A new family of hybrid three-term conjugate gradient methods with applications in image restoration
In this paper, based on the hybrid conjugate gradient method and the convex combination technique, a new family of hybrid three-term conjugate gradient methods are proposed for solving unconstrained optimization. The conjugate parameter in the search direction is a hybrid of Dai-Yuan conjugate param...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 91; číslo 1; s. 161 - 191 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2022
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, based on the hybrid conjugate gradient method and the convex combination technique, a new family of hybrid three-term conjugate gradient methods are proposed for solving unconstrained optimization. The conjugate parameter in the search direction is a hybrid of Dai-Yuan conjugate parameter and any one. The search direction then is the sum of the negative gradient direction and a convex combination in relation to the last search direction and the gradient at the previous iteration. Without choosing any specific conjugate parameters, we show that the search direction generated by the family always possesses the descent property independent of line search technique, and that it is globally convergent under usual assumptions and the weak Wolfe line search. To verify the effectiveness of the presented family, we further design a specific conjugate parameter, and perform medium-large-scale numerical experiments for smooth unconstrained optimization and image restoration problems. The numerical results show the encouraging efficiency and applicability of the proposed methods even compared with the state-of-the-art methods. |
|---|---|
| AbstractList | In this paper, based on the hybrid conjugate gradient method and the convex combination technique, a new family of hybrid three-term conjugate gradient methods are proposed for solving unconstrained optimization. The conjugate parameter in the search direction is a hybrid of Dai-Yuan conjugate parameter and any one. The search direction then is the sum of the negative gradient direction and a convex combination in relation to the last search direction and the gradient at the previous iteration. Without choosing any specific conjugate parameters, we show that the search direction generated by the family always possesses the descent property independent of line search technique, and that it is globally convergent under usual assumptions and the weak Wolfe line search. To verify the effectiveness of the presented family, we further design a specific conjugate parameter, and perform medium-large-scale numerical experiments for smooth unconstrained optimization and image restoration problems. The numerical results show the encouraging efficiency and applicability of the proposed methods even compared with the state-of-the-art methods. |
| Author | Liao, Wei Yin, Jianghua Jian, Jinbao Jiang, Xianzhen |
| Author_xml | – sequence: 1 givenname: Xianzhen surname: Jiang fullname: Jiang, Xianzhen organization: College of Mathematics and Physics, Guangxi University for Nationalities – sequence: 2 givenname: Wei surname: Liao fullname: Liao, Wei organization: College of Mathematics and Physics, Guangxi University for Nationalities – sequence: 3 givenname: Jianghua surname: Yin fullname: Yin, Jianghua organization: College of Mathematics and Physics, Guangxi University for Nationalities – sequence: 4 givenname: Jinbao orcidid: 0000-0001-8048-7397 surname: Jian fullname: Jian, Jinbao email: jianjb@gxu.edu.cn organization: College of Mathematics and Physics, Guangxi University for Nationalities |
| BookMark | eNp9kE1LAzEQhoMoWD_-gKeA52gm2d3sHqX4BQUveg6z2aRNaZOapEj_vWsrCB56mmGYZ9533gtyGmKwhNwAvwPO1X0G4KpmXAjGQdQtEydkArUSrBNNfTr2HBQD2bXn5CLnJecjJtSEmAca7Bd1uParHY2OLnZ98gMti2QtKzatqYlhuZ1jsXSecPA2FLq2ZRGHTL98WVDcbFbeYPExZOoD9WucW5psLjHtp1fkzOEq2-vfekk-nh7fpy9s9vb8On2YMSOhKwwVYiUb4IProe-rig-opKmFktjXWKHrugGNaEE1gtuqkyCsBBTOWOcakJfk9nB3k-LndtTXy7hNYZTUooO2kV0jxbglDlsmxZyTdXqTRstpp4HrnzD1IUw9hqn3YeofqP0HGV_2z5WEfnUclQc0jzphbtOfqyPUN0Y0jFE |
| CitedBy_id | crossref_primary_10_1016_j_cam_2025_116709 crossref_primary_10_1007_s11071_022_08013_1 crossref_primary_10_1007_s12190_022_01826_8 crossref_primary_10_1371_journal_pone_0281250 crossref_primary_10_1007_s11081_024_09899_z crossref_primary_10_3389_fams_2022_1014956 crossref_primary_10_1007_s12190_024_02044_0 crossref_primary_10_1016_j_sigpro_2024_109837 crossref_primary_10_1080_10556788_2024_2364203 crossref_primary_10_1002_nla_2589 crossref_primary_10_1155_dsn_5884796 crossref_primary_10_2989_16073606_2024_2367715 crossref_primary_10_3934_math_2025668 crossref_primary_10_1002_mma_10396 crossref_primary_10_1007_s12190_024_02069_5 crossref_primary_10_1016_j_matcom_2025_07_026 crossref_primary_10_1007_s40819_023_01637_w crossref_primary_10_1007_s40314_023_02521_5 crossref_primary_10_1007_s12190_025_02564_3 crossref_primary_10_1016_j_apm_2023_01_018 crossref_primary_10_3390_sym15061203 crossref_primary_10_1007_s40840_025_01905_6 crossref_primary_10_3390_math12162556 crossref_primary_10_1016_j_cam_2022_114879 crossref_primary_10_3934_naco_2025008 crossref_primary_10_3934_era_2025183 crossref_primary_10_1016_j_cam_2022_115020 crossref_primary_10_1016_j_mri_2024_110249 crossref_primary_10_2478_jamsi_2024_0003 crossref_primary_10_1007_s12190_025_02466_4 crossref_primary_10_3390_math12193088 crossref_primary_10_1080_0305215X_2024_2329323 crossref_primary_10_1007_s11075_025_02034_8 crossref_primary_10_1080_10556788_2023_2189718 crossref_primary_10_1007_s12190_024_02309_8 crossref_primary_10_1007_s10013_025_00761_y crossref_primary_10_1016_j_cor_2023_106341 crossref_primary_10_1016_j_jfranklin_2024_107033 crossref_primary_10_1007_s11081_025_09992_x |
| Cites_doi | 10.1007/s10092-019-0333-4 10.1080/02331934.2013.830118 10.1007/s101070100263 10.1137/S1052623497318992 10.1145/962437.962439 10.1137/100813026 10.1007/BF00940464 10.1137/080740167 10.6028/jres.049.044 10.1016/j.cam.2019.112709 10.1007/s11075-020-01043-z 10.1016/j.apnum.2019.10.011 10.1016/j.ejor.2009.11.030 10.1093/comjnl/7.2.149 10.1080/00036811.2017.1359556 10.1145/355934.355936 10.3934/jimo.2018149 10.1007/s002450010019 10.1016/j.jmaa.2013.04.017 10.1016/j.cam.2016.12.021 10.1007/s10957-014-0528-4 10.1007/s00245-001-0003-0 10.1016/j.cam.2008.05.012 10.1093/imanum/drl016 10.1016/j.aml.2010.01.010 10.1007/s10589-016-9883-4 10.1137/080743573 10.1016/j.cam.2021.113423 10.1023/A:1012930416777 10.1080/00207160.2018.1533122 10.1109/83.370679 10.1016/0041-5553(69)90035-4 10.1007/s11766-015-3276-9 10.1016/j.apnum.2019.08.022 10.1016/j.na.2011.02.040 10.1016/j.apnum.2019.12.002 10.1137/030601880 10.1109/TIP.2005.852196 10.1007/s12190-021-01589-8 10.1007/s11075-021-01157-y |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11075-022-01258-2 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 191 |
| ExternalDocumentID | 10_1007_s11075_022_01258_2 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11771383 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Guangxi Province grantid: 2020GXNSFDA238017 funderid: https://doi.org/10.13039/501100004607 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-a7aa43610dfb1bb440da73c5273ab5a4af99dac2817620e49312e31a2fceff613 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000768105000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1017-1398 |
| IngestDate | Wed Nov 05 08:37:07 EST 2025 Tue Nov 18 21:51:52 EST 2025 Sat Nov 29 01:34:57 EST 2025 Fri Feb 21 02:46:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Descent property 68U10 Global convergence Unconstrained optimization Hybrid three-term conjugate gradient method 65K10 Image restoration 49M37 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a7aa43610dfb1bb440da73c5273ab5a4af99dac2817620e49312e31a2fceff613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8048-7397 |
| PQID | 2918639632 |
| PQPubID | 2043837 |
| PageCount | 31 |
| ParticipantIDs | proquest_journals_2918639632 crossref_primary_10_1007_s11075_022_01258_2 crossref_citationtrail_10_1007_s11075_022_01258_2 springer_journals_10_1007_s11075_022_01258_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Hager, Zhang (CR10) 2006; 2 Fletcher (CR5) 1987 Yin, Jian, Jiang (CR26) 2021; 391 Cao, Wu (CR45) 2020; 152 Liu, Xu, Zhang (CR33) 2019; 96 Dolan, Moré (CR41) 2002; 91 Shi, Guo (CR28) 2009; 224 Faramarzi, Amini (CR16) 2019; 56 Dai, Kou (CR11) 2013; 23 CR36 Polyak (CR4) 1969; 9 Cai, Chan, Morini (CR43) 2007 Babaie-Kafaki (CR15) 2015; 30 Chen, Zhou (CR21) 2010; 3 Chan, Ho, Nikolova (CR42) 2005; 14 Yuan, Li, Hu (CR25) 2020; 147 Hager, Zhang (CR9) 2005; 16 Xiao, Wang, Hu (CR23) 2011; 74 Hestenes, Stiefel (CR1) 1952; 49 Dai, Yuan (CR7) 1999; 10 Dai, Liao (CR8) 2001; 43 Liu, Zhao, Wu (CR34) 2020; 150 Hwang, Haddad (CR47) 1995; 4 Xiao, Zhu (CR24) 2013; 405 Liu, Du, Chen (CR17) 2020; 371 CR29 Liu, Du (CR20) 2018; 97 CR27 Narushima, Yabe, Ford (CR32) 2011; 21 Fletcher, Reeves (CR2) 1964; 7 Birgin, Martínez (CR13) 2001; 43 CR46 Dai, Yuan (CR35) 2001; 103 Polak, Ribière (CR3) 1969; 16 Sellami, Laskri, Benzine (CR40) 2015; 64 Bovik (CR48) 2000 Gould, Orban (CR37) 2003; 29 Yu, Huang, Zhou (CR44) 2010; 23 Li (CR14) 2020; 16 Yin, Jian, Jiang (CR22) 2021; 88 Andrei (CR12) 2010; 204 Zhang, Zhou, Li (CR30) 2006; 26 Andrei (CR39) 2008; 10 Liu, Storey (CR6) 1991; 69 Ziadi, Ellaia, Bencherif-Madani (CR18) 2017; 317 Zhu (CR19) 2017; 67 Kou, Dai (CR31) 2015; 165 Moré, Garbow, Hillstrom (CR38) 1981; 7 WW Hager (1258_CR10) 2006; 2 M Li (1258_CR14) 2020; 16 H Hwang (1258_CR47) 1995; 4 JK Liu (1258_CR17) 2020; 371 1258_CR36 R Ziadi (1258_CR18) 2017; 317 Y Narushima (1258_CR32) 2011; 21 JJ Moré (1258_CR38) 1981; 7 JK Liu (1258_CR20) 2018; 97 EG Birgin (1258_CR13) 2001; 43 E Polak (1258_CR3) 1969; 16 N Andrei (1258_CR12) 2010; 204 GH Yu (1258_CR44) 2010; 23 R Fletcher (1258_CR5) 1987 JH Yin (1258_CR22) 2021; 88 JK Liu (1258_CR33) 2019; 96 B Sellami (1258_CR40) 2015; 64 YH Dai (1258_CR11) 2013; 23 JK Liu (1258_CR34) 2020; 150 GL Yuan (1258_CR25) 2020; 147 Y Liu (1258_CR6) 1991; 69 L Zhang (1258_CR30) 2006; 26 NIM Gould (1258_CR37) 2003; 29 MR Hestenes (1258_CR1) 1952; 49 1258_CR46 ED Dolan (1258_CR41) 2002; 91 P Faramarzi (1258_CR16) 2019; 56 XJ Zhu (1258_CR19) 2017; 67 1258_CR27 YH Dai (1258_CR35) 2001; 103 Y Xiao (1258_CR24) 2013; 405 N Andrei (1258_CR39) 2008; 10 S Babaie-Kafaki (1258_CR15) 2015; 30 WW Hager (1258_CR9) 2005; 16 YH Dai (1258_CR8) 2001; 43 ZJ Shi (1258_CR28) 2009; 224 J Yin (1258_CR26) 2021; 391 YH Dai (1258_CR7) 1999; 10 XJ Chen (1258_CR21) 2010; 3 R Fletcher (1258_CR2) 1964; 7 A Bovik (1258_CR48) 2000 CX Kou (1258_CR31) 2015; 165 1258_CR29 RH Chan (1258_CR42) 2005; 14 BT Polyak (1258_CR4) 1969; 9 Y Xiao (1258_CR23) 2011; 74 JY Cao (1258_CR45) 2020; 152 JF Cai (1258_CR43) 2007 |
| References_xml | – volume: 56 start-page: 1 issue: 4 year: 2019 end-page: 15 ident: CR16 article-title: A scaled three-term conjugate gradient method for large-scale unconstrained optimization problem publication-title: Calcolo doi: 10.1007/s10092-019-0333-4 – volume: 2 start-page: 35 issue: 1 year: 2006 end-page: 58 ident: CR10 article-title: A survey of nonlinear conjugate gradient methods publication-title: Pac. J. Optim. – volume: 64 start-page: 993 issue: 4 year: 2015 end-page: 1009 ident: CR40 article-title: A new two-parameter family of nonlinear conjugate gradient methods publication-title: Optimization doi: 10.1080/02331934.2013.830118 – volume: 91 start-page: 201 issue: 2 year: 2002 end-page: 213 ident: CR41 article-title: Benchmarking optimization software with performance profiles publication-title: Math. Program. doi: 10.1007/s101070100263 – volume: 10 start-page: 177 issue: 1 year: 1999 end-page: 182 ident: CR7 article-title: A nonlinear conjugate gradient method with a strong global convergence property publication-title: SIAM J. Optim. doi: 10.1137/S1052623497318992 – volume: 29 start-page: 373 issue: 4 year: 2003 end-page: 394 ident: CR37 article-title: CUTEr and SifDec: A constrained and unconstrained testing environment, revisited publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/962437.962439 – volume: 23 start-page: 296 issue: 1 year: 2013 end-page: 320 ident: CR11 article-title: A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search publication-title: SIAM J. Optim. doi: 10.1137/100813026 – volume: 69 start-page: 129 issue: 1 year: 1991 end-page: 137 ident: CR6 article-title: Efficient generalized conjugate gradient algorithms, part 1: theory publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940464 – volume: 3 start-page: 765 issue: 4 year: 2010 end-page: 790 ident: CR21 article-title: Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization publication-title: SIAM J. Imaging Sci. doi: 10.1137/080740167 – volume: 49 start-page: 409 year: 1952 end-page: 436 ident: CR1 article-title: Method of conjugate gradient for solving linear equations publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.049.044 – volume: 371 start-page: 112709 year: 2020 ident: CR17 article-title: A sufficient descent nonlinear conjugate gradient method for solving M-tensor equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.112709 – volume: 88 start-page: 389 issue: 1 year: 2021 end-page: 418 ident: CR22 article-title: A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications publication-title: Numer. Algorithms doi: 10.1007/s11075-020-01043-z – volume: 150 start-page: 433 year: 2020 end-page: 443 ident: CR34 article-title: Some three-term conjugate gradient methods with the new direction structure publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2019.10.011 – volume: 204 start-page: 410 issue: 3 year: 2010 end-page: 420 ident: CR12 article-title: Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.11.030 – volume: 7 start-page: 149 issue: 2 year: 1964 end-page: 154 ident: CR2 article-title: Function minimization by conjugate gradients publication-title: Comput. J. doi: 10.1093/comjnl/7.2.149 – ident: CR29 – volume: 97 start-page: 2122 issue: 12 year: 2018 end-page: 2131 ident: CR20 article-title: A gradient projection method for the sparse signal reconstruction in compressive sensing publication-title: Appl. Anal. doi: 10.1080/00036811.2017.1359556 – volume: 7 start-page: 17 issue: 1 year: 1981 end-page: 41 ident: CR38 article-title: Testing unconstrained optimization software publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/355934.355936 – volume: 16 start-page: 245 issue: 1 year: 2020 end-page: 260 ident: CR14 article-title: A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2018149 – ident: CR27 – volume: 43 start-page: 87 issue: 1 year: 2001 end-page: 101 ident: CR8 article-title: New conjugacy conditions and related nonlinear conjugate gradient methods publication-title: Appl. Math. Optim. doi: 10.1007/s002450010019 – volume: 405 start-page: 310 issue: 1 year: 2013 end-page: 319 ident: CR24 article-title: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.04.017 – volume: 317 start-page: 672 year: 2017 end-page: 684 ident: CR18 article-title: Global optimization through a stochastic perturbation of the Polak-Ribière conjugate gradient method publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.12.021 – volume: 165 start-page: 209 issue: 1 year: 2015 end-page: 224 ident: CR31 article-title: A modified self-scaling memoryless Broyden-Fletcher-Goldfarb-Shanno method for unconstrained optimization publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0528-4 – ident: CR46 – volume: 43 start-page: 117 issue: 2 year: 2001 end-page: 128 ident: CR13 article-title: A spectral conjugate gradient method for unconstrained optimization publication-title: Appl. Math. Optim. doi: 10.1007/s00245-001-0003-0 – year: 1987 ident: CR5 publication-title: Unconstrained Optimization Practical Methods of Optimization, vol. 1 – volume: 224 start-page: 444 issue: 1 year: 2009 end-page: 457 ident: CR28 article-title: A new family of conjugate gradient methods publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.05.012 – volume: 26 start-page: 629 issue: 4 year: 2006 end-page: 640 ident: CR30 article-title: A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drl016 – volume: 23 start-page: 555 issue: 5 year: 2010 end-page: 560 ident: CR44 article-title: A descent spectral conjugate gradient method for impulse noise removal publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2010.01.010 – volume: 67 start-page: 73 issue: 1 year: 2017 end-page: 110 ident: CR19 article-title: A Riemannian conjugate gradient method for optimization on the Stiefel manifold publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-016-9883-4 – volume: 21 start-page: 212 issue: 1 year: 2011 end-page: 230 ident: CR32 article-title: A three-term conjugate gradient method with sufficient descent property for unconstrained optimization publication-title: SIAM J. Optim. doi: 10.1137/080743573 – volume: 16 start-page: 35 issue: 3 year: 1969 end-page: 43 ident: CR3 article-title: Note surla convergence de directions conjugèes publication-title: Rev. Fr. Informat Rech. Operationelle 3e Anneè – volume: 391 start-page: 113423 year: 2021 ident: CR26 article-title: A generalized hybrid CGPM-based algorithm for solving large-scale convex constrained equations with applications to image restoration publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2021.113423 – volume: 103 start-page: 33 year: 2001 end-page: 47 ident: CR35 article-title: An efficient hybrid conjugate gradient method for unconstrained optimization publication-title: Ann. Oper. Res. doi: 10.1023/A:1012930416777 – start-page: 109 year: 2007 end-page: 122 ident: CR43 publication-title: Minimization of an Edge-Preserving Regularization Functional by Conjugate Gradient type Methods. Image Processing Based on Partial Differential Equations – volume: 96 start-page: 1787 issue: 9 year: 2019 end-page: 1798 ident: CR33 article-title: Partially symmetrical derivative-free Liu-Storey projection method for convex constrained equations publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2018.1533122 – volume: 4 start-page: 499 issue: 4 year: 1995 end-page: 502 ident: CR47 article-title: Adaptive median filters: New algorithms and results publication-title: IEEE Trans. Image Process. doi: 10.1109/83.370679 – year: 2000 ident: CR48 publication-title: Handbook of Image and Video Processing – volume: 9 start-page: 94 year: 1969 end-page: 112 ident: CR4 article-title: The conjugate gradient method in extreme problems publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(69)90035-4 – ident: CR36 – volume: 30 start-page: 263 issue: 03 year: 2015 end-page: 272 ident: CR15 article-title: A modified three-term conjugate gradient method with sufficient descent property publication-title: Appl. Math.: J. Chin. Univ. (Ser. B) doi: 10.1007/s11766-015-3276-9 – volume: 147 start-page: 129 year: 2020 end-page: 141 ident: CR25 article-title: A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2019.08.022 – volume: 74 start-page: 3570 issue: 11 year: 2011 end-page: 3577 ident: CR23 article-title: Non-smooth equations based method for ℓ1-norm problems with applications to compressed sensing publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2011.02.040 – volume: 152 start-page: 243 year: 2020 end-page: 252 ident: CR45 article-title: A conjugate gradient algorithm and its applications in image restoration publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2019.12.002 – volume: 16 start-page: 170 issue: 1 year: 2005 end-page: 192 ident: CR9 article-title: A new conjugate gradient method with guaranteed descent and an efficient line search publication-title: SIAM J. Optim. doi: 10.1137/030601880 – volume: 10 start-page: 147 issue: 1 year: 2008 end-page: 161 ident: CR39 article-title: An unconstrained optimization test functions collection publication-title: Adv. Model. Optim. – volume: 14 start-page: 1479 issue: 10 year: 2005 end-page: 1485 ident: CR42 article-title: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852196 – volume: 224 start-page: 444 issue: 1 year: 2009 ident: 1258_CR28 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.05.012 – ident: 1258_CR27 doi: 10.1007/s12190-021-01589-8 – volume: 9 start-page: 94 year: 1969 ident: 1258_CR4 publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(69)90035-4 – volume: 10 start-page: 147 issue: 1 year: 2008 ident: 1258_CR39 publication-title: Adv. Model. Optim. – volume: 405 start-page: 310 issue: 1 year: 2013 ident: 1258_CR24 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.04.017 – volume: 26 start-page: 629 issue: 4 year: 2006 ident: 1258_CR30 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drl016 – volume: 14 start-page: 1479 issue: 10 year: 2005 ident: 1258_CR42 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.852196 – volume: 317 start-page: 672 year: 2017 ident: 1258_CR18 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.12.021 – volume-title: Handbook of Image and Video Processing year: 2000 ident: 1258_CR48 – volume: 21 start-page: 212 issue: 1 year: 2011 ident: 1258_CR32 publication-title: SIAM J. Optim. doi: 10.1137/080743573 – volume: 16 start-page: 35 issue: 3 year: 1969 ident: 1258_CR3 publication-title: Rev. Fr. Informat Rech. Operationelle 3e Anneè – volume: 165 start-page: 209 issue: 1 year: 2015 ident: 1258_CR31 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0528-4 – volume: 23 start-page: 555 issue: 5 year: 2010 ident: 1258_CR44 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2010.01.010 – volume: 371 start-page: 112709 year: 2020 ident: 1258_CR17 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.112709 – volume: 96 start-page: 1787 issue: 9 year: 2019 ident: 1258_CR33 publication-title: Int. J. Comput. Math. doi: 10.1080/00207160.2018.1533122 – volume: 29 start-page: 373 issue: 4 year: 2003 ident: 1258_CR37 publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/962437.962439 – volume: 69 start-page: 129 issue: 1 year: 1991 ident: 1258_CR6 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940464 – volume: 204 start-page: 410 issue: 3 year: 2010 ident: 1258_CR12 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.11.030 – volume: 391 start-page: 113423 year: 2021 ident: 1258_CR26 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2021.113423 – volume: 30 start-page: 263 issue: 03 year: 2015 ident: 1258_CR15 publication-title: Appl. Math.: J. Chin. Univ. (Ser. B) doi: 10.1007/s11766-015-3276-9 – volume: 43 start-page: 117 issue: 2 year: 2001 ident: 1258_CR13 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-001-0003-0 – volume: 3 start-page: 765 issue: 4 year: 2010 ident: 1258_CR21 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080740167 – volume: 16 start-page: 170 issue: 1 year: 2005 ident: 1258_CR9 publication-title: SIAM J. Optim. doi: 10.1137/030601880 – volume: 74 start-page: 3570 issue: 11 year: 2011 ident: 1258_CR23 publication-title: Nonlinear Anal. Theory Methods Appl. doi: 10.1016/j.na.2011.02.040 – volume: 147 start-page: 129 year: 2020 ident: 1258_CR25 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2019.08.022 – volume: 43 start-page: 87 issue: 1 year: 2001 ident: 1258_CR8 publication-title: Appl. Math. Optim. doi: 10.1007/s002450010019 – volume: 64 start-page: 993 issue: 4 year: 2015 ident: 1258_CR40 publication-title: Optimization doi: 10.1080/02331934.2013.830118 – volume: 103 start-page: 33 year: 2001 ident: 1258_CR35 publication-title: Ann. Oper. Res. doi: 10.1023/A:1012930416777 – volume: 2 start-page: 35 issue: 1 year: 2006 ident: 1258_CR10 publication-title: Pac. J. Optim. – start-page: 109 volume-title: Minimization of an Edge-Preserving Regularization Functional by Conjugate Gradient type Methods. Image Processing Based on Partial Differential Equations year: 2007 ident: 1258_CR43 – volume: 16 start-page: 245 issue: 1 year: 2020 ident: 1258_CR14 publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2018149 – volume: 4 start-page: 499 issue: 4 year: 1995 ident: 1258_CR47 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.370679 – volume: 7 start-page: 149 issue: 2 year: 1964 ident: 1258_CR2 publication-title: Comput. J. doi: 10.1093/comjnl/7.2.149 – ident: 1258_CR36 – volume: 67 start-page: 73 issue: 1 year: 2017 ident: 1258_CR19 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-016-9883-4 – volume: 97 start-page: 2122 issue: 12 year: 2018 ident: 1258_CR20 publication-title: Appl. Anal. doi: 10.1080/00036811.2017.1359556 – ident: 1258_CR29 – volume: 23 start-page: 296 issue: 1 year: 2013 ident: 1258_CR11 publication-title: SIAM J. Optim. doi: 10.1137/100813026 – volume: 150 start-page: 433 year: 2020 ident: 1258_CR34 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2019.10.011 – volume: 10 start-page: 177 issue: 1 year: 1999 ident: 1258_CR7 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497318992 – volume-title: Unconstrained Optimization Practical Methods of Optimization, vol. 1 year: 1987 ident: 1258_CR5 – volume: 88 start-page: 389 issue: 1 year: 2021 ident: 1258_CR22 publication-title: Numer. Algorithms doi: 10.1007/s11075-020-01043-z – ident: 1258_CR46 doi: 10.1007/s11075-021-01157-y – volume: 56 start-page: 1 issue: 4 year: 2019 ident: 1258_CR16 publication-title: Calcolo doi: 10.1007/s10092-019-0333-4 – volume: 152 start-page: 243 year: 2020 ident: 1258_CR45 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2019.12.002 – volume: 49 start-page: 409 year: 1952 ident: 1258_CR1 publication-title: J. Res. Natl. Bur. Stand. doi: 10.6028/jres.049.044 – volume: 91 start-page: 201 issue: 2 year: 2002 ident: 1258_CR41 publication-title: Math. Program. doi: 10.1007/s101070100263 – volume: 7 start-page: 17 issue: 1 year: 1981 ident: 1258_CR38 publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/355934.355936 |
| SSID | ssj0010027 |
| Score | 2.4905925 |
| Snippet | In this paper, based on the hybrid conjugate gradient method and the convex combination technique, a new family of hybrid three-term conjugate gradient methods... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 161 |
| SubjectTerms | Algebra Algorithms Computer Science Conjugate gradient method Design Design parameters Hypotheses Image restoration Iterative methods Numeric Computing Numerical Analysis Optimization Original Paper Searching Theory of Computation |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60etCDb7G-yMGbBpts2s2eRMQi-MCDirclyWa1om3tbgX_vZNs2qpgL173EQLfZObLPAEOhDZN3pSGovVWVGScUcUaGdXSRCJutpTw7YsfruKbG_n4mNwGh1sR0ipHOtEr6qxnnI_8mCdMojVtRfyk_07d1CgXXQ0jNGZhjnHOnJxfxnQcRXB3Lh_tRE2MTEeGopmqdA7vPa422SUm4GYp_2mYJmzzV4DU25328n93vAJLgXGS00pEVmHGdtdgObBPEs52sQaL1-MOrsU6mFOChJtU_g_Sy8nzp6vtIiVib6nT5wRv0i9D54UjTwOfOFaSah51QZx3l3yPjZNOl3TeUHeRgR9l459uwH37_O7sgoaBDNTgSS2pipUSERKuLNdMayEamYoj43q4Kd1UQuVJkinDJUMV27AiiRi3EVM8NzbPkThsQq3b69otIFraltQ2zrm7MzGlkxYSDSs00pmGkaoObIRGakK3cjc04zWd9Fl2CKaIYOoRTHkdDsf_9KteHVO_3h3BloZzW6QTzOpwNAJ-8vrv1banr7YDC9zLmktO24VaORjaPZg3H2WnGOx7qf0CEEfxUg priority: 102 providerName: ProQuest |
| Title | A new family of hybrid three-term conjugate gradient methods with applications in image restoration |
| URI | https://link.springer.com/article/10.1007/s11075-022-01258-2 https://www.proquest.com/docview/2918639632 |
| Volume | 91 |
| WOSCitedRecordID | wos000768105000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB609aAH6xPro-TgTQNNNu1mj1UUQS3iC29Lks1qRVvpbgX_vZN0t1VRQa9JNiyZzMw3mRfArtCmxVvSUNTeioqEM6pYM6FamkCErbYSvnzx7VnY7cq7u-iiSArLymj30iXpJfU02Q0tFZdN7EIJcHuKgreK6k46dry8up34Dpyl5X2cKH8R38giVeb7PT6roynG_OIW9drmuPa__1yCxQJdks74OizDjO2vQK1AmqTg4wyHymYO5dgKLJxPCrhmq2A6BPE2GT9_kEFKHt5cahfJkfSWOnFO0JB-HLlHOHI_9HFjORm3o86Ie9wlH13jpNcnvWcUXWToO9n40TW4OT66PjyhRT8GapBRc6pCpUSAeCtJNdNaiGaiwsC4Em5Kt5RQaRQlynDJUMI2rYgCxm3AFE-NTVPEDetQ6Q_6dgOIlrYttQ1T7kwmpnTURpxhhUY00zRS1YGVZIlNUazc9cx4iqdllt0xx3jMsT_mmNdhb_LNy7hUx6-rt0tqxwXbZjGPmETI1g5wer-k7nT65902_7Z8C-a5vyAuVm0bKvlwZHdgzrzmvWzYgOrBUffisgGzpyFtuGjUq4a_4u-1cPEb |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQcKBQQCwXmACewWDvejXNAqAKqVt2ukCiot2A7DiyCbNmkoP4pfiMzTrILSPTWA9c8LCX-_M17BuCRdn6kRsYLkt5W6EJJYeWwEM74RKejsdWxffH7STqdmqOj7M0a_OxrYTitsufESNTF3LOP_JnKpCFpOk7Ui-NvgqdGcXS1H6HRwmI_nP4gk61-vveK9vexUjuvD1_uim6qgPAEt0bY1FqdkNZQlE46p_WwsGniuRGZdSOrbZllhfXKSOKJYdBZIlVIpFWlD2VJ0o_WvQAXNbN_TBV8u4xasI0Xo6vE_KRZma5Ipy3VIzuLa6E5EYJ-jlB_CsKVdvtXQDbKuZ2N_-0PXYdrnUaN2-0RuAFrodqEjU67xo676k24erDsUFvfBL-NZFBg69_BeYmfTrl2DRvCdhAsr9DPq88n7GXEj4uYGNdgO2-7RvZe4--xf5xVOPtK3IyLOKonXr0F787lw2_DejWvwh1AZ8LYuJCWim1CaV02JkUqaEfq2tAbOwDZ737uu27sPBTkS77qI82IyQkxeURMrgbwZPnOcduL5Mynt3qY5B0v1fkKIwN42gNtdfvfq909e7WHcHn38GCST_am-_fgioo450S8LVhvFifhPlzy35tZvXgQTwzCh_MG4C_3HU-U |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRfTBecXL1Dz4pmFLmrXp41CHog7BC76VJE11op2sneC_9yRtNxUVxNckTUNycvKdO0J7XOk2awtN4PWWhMeMEklbMVFCezxo-5K79MW350GvJ-7uwssPUfzO270ySRYxDTZLU5o3X-KkOQl8A6nFRhZbtwL4FQEmPM1t0SArr1_dju0IVupy9k7gxYB1RBk28_0cn5-mCd78YiJ1L0-3_v81L6KFEnXiTkEmS2jKpMuoXiJQXN7vDJqqIg9V2zKavxgnds1WkO5gwOG4UIvgQYIf3mzIF86BJAyxbB7Dqh5HVjmH74fOnyzHRZnqDFulL_5oMsf9FPefgaXhoatw41pX0U33-PrwhJR1GoiGC5wTGUjJPcBhcaKoUpy3Yhl42qZ2k6otuUzCMJaaCQqct2V46FFmPCpZok2SAJ5YQ7V0kJp1hJUwvlAmSJgVpahUoQ_4w3AFKKelhdxAtDqiSJdJzG0tjadokn7ZbnME2xy5bY7YBtoff_NSpPD4dXSjOvmovM5ZxEIqAMr5HnQfVCc96f55ts2_Dd9Fs5dH3ej8tHe2heaYoxXrztZAtXw4MttoRr_m_Wy446j8HVzC-YE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+family+of+hybrid+three-term+conjugate+gradient+methods+with+applications+in+image+restoration&rft.jtitle=Numerical+algorithms&rft.au=Jiang%2C+Xianzhen&rft.au=Liao%2C+Wei&rft.au=Yin%2C+Jianghua&rft.au=Jian%2C+Jinbao&rft.date=2022-09-01&rft.pub=Springer+US&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=91&rft.issue=1&rft.spage=161&rft.epage=191&rft_id=info:doi/10.1007%2Fs11075-022-01258-2&rft.externalDocID=10_1007_s11075_022_01258_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |