
  ident: CR35
  article-title: A modified simulated annealing (MSA) algorithm to solve the supplier selection and order quantity allocation problem with non-linear freight rates
  publication-title: Axioms
  doi: 10.3390/axioms12050459
– start-page: 29
  year: 2021
  end-page: 47
  ident: CR1
  article-title: AI techniques for software requirements prioritization
  publication-title: Artificial intelligence methods for software engineering
  doi: 10.1142/12360
– year: 2023
  ident: CR36
  article-title: Simulated annealing and its applications to mechanical engineering: a review
  publication-title: Int J Innov Res Comput Sci Technol
  doi: 10.55524/NCDICM.2023.11.1.3
– volume: 9
  start-page: 985
  issue: 9
  year: 2021
  ident: CR29
  article-title: Application of EM algorithm to NHPP-based software reliability assessment with generalized failure count data
  publication-title: Math Softw Reliab Qual Assur
  doi: 10.3390/math9090985
– year: 2016
  ident: CR21
  article-title: Estimating the parameters of software reliability growth models using the grey wolf optimization algorithm
  publication-title: Int J Adv Comput Sci Appl
  doi: 10.14569/IJACSA.2016.070465
– ident: CR4
– start-page: 179
  year: 2020
  end-page: 232
  ident: CR2
  article-title: The application of artificial intelligence in software engineering: a review challenging conventional wisdom
  publication-title: Data democracy
  doi: 10.1016/B978-0-12-818366-3.00010-1
– volume: 11
  start-page: 6998
  issue: 15
  year: 2021
  ident: CR18
  article-title: Modeling software fault-detection and fault-correction processes by considering the dependencies between fault amounts
  publication-title: Appl Sci
  doi: 10.3390/app11156998
– volume: 2
  start-page: 1
  issue: 1
  year: 2023
  end-page: 18
  ident: CR30
  article-title: Are infinite-failure NHPP-based software reliability models useful?
  publication-title: Software
  doi: 10.3390/software2010001
– ident: CR12
– volume: 11
  start-page: 457
  issue: 1
  year: 2022
  ident: CR3
  article-title: Software reliability prediction and optimization using machine learning algorithms: a review
  publication-title: J Integr Sci Technol
– year: 2023
  ident: CR24
  article-title: Bootstrap-based resampling methods for software reliability measurement under small sample condition
  publication-title: J Circuits Syst Comput
  doi: 10.1142/S0218126624501615
– year: 2021
  ident: CR28
  publication-title: Software reliability growth models
  doi: 10.1007/978-981-16-0025-8
– ident: CR10
– volume: 236
  start-page: 18
  issue: 1
  year: 2022
  end-page: 36
  ident: CR9
  article-title: Modelling software reliability growth through generalized inflection S-shaped fault reduction factor and optimal release time
  publication-title: Proc Inst Mech Eng, Part O: J Risk Reliab
  doi: 10.1177/1748006X211033713
– volume: 11
  start-page: 3491
  issue: 16
  year: 2023
  ident: CR6
  article-title: Modeling software reliability with learning and fatigue
  publication-title: Mathematics
  doi: 10.3390/math11163491
– volume: 40
  start-page: 209
  issue: 4
  year: 2021
  end-page: 220
  ident: CR7
  article-title: An effective software reliability growth model
  publication-title: Safety Reliab
  doi: 10.1080/09617353.2021.1921547
– volume: 56
  start-page: 198
  issue: 2
  year: 2007
  end-page: 211
  ident: CR14
  article-title: An assessment of testing-effort dependent software reliability growth models
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2007.895301
– volume: 15
  start-page: 81
  issue: 1
  year: 2023
  ident: CR19
  article-title: Software reliability growth models with exponentiated-gompertz testing effort and release time determination
  publication-title: Int J Comput Net nd Inf Secur
  doi: 10.5815/ijcnis.2023.01.07
– volume: 8
  start-page: 1366
  issue: 8
  year: 2020
  ident: CR25
  article-title: Software reliability model with dependent failures and SPRT
  publication-title: Mathematics
  doi: 10.3390/math8081366
– year: 2021
  ident: CR17
  article-title: A modified whale optimization algorithm for parameter estimation of software reliability growth models
  publication-title: J Algorithms Comput Technol
  doi: 10.1177/17483026211034442
– year: 2018
  ident: CR22
  article-title: Exploring ant lion optimization algorithm to enhance the choice of an appropriate software reliability growth model
  publication-title: Int J Comput Appl
  doi: 10.5120/ijca2018917499
– volume: 3
  start-page: 377
  year: 2014
  end-page: 380
  ident: CR20
  article-title: Parameter estimation of software reliability growth models using simulated annealing method
  publication-title: Int J Comput Appl Technol Res
  doi: 10.7753/IJCATR0306.1013
– year: 2022
  ident: CR23
  article-title: Soft hunting algorithm for auto-tuning software reliability growth models
  publication-title: Wirel Commun Mob Comput
  doi: 10.1155/2022/3752264
– year: 2023
  ident: CR27
  article-title: Scrutinizing the available SRGMs in the backdrop of open-source software while offering a way-out
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08761-1
– ident: CR38
– year: 2018
  ident: CR16
  article-title: Selecting best software reliability growth models: a social spider algorithm based approach
  publication-title: Int J Comp Appl
  doi: 10.48550/arXiv.2001.09924
– volume: 102
  start-page: 134
  issue: 2015
  year: 2015
  end-page: 144
  ident: CR31
  article-title: An effective approach to estimating the parameters of software reliability growth models using a real-valued genetic algorithm
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2015.01.001
– ident: CR13
– volume: 14
  start-page: 593
  issue: 3
  year: 2022
  ident: CR26
  article-title: Decision making of software release time at different confidence intervals with Ohba’s inflection s-shape model
  publication-title: Symmetry
  doi: 10.3390/sym14030593
– year: 2022
  ident: CR11
  article-title: Enhancing software reliability and fault detection using hybrid brainstorm optimization-based LSTM model
  publication-title: IETE J Res
  doi: 10.1080/03772063.2022.2069603
– ident: CR34
– volume: 4
  start-page: 4
  year: 2019
  ident: CR37
  article-title: The model and training algorithm of compact drone autonomous visual navigation system
  publication-title: Data
  doi: 10.3390/data4010004
– year: 2016
  ident: CR15
  article-title: A comparative study on parameter estimation in software reliability modeling using swarm intelligence
  publication-title: Int J Recent Res Rev
  doi: 10.48550/arXiv.2003.04770
– volume: 7
  start-page: 1173
  year: 2021
  end-page: 1183
  ident: CR33
  article-title: An improved simulated annealing algorithm based on residual network for permutation flow shop scheduling
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-020-00205-9
– volume: 39
  start-page: 412
  issue: 1
  year: 2023
  end-page: 453
  ident: CR8
  article-title: Software reliability prediction: a survey
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.3220
– volume: 16
  start-page: 13
  issue: 3
  year: 2022
  end-page: 25
  ident: CR5
  article-title: Chen software reliability growth model
  publication-title: AJPAS
  doi: 10.9734/ajpas/2022/v16i330402
– volume: 12
  start-page: 12383
  issue: 23
  year: 2022
  ident: CR39
  article-title: Software reliability growth model with dependent failures and uncertain operating environments
  publication-title: Appl Sci
  doi: 10.3390/app122312383
– year: 2023
  ident: 6046_CR27
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08761-1
– volume: 16
  start-page: 13
  issue: 3
  year: 2022
  ident: 6046_CR5
  publication-title: AJPAS
  doi: 10.9734/ajpas/2022/v16i330402
– volume: 7
  start-page: 1173
  year: 2021
  ident: 6046_CR33
  publication-title: Complex Intell Syst
  doi: 10.1007/s40747-020-00205-9
– start-page: 29
  volume-title: Artificial intelligence methods for software engineering
  year: 2021
  ident: 6046_CR1
  doi: 10.1142/12360
– year: 2016
  ident: 6046_CR15
  publication-title: Int J Recent Res Rev
  doi: 10.48550/arXiv.2003.04770
– year: 2018
  ident: 6046_CR16
  publication-title: Int J Comp Appl
  doi: 10.48550/arXiv.2001.09924
– volume: 11
  start-page: 3491
  issue: 16
  year: 2023
  ident: 6046_CR6
  publication-title: Mathematics
  doi: 10.3390/math11163491
– ident: 6046_CR38
  doi: 10.1109/ISCON57294.2023.10112061
– volume: 12
  start-page: 459
  issue: 5
  year: 2023
  ident: 6046_CR35
  publication-title: Axioms
  doi: 10.3390/axioms12050459
– volume: 4
  start-page: 4
  year: 2019
  ident: 6046_CR37
  publication-title: Data
  doi: 10.3390/data4010004
– volume: 236
  start-page: 18
  issue: 1
  year: 2022
  ident: 6046_CR9
  publication-title: Proc Inst Mech Eng, Part O: J Risk Reliab
  doi: 10.1177/1748006X211033713
– volume-title: Software reliability growth models
  year: 2021
  ident: 6046_CR28
  doi: 10.1007/978-981-16-0025-8
– ident: 6046_CR12
  doi: 10.1109/ACCESS.2023.3292301
– volume: 8
  start-page: 1366
  issue: 8
  year: 2020
  ident: 6046_CR25
  publication-title: Mathematics
  doi: 10.3390/math8081366
– volume: 11
  start-page: 457
  issue: 1
  year: 2022
  ident: 6046_CR3
  publication-title: J Integr Sci Technol
– volume: 9
  start-page: 985
  issue: 9
  year: 2021
  ident: 6046_CR29
  publication-title: Math Softw Reliab Qual Assur
  doi: 10.3390/math9090985
– volume: 11
  start-page: 6998
  issue: 15
  year: 2021
  ident: 6046_CR18
  publication-title: Appl Sci
  doi: 10.3390/app11156998
– ident: 6046_CR10
  doi: 10.1109/SEAA56994.2022.00047
– ident: 6046_CR4
  doi: 10.1109/ICAIS53314.2022.9743129
– volume: 2
  start-page: 1
  issue: 1
  year: 2023
  ident: 6046_CR30
  publication-title: Software
  doi: 10.3390/software2010001
– volume-title: Handbook of metaheuristics
  year: 2018
  ident: 6046_CR32
  doi: 10.1007/978-3-319-91086-4_1
– volume: 40
  start-page: 209
  issue: 4
  year: 2021
  ident: 6046_CR7
  publication-title: Safety Reliab
  doi: 10.1080/09617353.2021.1921547
– year: 2023
  ident: 6046_CR36
  publication-title: Int J Innov Res Comput Sci Technol
  doi: 10.55524/NCDICM.2023.11.1.3
– volume: 3
  start-page: 377
  year: 2014
  ident: 6046_CR20
  publication-title: Int J Comput Appl Technol Res
  doi: 10.7753/IJCATR0306.1013
– volume: 102
  start-page: 134
  issue: 2015
  year: 2015
  ident: 6046_CR31
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2015.01.001
– volume: 56
  start-page: 198
  issue: 2
  year: 2007
  ident: 6046_CR14
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2007.895301
– volume: 14
  start-page: 593
  issue: 3
  year: 2022
  ident: 6046_CR26
  publication-title: Symmetry
  doi: 10.3390/sym14030593
– year: 2023
  ident: 6046_CR24
  publication-title: J Circuits Syst Comput
  doi: 10.1142/S0218126624501615
– year: 2018
  ident: 6046_CR22
  publication-title: Int J Comput Appl
  doi: 10.5120/ijca2018917499
– year: 2021
  ident: 6046_CR17
  publication-title: J Algorithms Comput Technol
  doi: 10.1177/17483026211034442
– ident: 6046_CR34
  doi: 10.48550/arXiv.2203.02201
– start-page: 179
  volume-title: Data democracy
  year: 2020
  ident: 6046_CR2
  doi: 10.1016/B978-0-12-818366-3.00010-1
– ident: 6046_CR13
  doi: 10.1109/CEC.2006.1688697
– year: 2022
  ident: 6046_CR11
  publication-title: IETE J Res
  doi: 10.1080/03772063.2022.2069603
– volume: 15
  start-page: 81
  issue: 1
  year: 2023
  ident: 6046_CR19
  publication-title: Int J Comput Net nd Inf Secur
  doi: 10.5815/ijcnis.2023.01.07
– year: 2016
  ident: 6046_CR21
  publication-title: Int J Adv Comput Sci Appl
  doi: 10.14569/IJACSA.2016.070465
– year: 2022
  ident: 6046_CR23
  publication-title: Wirel Commun Mob Comput
  doi: 10.1155/2022/3752264
– volume: 12
  start-page: 12383
  issue: 23
  year: 2022
  ident: 6046_CR39
  publication-title: Appl Sci
  doi: 10.3390/app122312383
– volume: 39
  start-page: 412
  issue: 1
  year: 2023
  ident: 6046_CR8
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.3220
SSID ssj0004373
Score 2.3661053
Snippet In artificial intelligence (AI), optimization techniques are used to solve several problems in different fields. One of these areas is software reliability...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16173
SubjectTerms Artificial intelligence
Compilers
Computer Science
Failure
Growth models
Interpreters
Optimization algorithms
Parameter estimation
Particle swarm optimization
Processor Architectures
Programming Languages
Search algorithms
Simulated annealing
Software reliability
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA46PXhxfuJ0Sg7etLAmaZt4E3F4moIf7FayNNkK6zbaqujVP-6bflgUFfS2svSlJHm_SJ7nQehYSeZKKpjjMepDg6LBpSBCOn4virgxRGgtC7GJYDDgw6G4qUBhWX3bvT6SLCJ1A3ZzCQkcyCmOJXwBw8toxbNsM7ZHv31o0JC0PFcW0Bhxj5EKKvO9jc_pqKkxvxyLFtmm3_7fd26g9aq6xOfldthES3q2hdq1cgOuHHkbvV1DpEjiV7CLMwjEzzLVONXTuGTtfsFj6M7zCS50cjJcifngLE6s2peOsITwLC2SHcvpeJ7G-SQ5w5ZGPLHXazJsuTtKUCQMjfCigSfAc0mDsoPu-5d3F1dOJcfgKPDT3JGBNGrUM4FhnuAigligqOK-JhLSnxSUEVePoKQzygiiDesZ7UplcV58xJmmu6g1m8_0HsKRci3RmRcIrmxClJ4fEPhFjNLGKNJBbr0qoaq4yq1kxjRsWJbtLIcwy2ExyyHroJOPdxYlU8evo7v1YoeV12YhhfrPE5R6QQed1ovb_P2ztf2_DT9Aa6TYH_bWbxe18vRRH6JV9ZTHWXpU7OZ3DSHxlQ
  priority: 102
  providerName: Springer Nature
Title Optimizing software reliability growth models through simulated annealing algorithm: parameters estimation and performance analysis
URI https://link.springer.com/article/10.1007/s11227-024-06046-4
https://www.proquest.com/docview/3256593357
Volume 80
WOSCitedRecordID wos001221525000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Collection
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH_iYwcuML5EgVU-cGMWjeM0MRc0EAhpUlcBm9AukevYpVJbShM2wZV_fO8lDtGQxmUXK1Ecy9L78rP9fj-AA6NloEMleSTDLiYoFk0KPSTvdrIscU4oa3VJNhH3esntrer7DbfcX6usfWLpqLN7Q3vkRyHG5giz7yg-mT1wYo2i01VPobEIy4RUhnq-fHre6181lZFhdcasMElKIil82UxVPBcIEXOMUZwAZHCif4emZr355oi0jDwXa_8754-w6tec7EulJOuwYKcbsFbzOTBv3pvw8g39x2T0jLNgObrn33pu2dyORxWW9xMbYs5e3LGSPSdnnuKH5aMJcYDZjGl02prq25keD3Eixd3kmBG4-IQu3eSMED2qUknsmrFZU7SA7xU4yhZ8vzi_ObvknqSBG7TegutYOzPouNjJSCUqQw9hQpN0rdAYFLUKpQjsABd6zjglrJMdZwNtqPorGSTShtuwNL2f2h1gmQkI_iyKVWIoTOqoGwt8Es5Y54xoQVDLJzUewZyINMZpg71MMk1Rpmkp01S24PD1n1mF3_Fu7_1akKm35TxtpNiCz7UqNJ__Pdru-6PtwYootY_u_u7DUjF_tJ_gg_lVjPJ522tyGxa_xrxNV1Kvse1HP7G9uv7xB067APs
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL1qB6SyobwqphTwAlbFYuI4iY2EEAKqVlMGFkXqLngcux1pXk0Co2HL__CN3JsHEZXorgt2ieJYsnPuw7HvOQDPrJGBCbXkkQxjXKA4NCn0kDweZJnyXmjnTCU2kYxG6vRUf96AX20tDB2rbH1i5aizhaV_5C9DjM0Rrr6j5M3ygpNqFO2uthIaNSyGbr3CJVvx-ug9ft_nQhx8OHl3yBtVAW4RbiU3ifF2PPCJl5FWOkNI29Cq2AmDXtzoUIrAjTEz8dZr4bwceBcYS-VKaqykC7HfTbghQxWTRQ0T3tVhhvWOtsYlmYqkaIp06lK9QIiEY0TkRFeD0_J3IOyy20sbslWcO9j-32boDtxuMmr2tjaBu7Dh5vdgu1WrYI3zug8_P6F3nE1-4KhZgcFnZXLHcjed1Ezla3aWL1blOau0gQrWCBixYjIjhTOXMYMhyVD1PjPTMxx4eT57xYg6fUZHigpGfCV1ISg2zdiyK8nA-5r65QF8uZap2IHefDF3D4FlNiBytyjRylISYKI4EXglvHXeW9GHoMVDaht-dpIJmaYdszRhKEUMpRWGUtmH_T_vLGt2kitb77XASRtPVaQdavrwooVe9_jfve1e3dtT2Do8-XicHh-Nho_glqiQT6ec96BX5t_cY7hpv5eTIn9S2RCDr9cNyd_6R1qL
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD4aDCFe6LiJQjf8wBtENLbTxLxNG9WmoYK4ibfIdew2UlOqJDCN1_3xHedCBgIkxFuiOLZl-9zk830HYFdJ7komuONx1sMARaNIoYZ0et0oCoyhQmtZFJvwB4Pg-lqc_ofiL7Ld6yvJEtNgWZqm-cEsMgcN8M2l1HfQvjiW_AUHmYOPHCMZm9R1dn7VICNZeccsMEgKPE4r2MzzfTw2TY2_-eSKtLA8_db75_wJliuvk3wtj8kKfNDTVWjVFR1IJeBr8PcENUgS3-MYJEMF_VummqR6Epds3n_ICKP2fEyK-jkZqYr8kCxObBUwHRGJaltahDuRk9FNGufj5JBYevHEpt1kxHJ6lGBJbBqRWQNbwPeSHmUdLvtHF99-OFWZBkeh_OaO9KVRw67xDfdEICLUEYqpoKepRLMoBePU1UN09YwygmrDu0a7Uln8VzAMuGYbMD-9mepNIJFyLQGa54tAWUMpvZ5P8YkapY1RtA1uvUOhqjjMbSmNSdiwL9tVDnGVw2KVQ96GvYd_ZiWDx6utO_XGh5U0ZyFDv9ATjHl-G_brjW4-v9zb1tua78Di6fd-ePxz8GsblmhxVGxicAfm8_RWf4YFdZfHWfqlOOT_AJBX_V0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+software+reliability+growth+models+through+simulated+annealing+algorithm%3A+parameters+estimation+and+performance+analysis&rft.jtitle=The+Journal+of+supercomputing&rft.au=Bahnam%2C+Baydaa+Sulaiman&rft.au=Dawwod%2C+Suhair+Abd&rft.au=Younis%2C+Mohammed+Chachan&rft.date=2024-07-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=11&rft.spage=16173&rft.epage=16201&rft_id=info:doi/10.1007%2Fs11227-024-06046-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_024_06046_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon