Optimizing software reliability growth models through simulated annealing algorithm: parameters estimation and performance analysis
In artificial intelligence (AI), optimization techniques are used to solve several problems in different fields. One of these areas is software reliability verification, which is an important part of software products, as it helps determine how reliable the software is to complete its functions. Thi...
Uložené v:
| Vydané v: | The Journal of supercomputing Ročník 80; číslo 11; s. 16173 - 16201 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.07.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In artificial intelligence (AI), optimization techniques are used to solve several problems in different fields. One of these areas is software reliability verification, which is an important part of software products, as it helps determine how reliable the software is to complete its functions. This is done by estimating the parameters of software reliability growth models (SRGMs). SRGMs predict the expected number of failures after completion, while also serving as an indicator of software readiness for delivery. Therefore, this study aims to optimize the estimation of these parameters based on the available failure data using one of the stochastic optimization algorithms, the simulated annealing algorithm (SA) due to its power and effectiveness. Three SRGMs’ models are studied: delayed S-shaped, Musa-Okumoto logarithmic and Power models, to examine the feasibility of the proposed algorithm using five different data sets. The results were compared and analyzed with several algorithms: Particle swarm optimization (PSO), cuckoo search (CS), modify whale optimization algorithm (MWOA), S-shaped model with logistic TEF and social spider algorithm (SSA). A comparison was also made with recent SRGMs that do not rely on AI techniques. The results showed that the proposed algorithm based on SA outperformed all other methods in finding the optimal parameters. |
|---|---|
| AbstractList | In artificial intelligence (AI), optimization techniques are used to solve several problems in different fields. One of these areas is software reliability verification, which is an important part of software products, as it helps determine how reliable the software is to complete its functions. This is done by estimating the parameters of software reliability growth models (SRGMs). SRGMs predict the expected number of failures after completion, while also serving as an indicator of software readiness for delivery. Therefore, this study aims to optimize the estimation of these parameters based on the available failure data using one of the stochastic optimization algorithms, the simulated annealing algorithm (SA) due to its power and effectiveness. Three SRGMs’ models are studied: delayed S-shaped, Musa-Okumoto logarithmic and Power models, to examine the feasibility of the proposed algorithm using five different data sets. The results were compared and analyzed with several algorithms: Particle swarm optimization (PSO), cuckoo search (CS), modify whale optimization algorithm (MWOA), S-shaped model with logistic TEF and social spider algorithm (SSA). A comparison was also made with recent SRGMs that do not rely on AI techniques. The results showed that the proposed algorithm based on SA outperformed all other methods in finding the optimal parameters. |
| Author | Dawwod, Suhair Abd Younis, Mohammed Chachan Bahnam, Baydaa Sulaiman |
| Author_xml | – sequence: 1 givenname: Baydaa Sulaiman surname: Bahnam fullname: Bahnam, Baydaa Sulaiman email: baydaa_sulaiman@uomosul.edu.iq organization: Department of Software, College of Computer Sciences and Mathematics, University of Mosul – sequence: 2 givenname: Suhair Abd surname: Dawwod fullname: Dawwod, Suhair Abd organization: Department Management Information Systems, College of Administration and Economics, University of Mosul – sequence: 3 givenname: Mohammed Chachan surname: Younis fullname: Younis, Mohammed Chachan organization: Department of Computer Sciences, College of Computer Sciences and Mathematics, University of Mosul |
| BookMark | eNp9kE1r3DAQhkVIIZtt_kBOgp7d6stru7cS2rQQyCU9i1ntyKsgW-5IS9he-8erZAuFHHIaBt5neOe5ZOdzmpGxayk-SiG6T1lKpbpGKNOIjTCbxpyxlWw73QjTm3O2EoMSTd8adcEuc34UQhjd6RX7c7-UMIXfYR55Tr48ASEnjAG2IYZy5COlp7LnU9phzLzsKR3GPc9hOkQouOMwzwjxGYc4JgplP33mCxBMWJAyx1zvQwlprtEdX5B8oglmh3WHeMwhv2fvPMSMV__mmv389vXh5ntzd3_74-bLXeO0HEoDHXi3Fb7zph36Yddr5bTrN6hAKg2DNkriVvTaOz8o9EZ4lOAc1vS2N6jX7MPp7kLp16EWs4_pQLVEtlq1m3bQuhpbs_6UcpRyJvTWhfLyQCEI0Uphn5Xbk3JbldsX5dZUVL1CF6rP0_FtSJ-gXMPziPS_1RvUXzdnmoI |
| CitedBy_id | crossref_primary_10_1007_s11227_025_07784_9 crossref_primary_10_33693_2313_223X_2024_11_2_22_28 crossref_primary_10_15832_ankutbd_1611010 crossref_primary_10_3390_biomimetics10040195 |
| Cites_doi | 10.1007/978-3-319-91086-4_1 10.3390/axioms12050459 10.1142/12360 10.55524/NCDICM.2023.11.1.3 10.3390/math9090985 10.14569/IJACSA.2016.070465 10.1016/B978-0-12-818366-3.00010-1 10.3390/app11156998 10.3390/software2010001 10.1142/S0218126624501615 10.1007/978-981-16-0025-8 10.1177/1748006X211033713 10.3390/math11163491 10.1080/09617353.2021.1921547 10.1109/TR.2007.895301 10.5815/ijcnis.2023.01.07 10.3390/math8081366 10.1177/17483026211034442 10.5120/ijca2018917499 10.7753/IJCATR0306.1013 10.1155/2022/3752264 10.1007/s00500-023-08761-1 10.48550/arXiv.2001.09924 10.1016/j.jss.2015.01.001 10.3390/sym14030593 10.1080/03772063.2022.2069603 10.3390/data4010004 10.48550/arXiv.2003.04770 10.1007/s40747-020-00205-9 10.1002/qre.3220 10.9734/ajpas/2022/v16i330402 10.3390/app122312383 10.1109/ISCON57294.2023.10112061 10.1109/ACCESS.2023.3292301 10.1109/SEAA56994.2022.00047 10.1109/ICAIS53314.2022.9743129 10.48550/arXiv.2203.02201 10.1109/CEC.2006.1688697 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11227-024-06046-4 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest MSED ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Engineering Collection Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 16201 |
| ExternalDocumentID | 10_1007_s11227_024_06046_4 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-a7afcb0f7f45989d832c3c86e2a123a93421eb083fcf92ef40fe1acce598b84e3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221525000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Sun Nov 30 04:39:30 EST 2025 Sat Nov 29 04:27:47 EST 2025 Tue Nov 18 21:45:50 EST 2025 Fri Feb 21 02:40:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Delayed S-shaped model Simulated annealing algorithm (SA) Artificial intelligence (AI) Power model Musa-Okumoto logarithmic model Swarm intelligence (SI) Software reliability growth models (SRGMs) Parameters estimation Comparative analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a7afcb0f7f45989d832c3c86e2a123a93421eb083fcf92ef40fe1acce598b84e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3256593357 |
| PQPubID | 2043774 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_3256593357 crossref_citationtrail_10_1007_s11227_024_06046_4 crossref_primary_10_1007_s11227_024_06046_4 springer_journals_10_1007_s11227_024_06046_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20240700 2024-07-00 20240701 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 7 year: 2024 text: 20240700 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2024 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Lu, Ma (CR17) 2021 Pradhan, Kumar, Dhar (CR9) 2022; 236 Lee, Chang, Pham (CR25) 2020; 8 Kumar, Kaswan (CR23) 2022 Yaghoobi, Leung (CR6) 2023; 11 Huang, Kuo, Lyu (CR14) 2007; 56 Batarseh, Mohod, Kumar, Bui, Batarseh, Yang (CR2) 2020 Moskalenko, Moskalenko, Korobov, Semashko (CR37) 2019; 4 CR38 AL-Saati, Alabajee (CR16) 2018 CR13 Tyagi, Bharti, Kumar (CR27) 2023 CR12 CR34 Kim, Lee, Baik (CR31) 2015; 102 Delahaye, Chaimatanan, Mongeau, Gendreau, Potvin (CR32) 2018 CR10 Li, Dohi, Okamura (CR30) 2023; 2 Chang, Lin, Shi, Meen (CR26) 2022; 14 Hanagal, Bhalerao (CR28) 2021 Li, Pham (CR18) 2021; 11 Felfernig, Kalech, Abreu, Last (CR1) 2021 Zhang, Jiang (CR24) 2023 AL-Saati, Alabajee (CR15) 2016 CR4 Okamura, Dohi (CR29) 2021; 9 Li, Wang, Gao, Song, Li (CR33) 2021; 7 Raamesh, Jothi, Radhika (CR11) 2022 Giri (CR36) 2023 Raheem, Akthar (CR19) 2023; 15 Alabajee, Alreffaee (CR22) 2018 Sheta, Abdel-Raouf (CR21) 2016 Haque, Ahmad (CR7) 2021; 40 Lee, Chang, Pham (CR39) 2022; 12 Oveisi, Moeini, Mirzaei, Farsi (CR8) 2023; 39 Yadav, Yadav (CR3) 2022; 11 Diwaker, Goyat (CR20) 2014; 3 Hanifatu, Nasiru, Dioggban (CR5) 2022; 16 Gonzalez-Ayala, Alejo-Reyes, Cuevas, Mendoza (CR35) 2023; 12 S Oveisi (6046_CR8) 2023; 39 DH Lee (6046_CR39) 2022; 12 MN Hanifatu (6046_CR5) 2022; 16 S Tyagi (6046_CR27) 2023 N Kumar (6046_CR23) 2022 Q Li (6046_CR18) 2021; 11 K Lu (6046_CR17) 2021 Y Li (6046_CR33) 2021; 7 C Diwaker (6046_CR20) 2014; 3 T Kim (6046_CR31) 2015; 102 A Felfernig (6046_CR1) 2021 L Raamesh (6046_CR11) 2022 AF Sheta (6046_CR21) 2016 NA AL-Saati (6046_CR15) 2016 S Li (6046_CR30) 2023; 2 W Zhang (6046_CR24) 2023 6046_CR12 6046_CR34 6046_CR10 6046_CR38 6046_CR13 JM Giri (6046_CR36) 2023 N Yadav (6046_CR3) 2022; 11 H Okamura (6046_CR29) 2021; 9 FA Batarseh (6046_CR2) 2020 C-Y Huang (6046_CR14) 2007; 56 MA Alabajee (6046_CR22) 2018 T Yaghoobi (6046_CR6) 2023; 11 D Delahaye (6046_CR32) 2018 DH Lee (6046_CR25) 2020; 8 6046_CR4 AR Raheem (6046_CR19) 2023; 15 V Moskalenko (6046_CR37) 2019; 4 DD Hanagal (6046_CR28) 2021 T-C Chang (6046_CR26) 2022; 14 P Gonzalez-Ayala (6046_CR35) 2023; 12 MA Haque (6046_CR7) 2021; 40 V Pradhan (6046_CR9) 2022; 236 NA AL-Saati (6046_CR16) 2018 |
| References_xml | – year: 2018 ident: CR32 article-title: Simulated annealing: from basics to applications," publication-title: Handbook of metaheuristics doi: 10.1007/978-3-319-91086-4_1 – volume: 12 start-page: 459 issue: 5 year: 2023 ident: CR35 article-title: A modified simulated annealing (MSA) algorithm to solve the supplier selection and order quantity allocation problem with non-linear freight rates publication-title: Axioms doi: 10.3390/axioms12050459 – start-page: 29 year: 2021 end-page: 47 ident: CR1 article-title: AI techniques for software requirements prioritization publication-title: Artificial intelligence methods for software engineering doi: 10.1142/12360 – year: 2023 ident: CR36 article-title: Simulated annealing and its applications to mechanical engineering: a review publication-title: Int J Innov Res Comput Sci Technol doi: 10.55524/NCDICM.2023.11.1.3 – volume: 9 start-page: 985 issue: 9 year: 2021 ident: CR29 article-title: Application of EM algorithm to NHPP-based software reliability assessment with generalized failure count data publication-title: Math Softw Reliab Qual Assur doi: 10.3390/math9090985 – year: 2016 ident: CR21 article-title: Estimating the parameters of software reliability growth models using the grey wolf optimization algorithm publication-title: Int J Adv Comput Sci Appl doi: 10.14569/IJACSA.2016.070465 – ident: CR4 – start-page: 179 year: 2020 end-page: 232 ident: CR2 article-title: The application of artificial intelligence in software engineering: a review challenging conventional wisdom publication-title: Data democracy doi: 10.1016/B978-0-12-818366-3.00010-1 – volume: 11 start-page: 6998 issue: 15 year: 2021 ident: CR18 article-title: Modeling software fault-detection and fault-correction processes by considering the dependencies between fault amounts publication-title: Appl Sci doi: 10.3390/app11156998 – volume: 2 start-page: 1 issue: 1 year: 2023 end-page: 18 ident: CR30 article-title: Are infinite-failure NHPP-based software reliability models useful? publication-title: Software doi: 10.3390/software2010001 – ident: CR12 – volume: 11 start-page: 457 issue: 1 year: 2022 ident: CR3 article-title: Software reliability prediction and optimization using machine learning algorithms: a review publication-title: J Integr Sci Technol – year: 2023 ident: CR24 article-title: Bootstrap-based resampling methods for software reliability measurement under small sample condition publication-title: J Circuits Syst Comput doi: 10.1142/S0218126624501615 – year: 2021 ident: CR28 publication-title: Software reliability growth models doi: 10.1007/978-981-16-0025-8 – ident: CR10 – volume: 236 start-page: 18 issue: 1 year: 2022 end-page: 36 ident: CR9 article-title: Modelling software reliability growth through generalized inflection S-shaped fault reduction factor and optimal release time publication-title: Proc Inst Mech Eng, Part O: J Risk Reliab doi: 10.1177/1748006X211033713 – volume: 11 start-page: 3491 issue: 16 year: 2023 ident: CR6 article-title: Modeling software reliability with learning and fatigue publication-title: Mathematics doi: 10.3390/math11163491 – volume: 40 start-page: 209 issue: 4 year: 2021 end-page: 220 ident: CR7 article-title: An effective software reliability growth model publication-title: Safety Reliab doi: 10.1080/09617353.2021.1921547 – volume: 56 start-page: 198 issue: 2 year: 2007 end-page: 211 ident: CR14 article-title: An assessment of testing-effort dependent software reliability growth models publication-title: IEEE Trans Reliab doi: 10.1109/TR.2007.895301 – volume: 15 start-page: 81 issue: 1 year: 2023 ident: CR19 article-title: Software reliability growth models with exponentiated-gompertz testing effort and release time determination publication-title: Int J Comput Net nd Inf Secur doi: 10.5815/ijcnis.2023.01.07 – volume: 8 start-page: 1366 issue: 8 year: 2020 ident: CR25 article-title: Software reliability model with dependent failures and SPRT publication-title: Mathematics doi: 10.3390/math8081366 – year: 2021 ident: CR17 article-title: A modified whale optimization algorithm for parameter estimation of software reliability growth models publication-title: J Algorithms Comput Technol doi: 10.1177/17483026211034442 – year: 2018 ident: CR22 article-title: Exploring ant lion optimization algorithm to enhance the choice of an appropriate software reliability growth model publication-title: Int J Comput Appl doi: 10.5120/ijca2018917499 – volume: 3 start-page: 377 year: 2014 end-page: 380 ident: CR20 article-title: Parameter estimation of software reliability growth models using simulated annealing method publication-title: Int J Comput Appl Technol Res doi: 10.7753/IJCATR0306.1013 – year: 2022 ident: CR23 article-title: Soft hunting algorithm for auto-tuning software reliability growth models publication-title: Wirel Commun Mob Comput doi: 10.1155/2022/3752264 – year: 2023 ident: CR27 article-title: Scrutinizing the available SRGMs in the backdrop of open-source software while offering a way-out publication-title: Soft Comput doi: 10.1007/s00500-023-08761-1 – ident: CR38 – year: 2018 ident: CR16 article-title: Selecting best software reliability growth models: a social spider algorithm based approach publication-title: Int J Comp Appl doi: 10.48550/arXiv.2001.09924 – volume: 102 start-page: 134 issue: 2015 year: 2015 end-page: 144 ident: CR31 article-title: An effective approach to estimating the parameters of software reliability growth models using a real-valued genetic algorithm publication-title: J Syst Softw doi: 10.1016/j.jss.2015.01.001 – ident: CR13 – volume: 14 start-page: 593 issue: 3 year: 2022 ident: CR26 article-title: Decision making of software release time at different confidence intervals with Ohba’s inflection s-shape model publication-title: Symmetry doi: 10.3390/sym14030593 – year: 2022 ident: CR11 article-title: Enhancing software reliability and fault detection using hybrid brainstorm optimization-based LSTM model publication-title: IETE J Res doi: 10.1080/03772063.2022.2069603 – ident: CR34 – volume: 4 start-page: 4 year: 2019 ident: CR37 article-title: The model and training algorithm of compact drone autonomous visual navigation system publication-title: Data doi: 10.3390/data4010004 – year: 2016 ident: CR15 article-title: A comparative study on parameter estimation in software reliability modeling using swarm intelligence publication-title: Int J Recent Res Rev doi: 10.48550/arXiv.2003.04770 – volume: 7 start-page: 1173 year: 2021 end-page: 1183 ident: CR33 article-title: An improved simulated annealing algorithm based on residual network for permutation flow shop scheduling publication-title: Complex Intell Syst doi: 10.1007/s40747-020-00205-9 – volume: 39 start-page: 412 issue: 1 year: 2023 end-page: 453 ident: CR8 article-title: Software reliability prediction: a survey publication-title: Qual Reliab Eng Int doi: 10.1002/qre.3220 – volume: 16 start-page: 13 issue: 3 year: 2022 end-page: 25 ident: CR5 article-title: Chen software reliability growth model publication-title: AJPAS doi: 10.9734/ajpas/2022/v16i330402 – volume: 12 start-page: 12383 issue: 23 year: 2022 ident: CR39 article-title: Software reliability growth model with dependent failures and uncertain operating environments publication-title: Appl Sci doi: 10.3390/app122312383 – year: 2023 ident: 6046_CR27 publication-title: Soft Comput doi: 10.1007/s00500-023-08761-1 – volume: 16 start-page: 13 issue: 3 year: 2022 ident: 6046_CR5 publication-title: AJPAS doi: 10.9734/ajpas/2022/v16i330402 – volume: 7 start-page: 1173 year: 2021 ident: 6046_CR33 publication-title: Complex Intell Syst doi: 10.1007/s40747-020-00205-9 – start-page: 29 volume-title: Artificial intelligence methods for software engineering year: 2021 ident: 6046_CR1 doi: 10.1142/12360 – year: 2016 ident: 6046_CR15 publication-title: Int J Recent Res Rev doi: 10.48550/arXiv.2003.04770 – year: 2018 ident: 6046_CR16 publication-title: Int J Comp Appl doi: 10.48550/arXiv.2001.09924 – volume: 11 start-page: 3491 issue: 16 year: 2023 ident: 6046_CR6 publication-title: Mathematics doi: 10.3390/math11163491 – ident: 6046_CR38 doi: 10.1109/ISCON57294.2023.10112061 – volume: 12 start-page: 459 issue: 5 year: 2023 ident: 6046_CR35 publication-title: Axioms doi: 10.3390/axioms12050459 – volume: 4 start-page: 4 year: 2019 ident: 6046_CR37 publication-title: Data doi: 10.3390/data4010004 – volume: 236 start-page: 18 issue: 1 year: 2022 ident: 6046_CR9 publication-title: Proc Inst Mech Eng, Part O: J Risk Reliab doi: 10.1177/1748006X211033713 – volume-title: Software reliability growth models year: 2021 ident: 6046_CR28 doi: 10.1007/978-981-16-0025-8 – ident: 6046_CR12 doi: 10.1109/ACCESS.2023.3292301 – volume: 8 start-page: 1366 issue: 8 year: 2020 ident: 6046_CR25 publication-title: Mathematics doi: 10.3390/math8081366 – volume: 11 start-page: 457 issue: 1 year: 2022 ident: 6046_CR3 publication-title: J Integr Sci Technol – volume: 9 start-page: 985 issue: 9 year: 2021 ident: 6046_CR29 publication-title: Math Softw Reliab Qual Assur doi: 10.3390/math9090985 – volume: 11 start-page: 6998 issue: 15 year: 2021 ident: 6046_CR18 publication-title: Appl Sci doi: 10.3390/app11156998 – ident: 6046_CR10 doi: 10.1109/SEAA56994.2022.00047 – ident: 6046_CR4 doi: 10.1109/ICAIS53314.2022.9743129 – volume: 2 start-page: 1 issue: 1 year: 2023 ident: 6046_CR30 publication-title: Software doi: 10.3390/software2010001 – volume-title: Handbook of metaheuristics year: 2018 ident: 6046_CR32 doi: 10.1007/978-3-319-91086-4_1 – volume: 40 start-page: 209 issue: 4 year: 2021 ident: 6046_CR7 publication-title: Safety Reliab doi: 10.1080/09617353.2021.1921547 – year: 2023 ident: 6046_CR36 publication-title: Int J Innov Res Comput Sci Technol doi: 10.55524/NCDICM.2023.11.1.3 – volume: 3 start-page: 377 year: 2014 ident: 6046_CR20 publication-title: Int J Comput Appl Technol Res doi: 10.7753/IJCATR0306.1013 – volume: 102 start-page: 134 issue: 2015 year: 2015 ident: 6046_CR31 publication-title: J Syst Softw doi: 10.1016/j.jss.2015.01.001 – volume: 56 start-page: 198 issue: 2 year: 2007 ident: 6046_CR14 publication-title: IEEE Trans Reliab doi: 10.1109/TR.2007.895301 – volume: 14 start-page: 593 issue: 3 year: 2022 ident: 6046_CR26 publication-title: Symmetry doi: 10.3390/sym14030593 – year: 2023 ident: 6046_CR24 publication-title: J Circuits Syst Comput doi: 10.1142/S0218126624501615 – year: 2018 ident: 6046_CR22 publication-title: Int J Comput Appl doi: 10.5120/ijca2018917499 – year: 2021 ident: 6046_CR17 publication-title: J Algorithms Comput Technol doi: 10.1177/17483026211034442 – ident: 6046_CR34 doi: 10.48550/arXiv.2203.02201 – start-page: 179 volume-title: Data democracy year: 2020 ident: 6046_CR2 doi: 10.1016/B978-0-12-818366-3.00010-1 – ident: 6046_CR13 doi: 10.1109/CEC.2006.1688697 – year: 2022 ident: 6046_CR11 publication-title: IETE J Res doi: 10.1080/03772063.2022.2069603 – volume: 15 start-page: 81 issue: 1 year: 2023 ident: 6046_CR19 publication-title: Int J Comput Net nd Inf Secur doi: 10.5815/ijcnis.2023.01.07 – year: 2016 ident: 6046_CR21 publication-title: Int J Adv Comput Sci Appl doi: 10.14569/IJACSA.2016.070465 – year: 2022 ident: 6046_CR23 publication-title: Wirel Commun Mob Comput doi: 10.1155/2022/3752264 – volume: 12 start-page: 12383 issue: 23 year: 2022 ident: 6046_CR39 publication-title: Appl Sci doi: 10.3390/app122312383 – volume: 39 start-page: 412 issue: 1 year: 2023 ident: 6046_CR8 publication-title: Qual Reliab Eng Int doi: 10.1002/qre.3220 |
| SSID | ssj0004373 |
| Score | 2.3661053 |
| Snippet | In artificial intelligence (AI), optimization techniques are used to solve several problems in different fields. One of these areas is software reliability... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 16173 |
| SubjectTerms | Artificial intelligence Compilers Computer Science Failure Growth models Interpreters Optimization algorithms Parameter estimation Particle swarm optimization Processor Architectures Programming Languages Search algorithms Simulated annealing Software reliability |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA46PXhxfuJ0Sg7etLAmaZt4E3F4moIf7FayNNkK6zbaqujVP-6bflgUFfS2svSlJHm_SJ7nQehYSeZKKpjjMepDg6LBpSBCOn4virgxRGgtC7GJYDDgw6G4qUBhWX3bvT6SLCJ1A3ZzCQkcyCmOJXwBw8toxbNsM7ZHv31o0JC0PFcW0Bhxj5EKKvO9jc_pqKkxvxyLFtmm3_7fd26g9aq6xOfldthES3q2hdq1cgOuHHkbvV1DpEjiV7CLMwjEzzLVONXTuGTtfsFj6M7zCS50cjJcifngLE6s2peOsITwLC2SHcvpeJ7G-SQ5w5ZGPLHXazJsuTtKUCQMjfCigSfAc0mDsoPu-5d3F1dOJcfgKPDT3JGBNGrUM4FhnuAigligqOK-JhLSnxSUEVePoKQzygiiDesZ7UplcV58xJmmu6g1m8_0HsKRci3RmRcIrmxClJ4fEPhFjNLGKNJBbr0qoaq4yq1kxjRsWJbtLIcwy2ExyyHroJOPdxYlU8evo7v1YoeV12YhhfrPE5R6QQed1ovb_P2ztf2_DT9Aa6TYH_bWbxe18vRRH6JV9ZTHWXpU7OZ3DSHxlQ priority: 102 providerName: Springer Nature |
| Title | Optimizing software reliability growth models through simulated annealing algorithm: parameters estimation and performance analysis |
| URI | https://link.springer.com/article/10.1007/s11227-024-06046-4 https://www.proquest.com/docview/3256593357 |
| Volume | 80 |
| WOSCitedRecordID | wos001221525000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Collection customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0484 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH_iYwcuML5EgVU-cGMWjeM0MRc0EAhpUlcBm9AukevYpVJbShM2wZV_fO8lDtGQxmUXK1Ecy9L78rP9fj-AA6NloEMleSTDLiYoFk0KPSTvdrIscU4oa3VJNhH3esntrer7DbfcX6usfWLpqLN7Q3vkRyHG5giz7yg-mT1wYo2i01VPobEIy4RUhnq-fHre6181lZFhdcasMElKIil82UxVPBcIEXOMUZwAZHCif4emZr355oi0jDwXa_8754-w6tec7EulJOuwYKcbsFbzOTBv3pvw8g39x2T0jLNgObrn33pu2dyORxWW9xMbYs5e3LGSPSdnnuKH5aMJcYDZjGl02prq25keD3Eixd3kmBG4-IQu3eSMED2qUknsmrFZU7SA7xU4yhZ8vzi_ObvknqSBG7TegutYOzPouNjJSCUqQw9hQpN0rdAYFLUKpQjsABd6zjglrJMdZwNtqPorGSTShtuwNL2f2h1gmQkI_iyKVWIoTOqoGwt8Es5Y54xoQVDLJzUewZyINMZpg71MMk1Rpmkp01S24PD1n1mF3_Fu7_1akKm35TxtpNiCz7UqNJ__Pdru-6PtwYootY_u_u7DUjF_tJ_gg_lVjPJ522tyGxa_xrxNV1Kvse1HP7G9uv7xB067APs |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL1qB6SyobwqphTwAlbFYuI4iY2EEAKqVlMGFkXqLngcux1pXk0Co2HL__CN3JsHEZXorgt2ieJYsnPuw7HvOQDPrJGBCbXkkQxjXKA4NCn0kDweZJnyXmjnTCU2kYxG6vRUf96AX20tDB2rbH1i5aizhaV_5C9DjM0Rrr6j5M3ygpNqFO2uthIaNSyGbr3CJVvx-ug9ft_nQhx8OHl3yBtVAW4RbiU3ifF2PPCJl5FWOkNI29Cq2AmDXtzoUIrAjTEz8dZr4bwceBcYS-VKaqykC7HfTbghQxWTRQ0T3tVhhvWOtsYlmYqkaIp06lK9QIiEY0TkRFeD0_J3IOyy20sbslWcO9j-32boDtxuMmr2tjaBu7Dh5vdgu1WrYI3zug8_P6F3nE1-4KhZgcFnZXLHcjed1Ezla3aWL1blOau0gQrWCBixYjIjhTOXMYMhyVD1PjPTMxx4eT57xYg6fUZHigpGfCV1ISg2zdiyK8nA-5r65QF8uZap2IHefDF3D4FlNiBytyjRylISYKI4EXglvHXeW9GHoMVDaht-dpIJmaYdszRhKEUMpRWGUtmH_T_vLGt2kitb77XASRtPVaQdavrwooVe9_jfve1e3dtT2Do8-XicHh-Nho_glqiQT6ec96BX5t_cY7hpv5eTIn9S2RCDr9cNyd_6R1qL |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD4aDCFe6LiJQjf8wBtENLbTxLxNG9WmoYK4ibfIdew2UlOqJDCN1_3xHedCBgIkxFuiOLZl-9zk830HYFdJ7komuONx1sMARaNIoYZ0et0oCoyhQmtZFJvwB4Pg-lqc_ofiL7Ld6yvJEtNgWZqm-cEsMgcN8M2l1HfQvjiW_AUHmYOPHCMZm9R1dn7VICNZeccsMEgKPE4r2MzzfTw2TY2_-eSKtLA8_db75_wJliuvk3wtj8kKfNDTVWjVFR1IJeBr8PcENUgS3-MYJEMF_VummqR6Epds3n_ICKP2fEyK-jkZqYr8kCxObBUwHRGJaltahDuRk9FNGufj5JBYevHEpt1kxHJ6lGBJbBqRWQNbwPeSHmUdLvtHF99-OFWZBkeh_OaO9KVRw67xDfdEICLUEYqpoKepRLMoBePU1UN09YwygmrDu0a7Uln8VzAMuGYbMD-9mepNIJFyLQGa54tAWUMpvZ5P8YkapY1RtA1uvUOhqjjMbSmNSdiwL9tVDnGVw2KVQ96GvYd_ZiWDx6utO_XGh5U0ZyFDv9ATjHl-G_brjW4-v9zb1tua78Di6fd-ePxz8GsblmhxVGxicAfm8_RWf4YFdZfHWfqlOOT_AJBX_V0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+software+reliability+growth+models+through+simulated+annealing+algorithm%3A+parameters+estimation+and+performance+analysis&rft.jtitle=The+Journal+of+supercomputing&rft.au=Bahnam%2C+Baydaa+Sulaiman&rft.au=Dawwod%2C+Suhair+Abd&rft.au=Younis%2C+Mohammed+Chachan&rft.date=2024-07-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=80&rft.issue=11&rft.spage=16173&rft.epage=16201&rft_id=info:doi/10.1007%2Fs11227-024-06046-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_024_06046_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |