Validation of a 3-D adaptive stable generalized/eXtended finite element method for mixed-mode brittle fracture propagation
In this paper, a Stable Generalized/eXtended Finite Element Method (SGFEM) is combined with mesh adaptivity for the robust and computationally efficient simulation of mixed-mode brittle fracture propagation. Both h -refinement around the fracture front and p -enrichment of the analysis domain are us...
Gespeichert in:
| Veröffentlicht in: | International journal of fracture Jg. 225; H. 2; S. 129 - 152 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.10.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0376-9429, 1573-2673 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, a Stable Generalized/eXtended Finite Element Method (SGFEM) is combined with mesh adaptivity for the robust and computationally efficient simulation of mixed-mode brittle fracture propagation. Both
h
-refinement around the fracture front and
p
-enrichment of the analysis domain are used to control discretization errors. A Linear Elastic Fracture Mechanics (LEFM) model based on Griffith’s criterion is adopted. LEFM scaling relations are used at each fracture propagation step to back calculate SIFs that meet Griffith’s criterion. As a result, no iterations are necessary to find loading scaling parameters or fracture size that meets Griffith’s criterion. The method is validated against several experimental data sets for mode I and mode I+II fracture propagation problems. Very good agreement between SGFEM and experimental results is observed. These include fracture path, Crack Opening Displacement (COD), and load and fracture length versus COD curves. The computational efficiency of the method is also assessed. |
|---|---|
| AbstractList | In this paper, a Stable Generalized/eXtended Finite Element Method (SGFEM) is combined with mesh adaptivity for the robust and computationally efficient simulation of mixed-mode brittle fracture propagation. Both h-refinement around the fracture front and p-enrichment of the analysis domain are used to control discretization errors. A Linear Elastic Fracture Mechanics (LEFM) model based on Griffith’s criterion is adopted. LEFM scaling relations are used at each fracture propagation step to back calculate SIFs that meet Griffith’s criterion. As a result, no iterations are necessary to find loading scaling parameters or fracture size that meets Griffith’s criterion. The method is validated against several experimental data sets for mode I and mode I+II fracture propagation problems. Very good agreement between SGFEM and experimental results is observed. These include fracture path, Crack Opening Displacement (COD), and load and fracture length versus COD curves. The computational efficiency of the method is also assessed. In this paper, a Stable Generalized/eXtended Finite Element Method (SGFEM) is combined with mesh adaptivity for the robust and computationally efficient simulation of mixed-mode brittle fracture propagation. Both h -refinement around the fracture front and p -enrichment of the analysis domain are used to control discretization errors. A Linear Elastic Fracture Mechanics (LEFM) model based on Griffith’s criterion is adopted. LEFM scaling relations are used at each fracture propagation step to back calculate SIFs that meet Griffith’s criterion. As a result, no iterations are necessary to find loading scaling parameters or fracture size that meets Griffith’s criterion. The method is validated against several experimental data sets for mode I and mode I+II fracture propagation problems. Very good agreement between SGFEM and experimental results is observed. These include fracture path, Crack Opening Displacement (COD), and load and fracture length versus COD curves. The computational efficiency of the method is also assessed. |
| Author | Duarte, C. Armando Alves, Phillipe D. Mukhtar, Faisal M. |
| Author_xml | – sequence: 1 givenname: Faisal M. orcidid: 0000-0001-5276-4828 surname: Mukhtar fullname: Mukhtar, Faisal M. email: faisalmu@kfupm.edu.sa organization: Dept. of Civil and Env. Eng., King Fahd University of Petroleum & Minerals – sequence: 2 givenname: Phillipe D. surname: Alves fullname: Alves, Phillipe D. organization: Dept. of Civil and Env. Eng., University of Illinois at Urbana-Champaign – sequence: 3 givenname: C. Armando orcidid: 0000-0002-0048-0679 surname: Duarte fullname: Duarte, C. Armando organization: Dept. of Civil and Env. Eng., University of Illinois at Urbana-Champaign |
| BookMark | eNp9kEtrHDEQhEVwIOvHH_BJkLNijSRLo2NwnmDwxTG5iR6pZyMzI20kbUj866PsBgI5-NRQ1FfV1Ck5STkhIZcDfzNwbq7qwA1XjAvOOFfaMvuCbIZrI5nQRp6QDZdGM6uEfUVOa33knFszqg15eoAlBmgxJ5pnClSydxQC7Fr8gbQ2mBakW0xYuu8JwxV-bZgCBjrHFBtSXHDF1OiK7Vvuai50jT8xsDUHpFOJrfWEuYBv-4J0V_IOtoe-c_JyhqXixd97Rr58eH9_84nd3n38fPP2lnk52MbAWGNH0ErCNAUQEwQlYDY6DLJLap7NKLVWRmhpub8OQglvjReBa1TeyzPy-pjbu7_vsTb3mPcl9UonlBrkqJTV3TUeXb7kWgvOzsd2-LMViIsbuPuztDsu7frS7rC0sx0V_6G7Elcov56H5BGq3Zy2WP599Qz1Gw6ElGY |
| CitedBy_id | crossref_primary_10_1016_j_engfracmech_2024_109996 crossref_primary_10_1016_j_cma_2024_117585 crossref_primary_10_1016_j_ijmecsci_2024_109149 crossref_primary_10_1016_j_tafmec_2022_103250 crossref_primary_10_1016_j_compstruc_2023_107043 crossref_primary_10_1016_j_finel_2021_103554 crossref_primary_10_1002_nag_3378 crossref_primary_10_1016_j_engfracmech_2025_111173 crossref_primary_10_1016_j_ijmecsci_2023_108815 crossref_primary_10_3390_pr10112449 crossref_primary_10_1016_j_tafmec_2023_104044 crossref_primary_10_1016_j_enganabound_2023_11_030 crossref_primary_10_1016_j_mechrescom_2024_104275 crossref_primary_10_1016_j_tafmec_2024_104413 crossref_primary_10_1016_j_cma_2022_115408 |
| Cites_doi | 10.1016/j.cma.2020.112970 10.1016/j.ijmecsci.2019.01.040 10.1016/S0168-874X(00)00035-4 10.1002/nag.2305 10.1016/S0022-5096(01)00008-4 10.1007/BF00038891 10.1016/j.cma.2016.02.030 10.1007/s10704-014-9966-0 10.1002/nme.829 10.1016/j.engfracmech.2008.10.015 10.1016/0013-7944(69)90010-1 10.1016/S0045-7825(96)01087-0 10.1016/j.cma.2014.10.052 10.1007/BF00019788 10.1186/s40323-017-0090-3 10.1007/s10704-017-0185-3 10.1016/j.cma.2018.11.018 10.1007/s10704-019-00381-x 10.1016/j.engfracmech.2012.04.014 10.1007/s00466-014-1003-7 10.1007/s00211-014-0609-1 10.1111/j.1460-2695.2004.00855.x 10.1016/j.cma.2016.08.019 10.1016/j.jmps.2013.11.001 10.1002/nme.2419 10.1016/0013-7944(95)00247-2 10.2118/96968-MS 10.1016/0013-7944(70)90026-3 10.1007/s00466-008-0356-1 10.1016/j.cma.2017.08.008 10.1088/0965-0393/17/4/043001 10.1016/j.actamat.2005.10.053 10.1016/S0045-7825(97)00039-X 10.1016/j.ijfatigue.2013.04.013 10.1016/j.engfracmech.2017.03.035 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S 10.1007/978-94-007-6680-8 10.1023/A:1020980311611 10.1002/nme.1620100103 10.1016/j.cma.2018.08.029 10.1002/nme.1620090302 10.1115/1.3656897 10.1137/0731051 10.1002/nme.4573 10.1007/s10704-010-9476-7 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J 10.1002/nme.471 10.1016/S0045-7949(99)00211-4 10.1016/j.cma.2011.09.012 10.1023/B:FRAC.0000005373.73286.5d 10.1007/s10704-017-0212-4 10.1016/j.engfracmech.2010.06.009 10.1016/j.ijsolstr.2007.02.044 10.1007/s00466-010-0491-3 10.1016/j.ijfatigue.2017.05.026 10.1115/1.3656900 10.1016/j.cma.2019.112614 |
| ContentType | Journal Article |
| Copyright | Springer Nature B.V. 2020 Springer Nature B.V. 2020. |
| Copyright_xml | – notice: Springer Nature B.V. 2020 – notice: Springer Nature B.V. 2020. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s10704-020-00469-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | ProQuest Materials Science Collection |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-2673 |
| EndPage | 152 |
| ExternalDocumentID | 10_1007_s10704_020_00469_9 |
| GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PKN PT4 PT5 PTHSS QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~02 ~8M ~A~ ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-a79798a643abbda2bad42af76d133ab4ff783664726390c5d242c97c2d06e4cc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000557326600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0376-9429 |
| IngestDate | Tue Nov 04 22:32:01 EST 2025 Tue Nov 18 21:33:37 EST 2025 Sat Nov 29 01:49:32 EST 2025 Fri Feb 21 02:34:00 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Generalized FEM Validation Brittle fracture EXtended FEM Mixed-mode Mesh adaptivity Fracture propagation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a79798a643abbda2bad42af76d133ab4ff783664726390c5d242c97c2d06e4cc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5276-4828 0000-0002-0048-0679 |
| PQID | 2441384496 |
| PQPubID | 2043781 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_2441384496 crossref_citationtrail_10_1007_s10704_020_00469_9 crossref_primary_10_1007_s10704_020_00469_9 springer_journals_10_1007_s10704_020_00469_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20201000 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | International journal of fracture |
| PublicationTitleAbbrev | Int J Fract |
| PublicationYear | 2020 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | NikfamMZeinoddiniMAghebatiFArghaeiAExperimental and XFEM modelling of high cycle fatigue crack growth in steel welded T-jointsInt J Mech Sci2019153–15417819310.1016/j.ijmecsci.2019.01.040 PhamKRavi-ChandarKLandisCExperimental validation of a phase-field model for fractureInt J Fract201720518310110.1007/s10704-017-0185-3 ZhangQBanerjeeUBabuškaIHigher order stable generalized finite element methodNumerische Mathematik2014128112910.1007/s00211-014-0609-1 LoehnertSA stabilization technique for the regularization of nearly singular extended finite elementsComput Mech201454252353310.1007/s00466-014-1003-7 BittencourtTWawezynekPIngraffeaASousaJQuasi-automatic simulation of crack propagation for 2D LEFM problemsEng Fract Mech199655232133410.1016/0013-7944(95)00247-2 Duarte C (2016) ISET-An Adaptive Generalized Finite Element Solver, Reference Manual. ISET Developers, http://gfem.cee.illinois.edu FerrieEBuffiereJYLudwigWGravouilAEdwardsLFatigue crack propagation: In situ visualization using X-ray microtomography and 3D similation using the extended finite element methodActa Materialia2006541111112210.1016/j.actamat.2005.10.0531:CAS:528:DC%2BD28XnvVGjsw%3D%3D TianRWenLWangLThree-dimensional improved XFEM (IXFEM) for static crack problemsComput Methods Appl Mech Eng201934333936710.1016/j.cma.2018.08.029 OdenJDuarteCZienkiewiczOA new cloud-based hp finite element methodComput Methods Appl Mech Eng199815311712610.1016/S0045-7825(97)00039-X NdeffoMMassinPMoësNMartinAGopalakrishnanSOn the construction of approximation space to model discontinuities and cracks with linear and quadratic extended finite elementsAdv Model Simul Eng Sci20174110.1186/s40323-017-0090-3 ShiJChoppDLuaJSukumarNBelytschkoTAbaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictionsEng Fract Mech201077142840286310.1016/j.engfracmech.2010.06.009 VarfolomeevIBurdackMMorozSSiegeleDKadauKFatigue crack growth rates and paths in two planar specimens under mixed mode loadingInt J Fatigue201458121910.1016/j.ijfatigue.2013.04.013 Oden J, Duarte C (1997) Chapter: Clouds, Cracks and FEMs. In: B. Reddy (ed.) Recent Developments in Computational and Applied Mechanics, pp. 302–321. International Center for Numerical Methods in Engineering, CIMNE, Barcelona, Spain http://gfem.cee.illinois.edu/papers/jMartin_color.pdf DuarteCBabuškaIOdenJGeneralized finite element methods for three dimensional structural mechanics problemsComput Struct20007721523210.1016/S0045-7949(99)00211-4 GuptaPDuarteCDhankharAAccuracy and robustness of stress intensity factor extraction methods for the generalized/eXtended Finite Element MethodEng Fract Mech201717912015310.1016/j.engfracmech.2017.03.035 CGAL: Computational Geometry Algorithms Library (2012). http://www.cgal.org SzaboBBabuškaIFinite Elem Analy1991New YorkWiley VenturaGBudynEBelytschkoTVector level sets for description of propagating cracks in finite elementsInt J Num Methods Eng200358101571159210.1002/nme.829 BabuškaIMelenkJThe partition of unity methodInt J Num Methods Eng19974072775810.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N ChanSTubaIWilsonWOn the finite element method in linear fracture mechanicsEng Fract Mech1970211710.1016/0013-7944(70)90026-3 RichardHAFullandMSanderMTheoretical crack path predictionFatigue Fract Eng Mater Struct2005281–231210.1111/j.1460-2695.2004.00855.x ShabirZVan der GiessenEDuarteCSimoneAOn the applicability of linear elastic fracture mechanics scaling relations in the analysis of intergranular fracture of brittle polycrystalsInt J Fract2019220220521910.1007/s10704-019-00381-x BelytschkoTGracieRVenturaGA review of extended/generalized finite element methods for material modelingModel Simul Mater Sci Eng20091704300110.1088/0965-0393/17/4/043001 GinerESukumarNTarancónJEFuenmayorFJAn Abaqus implementation of the extended finite element methodEng Fract Mech200976334736810.1016/j.engfracmech.2008.10.015 BabuškaIBanerjeeUKergreneKStrongly stable generalized finite element method: application to interface problemsComput Methods Appl Mech Eng2017327589210.1016/j.cma.2017.08.008 NuismerRAn energy release rate criterion for mixed mode fractureInt J Fracture19751124525010.1007/BF00038891 ErdoganFSihGOn the crack extension in plates under plane loading and transverse shearJ Basic Eng19638551952710.1115/1.3656897 GuptaPDuarteCSimulation of non-planar three-dimensional hydraulic fracture propagationInt J Num Analyt Methods Geomech2014381397143010.1002/nag.23051:CAS:528:DC%2BC2cXhtlGmsLfO SchöllmannMRichardHKullmerGFullandMA new criterion for the prediction of crack development in multiaxially loaded structuresInt J Fract2002117212914110.1023/A:1020980311611 LeblondJBFrelatJDevelopment of fracture facets from a crack loaded in mode i+ iii: solution and application of a model 2d problemJ Mech Phys Solids20146413315310.1016/j.jmps.2013.11.001 SommerEFormation of fracture ‘lances’ in glassEngineering Fracture Mechanics19691353954610.1016/0013-7944(69)90010-1 PereiraJDuarteCJiaoXGuoyDGeneralized finite element method enrichment functions for curved singularities in 3D fracture mechanics problemsComput Mech2009441739210.1007/s00466-008-0356-1 Banks-SillsLShermanDComparison of methods for calculating stress intensity factors with quarter-point elementsInt J Fract19863212714010.1007/BF00019788 DolbowJMoësNBelytschkoTDiscontinuous enrichment in finite elements with a partition of unity methodFinite Elem Analy Des20003623526010.1016/S0168-874X(00)00035-4 KergreneKBabuškaIBanerjeeUStable generalized finite element method and associated iterative schemes; application to interface problemsComput Methods Appl Mech Eng201630513610.1016/j.cma.2016.02.030 Abaqus: Version 6.14 Documentation. Dassault Systemes Simulia Corporation, Providence, RI, USA (2014) PereiraJDuarteCJiaoXThree-dimensional crack growth with hp-generalized finite element and face offsetting methodsComput Mech201046343145310.1007/s00466-010-0491-3 BelytschkoTBlackTElastic crack growth in finite elements with minimal remeshingInt J Num Methods Eng19994560162010.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S WuJNguyenVNguyenCSutulaDBordasSSinaieSPhase field modelling of fractureAdv Appl Mech201910.1016/j.cma.2019.112614 PhamKRavi-ChandarKThe formation and growth of echelon cracks in brittle materialsInt J Fract2017206222924410.1007/s10704-017-0212-4 Rungamornrat J, Wheeler M, Mear M (2005) A numerical technique for simulating nonplanar evolution of hydraulic fractures. In: Proceedings of the SPE Annual Technical Conference and Exhibition, p. 9. Dallas, TX, USA SPE-96968-MS BergaraADoradoJMartin-MeizosoAMartínez-EsnaolaJFatigue crack propagation in complex stress fields: experiments and numerical simulations using the extended finite element method (XFEM)Int J Fatigue201710311212110.1016/j.ijfatigue.2017.05.026 LazarusVLeblondJBMouchrifSECrack front rotation and segmentation in mixed mode i+ iii or i+ ii+ iii. Part ii: Comparison with experimentsJ Mech Phys Solids20014971421144310.1016/S0022-5096(01)00008-4 GrégoireDMaigreHRéthoréJCombescureADynamic crack propagation under mixed-mode loading—comparison between experiments and X-FEM simulationsInt J Solids Struct200744206517653410.1016/j.ijsolstr.2007.02.0441:CAS:528:DC%2BD2sXht1ClsbfO HeathMScientific computing: an introductory survey1997McGraw-HillMcGraw-Hill series in computer science HenshellRShawKCrack tip finite elements are unnecessaryInt J Num Methods Eng19759349550710.1002/nme.1620090302 Sanchez-RivadeneiraAShauerNMazurowskiBDuarteCA stable generalized/extended p-hierarchical FEM for three-dimensional linear elastic fracture mechanicsComput Methods Appl Mech Eng202036411297010.1016/j.cma.2020.112970 MelenkJBabuškaIThe partition of unity finite element method: Basic theory and applicationsComput Methods Appl Mech Eng199613928931410.1016/S0045-7825(96)01087-0 Sanchez-RivadeneiraADuarteCA stable generalized/extended FEM with discontinuous interpolants for fracture mechanicsComput Methods Appl Mech Eng201934587691810.1016/j.cma.2018.11.018 BabuškaICalozGOsbornJSpecial finite element methods for a class of second order elliptic problems with rough coefficientsSIAM J Num Analy199431494598110.1137/0731051 LazarusVBrittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loadingInt J Fract20031221–2234610.1023/B:FRAC.0000005373.73286.5d LinBMearMRavi-ChandarKCriterion for initiation of cracks under mixed-mode i+ iii loadingInt J Fract2010165217518810.1007/s10704-010-9476-7 GuptaPPereiraJKimDJDuarteCEasonTAnalysis of three-dimensional fracture mechanics problems: a non-intrusive approach using a generalized finite element methodEng Fract Mech201290416410.1016/j.engfracmech.2012.04.014 KunaMFinite elements in fracture mechanics: theory “numerics” applications2013DordrechtSpringer10.1007/978-94-007-6680-8 ParisAErdoganFA critical analysis of crack propagation lawsJ Basic Eng19638552853410.1115/1.36569001:CAS:528:DyaF2cXitF2mtA%3D%3D BarsoumROn the use of isoparametric finite elements in linear fracture mechanicsInt J Num Methods Eng1976101253710.1002/nme.1620100103 Pereira J (2010) Generalized finite element methods for three-dimensional crack growth simulations. PhD Dissertation, University of Illinois at Urbana-Champaign Urbana. IL, USA VenturaGXuJBelytschkoTA vector level set method and new discontinuity approximations for crack growth by efgInt J Num Methods Eng20025692394410.1002/nme.471 GriffithAAThe phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of LondonSeries A, Containing Papers of a Mathematical or Physical Character1921221163198 PereiraJDuarteCGuoyDJiaoXHp-Generalized FEM and crack surface representation for non-planar 3-D cracksInt J Num Methods Eng200977560163310.1002/nme.2419 GarzonJO’HaraPDuarteCButtlarWImprovements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalesc V Lazarus (469_CR33) 2003; 122 P Gupta (469_CR25) 2012; 90 J Oden (469_CR44) 1998; 153 JB Leblond (469_CR35) 2014; 64 Q Zhang (469_CR69) 2016; 311 J Wu (469_CR67) 2019 M Kuna (469_CR32) 2013 469_CR45 J Dolbow (469_CR15) 2000; 36 469_CR47 J Melenk (469_CR38) 1996; 139 E Sommer (469_CR61) 1969; 1 K Pham (469_CR53) 2017; 205 D Grégoire (469_CR22) 2007; 44 V Lazarus (469_CR34) 2001; 49 I Babuška (469_CR2) 2012; 201–204 I Varfolomeev (469_CR64) 2014; 58 J Shi (469_CR60) 2010; 77 HA Richard (469_CR54) 2005; 28 I Babuška (469_CR5) 2017; 327 B Szabo (469_CR62) 1991 E Giner (469_CR21) 2009; 76 S Chan (469_CR14) 1970; 2 G Ventura (469_CR66) 2003; 58 I Babuška (469_CR4) 1994; 31 T Belytschko (469_CR9) 2009; 17 469_CR31 J Pereira (469_CR48) 2009; 77 J Pereira (469_CR49) 2009; 44 R Tian (469_CR63) 2019; 343 K Kergrene (469_CR30) 2016; 305 K Pham (469_CR52) 2017; 206 A Sanchez-Rivadeneira (469_CR57) 2020; 364 R Barsoum (469_CR7) 1976; 10 Z Shabir (469_CR59) 2019; 220 J Garzon (469_CR20) 2014; 97 B Lin (469_CR36) 2010; 165 N Moës (469_CR40) 1999; 46 A Sanchez-Rivadeneira (469_CR56) 2019; 345 469_CR29 M Nikfam (469_CR42) 2019; 153–154 P Gupta (469_CR26) 2017; 179 T Bittencourt (469_CR11) 1996; 55 M Heath (469_CR27) 1997 E Ferrie (469_CR19) 2006; 54 R Henshell (469_CR28) 1975; 9 A Mesgarnejad (469_CR39) 2015; 290 S Loehnert (469_CR37) 2014; 54 M Schöllmann (469_CR58) 2002; 117 I Babuška (469_CR3) 1997; 40 AA Griffith (469_CR23) 1921; 221 469_CR1 A Bergara (469_CR10) 2017; 103 P Gupta (469_CR24) 2014; 38 L Banks-Sills (469_CR6) 1986; 32 A Paris (469_CR46) 1963; 85 Q Zhang (469_CR68) 2014; 128 T Belytschko (469_CR8) 1999; 45 C Duarte (469_CR17) 2000; 77 469_CR16 J Pereira (469_CR50) 2010; 46 469_CR12 469_CR13 R Nuismer (469_CR43) 1975; 11 K Pham (469_CR51) 2014; 189 F Erdogan (469_CR18) 1963; 85 469_CR55 M Ndeffo (469_CR41) 2017; 4 G Ventura (469_CR65) 2002; 56 |
| References_xml | – reference: BittencourtTWawezynekPIngraffeaASousaJQuasi-automatic simulation of crack propagation for 2D LEFM problemsEng Fract Mech199655232133410.1016/0013-7944(95)00247-2 – reference: NikfamMZeinoddiniMAghebatiFArghaeiAExperimental and XFEM modelling of high cycle fatigue crack growth in steel welded T-jointsInt J Mech Sci2019153–15417819310.1016/j.ijmecsci.2019.01.040 – reference: GuptaPDuarteCDhankharAAccuracy and robustness of stress intensity factor extraction methods for the generalized/eXtended Finite Element MethodEng Fract Mech201717912015310.1016/j.engfracmech.2017.03.035 – reference: Ingraffea AR, Grigoriu M (1990) Probabilistic fracture mechanics: A validation of predictive capability. Report 90-8 Department of Structural Engineering Cornell University – reference: KergreneKBabuškaIBanerjeeUStable generalized finite element method and associated iterative schemes; application to interface problemsComput Methods Appl Mech Eng201630513610.1016/j.cma.2016.02.030 – reference: BabuškaICalozGOsbornJSpecial finite element methods for a class of second order elliptic problems with rough coefficientsSIAM J Num Analy199431494598110.1137/0731051 – reference: BergaraADoradoJMartin-MeizosoAMartínez-EsnaolaJFatigue crack propagation in complex stress fields: experiments and numerical simulations using the extended finite element method (XFEM)Int J Fatigue201710311212110.1016/j.ijfatigue.2017.05.026 – reference: GinerESukumarNTarancónJEFuenmayorFJAn Abaqus implementation of the extended finite element methodEng Fract Mech200976334736810.1016/j.engfracmech.2008.10.015 – reference: GriffithAAThe phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of LondonSeries A, Containing Papers of a Mathematical or Physical Character1921221163198 – reference: LoehnertSA stabilization technique for the regularization of nearly singular extended finite elementsComput Mech201454252353310.1007/s00466-014-1003-7 – reference: SzaboBBabuškaIFinite Elem Analy1991New YorkWiley – reference: Pereira J (2010) Generalized finite element methods for three-dimensional crack growth simulations. PhD Dissertation, University of Illinois at Urbana-Champaign Urbana. IL, USA – reference: WuJNguyenVNguyenCSutulaDBordasSSinaieSPhase field modelling of fractureAdv Appl Mech201910.1016/j.cma.2019.112614 – reference: BabuškaIBanerjeeUStable generalized finite element method (SGFEM)Comput Methods Appl Mech Eng2012201–2049111110.1016/j.cma.2011.09.012 – reference: MelenkJBabuškaIThe partition of unity finite element method: Basic theory and applicationsComput Methods Appl Mech Eng199613928931410.1016/S0045-7825(96)01087-0 – reference: Sanchez-RivadeneiraADuarteCA stable generalized/extended FEM with discontinuous interpolants for fracture mechanicsComput Methods Appl Mech Eng201934587691810.1016/j.cma.2018.11.018 – reference: BabuškaIMelenkJThe partition of unity methodInt J Num Methods Eng19974072775810.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N – reference: RichardHAFullandMSanderMTheoretical crack path predictionFatigue Fract Eng Mater Struct2005281–231210.1111/j.1460-2695.2004.00855.x – reference: ZhangQBabuškaIBanerjeeURobustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularitiesComput Methods Appl Mech Eng201631147650210.1016/j.cma.2016.08.019 – reference: GuptaPDuarteCSimulation of non-planar three-dimensional hydraulic fracture propagationInt J Num Analyt Methods Geomech2014381397143010.1002/nag.23051:CAS:528:DC%2BC2cXhtlGmsLfO – reference: Bravos CMAA (2004) Um sistema de refinamento h-p adaptativo utilizando elementos finitos hierarquicos multidimensionais. Ph.D. thesis, Faculdade de Engenharia Mecanica, Universidade Estadual de Campinas – reference: LazarusVLeblondJBMouchrifSECrack front rotation and segmentation in mixed mode i+ iii or i+ ii+ iii. Part ii: Comparison with experimentsJ Mech Phys Solids20014971421144310.1016/S0022-5096(01)00008-4 – reference: NuismerRAn energy release rate criterion for mixed mode fractureInt J Fracture19751124525010.1007/BF00038891 – reference: Abaqus: Version 6.14 Documentation. Dassault Systemes Simulia Corporation, Providence, RI, USA (2014) – reference: VarfolomeevIBurdackMMorozSSiegeleDKadauKFatigue crack growth rates and paths in two planar specimens under mixed mode loadingInt J Fatigue201458121910.1016/j.ijfatigue.2013.04.013 – reference: CGAL: Computational Geometry Algorithms Library (2012). http://www.cgal.org – reference: GuptaPPereiraJKimDJDuarteCEasonTAnalysis of three-dimensional fracture mechanics problems: a non-intrusive approach using a generalized finite element methodEng Fract Mech201290416410.1016/j.engfracmech.2012.04.014 – reference: KunaMFinite elements in fracture mechanics: theory “numerics” applications2013DordrechtSpringer10.1007/978-94-007-6680-8 – reference: BelytschkoTGracieRVenturaGA review of extended/generalized finite element methods for material modelingModel Simul Mater Sci Eng20091704300110.1088/0965-0393/17/4/043001 – reference: VenturaGXuJBelytschkoTA vector level set method and new discontinuity approximations for crack growth by efgInt J Num Methods Eng20025692394410.1002/nme.471 – reference: Duarte C (2016) ISET-An Adaptive Generalized Finite Element Solver, Reference Manual. ISET Developers, http://gfem.cee.illinois.edu – reference: ErdoganFSihGOn the crack extension in plates under plane loading and transverse shearJ Basic Eng19638551952710.1115/1.3656897 – reference: HenshellRShawKCrack tip finite elements are unnecessaryInt J Num Methods Eng19759349550710.1002/nme.1620090302 – reference: DolbowJMoësNBelytschkoTDiscontinuous enrichment in finite elements with a partition of unity methodFinite Elem Analy Des20003623526010.1016/S0168-874X(00)00035-4 – reference: PhamKRavi-ChandarKLandisCExperimental validation of a phase-field model for fractureInt J Fract201720518310110.1007/s10704-017-0185-3 – reference: MoësNDolbowJBelytschkoTA finite element method for crack growth without remeshingInt J Num Methods Eng19994613115010.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J – reference: NdeffoMMassinPMoësNMartinAGopalakrishnanSOn the construction of approximation space to model discontinuities and cracks with linear and quadratic extended finite elementsAdv Model Simul Eng Sci20174110.1186/s40323-017-0090-3 – reference: Rungamornrat J, Wheeler M, Mear M (2005) A numerical technique for simulating nonplanar evolution of hydraulic fractures. In: Proceedings of the SPE Annual Technical Conference and Exhibition, p. 9. Dallas, TX, USA SPE-96968-MS – reference: OdenJDuarteCZienkiewiczOA new cloud-based hp finite element methodComput Methods Appl Mech Eng199815311712610.1016/S0045-7825(97)00039-X – reference: ShiJChoppDLuaJSukumarNBelytschkoTAbaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictionsEng Fract Mech201077142840286310.1016/j.engfracmech.2010.06.009 – reference: ParisAErdoganFA critical analysis of crack propagation lawsJ Basic Eng19638552853410.1115/1.36569001:CAS:528:DyaF2cXitF2mtA%3D%3D – reference: Sanchez-RivadeneiraAShauerNMazurowskiBDuarteCA stable generalized/extended p-hierarchical FEM for three-dimensional linear elastic fracture mechanicsComput Methods Appl Mech Eng202036411297010.1016/j.cma.2020.112970 – reference: BelytschkoTBlackTElastic crack growth in finite elements with minimal remeshingInt J Num Methods Eng19994560162010.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S – reference: SchöllmannMRichardHKullmerGFullandMA new criterion for the prediction of crack development in multiaxially loaded structuresInt J Fract2002117212914110.1023/A:1020980311611 – reference: HeathMScientific computing: an introductory survey1997McGraw-HillMcGraw-Hill series in computer science – reference: PereiraJDuarteCJiaoXGuoyDGeneralized finite element method enrichment functions for curved singularities in 3D fracture mechanics problemsComput Mech2009441739210.1007/s00466-008-0356-1 – reference: LazarusVBrittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loadingInt J Fract20031221–2234610.1023/B:FRAC.0000005373.73286.5d – reference: PhamKRavi-ChandarKFurther examination of the criterion for crack initiation under mixed-mode i+ iii loadingInt J Fract2014189212113810.1007/s10704-014-9966-01:CAS:528:DC%2BC2cXhsFamtr3I – reference: Banks-SillsLShermanDComparison of methods for calculating stress intensity factors with quarter-point elementsInt J Fract19863212714010.1007/BF00019788 – reference: LeblondJBFrelatJDevelopment of fracture facets from a crack loaded in mode i+ iii: solution and application of a model 2d problemJ Mech Phys Solids20146413315310.1016/j.jmps.2013.11.001 – reference: BarsoumROn the use of isoparametric finite elements in linear fracture mechanicsInt J Num Methods Eng1976101253710.1002/nme.1620100103 – reference: VenturaGBudynEBelytschkoTVector level sets for description of propagating cracks in finite elementsInt J Num Methods Eng200358101571159210.1002/nme.829 – reference: TianRWenLWangLThree-dimensional improved XFEM (IXFEM) for static crack problemsComput Methods Appl Mech Eng201934333936710.1016/j.cma.2018.08.029 – reference: PereiraJDuarteCJiaoXThree-dimensional crack growth with hp-generalized finite element and face offsetting methodsComput Mech201046343145310.1007/s00466-010-0491-3 – reference: ZhangQBanerjeeUBabuškaIHigher order stable generalized finite element methodNumerische Mathematik2014128112910.1007/s00211-014-0609-1 – reference: Kumar A, Lopez-Pamies O (2020) Personal Communication – reference: ShabirZVan der GiessenEDuarteCSimoneAOn the applicability of linear elastic fracture mechanics scaling relations in the analysis of intergranular fracture of brittle polycrystalsInt J Fract2019220220521910.1007/s10704-019-00381-x – reference: GrégoireDMaigreHRéthoréJCombescureADynamic crack propagation under mixed-mode loading—comparison between experiments and X-FEM simulationsInt J Solids Struct200744206517653410.1016/j.ijsolstr.2007.02.0441:CAS:528:DC%2BD2sXht1ClsbfO – reference: SommerEFormation of fracture ‘lances’ in glassEngineering Fracture Mechanics19691353954610.1016/0013-7944(69)90010-1 – reference: PereiraJDuarteCGuoyDJiaoXHp-Generalized FEM and crack surface representation for non-planar 3-D cracksInt J Num Methods Eng200977560163310.1002/nme.2419 – reference: FerrieEBuffiereJYLudwigWGravouilAEdwardsLFatigue crack propagation: In situ visualization using X-ray microtomography and 3D similation using the extended finite element methodActa Materialia2006541111112210.1016/j.actamat.2005.10.0531:CAS:528:DC%2BD28XnvVGjsw%3D%3D – reference: Oden J, Duarte C (1997) Chapter: Clouds, Cracks and FEMs. In: B. Reddy (ed.) Recent Developments in Computational and Applied Mechanics, pp. 302–321. International Center for Numerical Methods in Engineering, CIMNE, Barcelona, Spain http://gfem.cee.illinois.edu/papers/jMartin_color.pdf – reference: LinBMearMRavi-ChandarKCriterion for initiation of cracks under mixed-mode i+ iii loadingInt J Fract2010165217518810.1007/s10704-010-9476-7 – reference: PhamKRavi-ChandarKThe formation and growth of echelon cracks in brittle materialsInt J Fract2017206222924410.1007/s10704-017-0212-4 – reference: ChanSTubaIWilsonWOn the finite element method in linear fracture mechanicsEng Fract Mech1970211710.1016/0013-7944(70)90026-3 – reference: GarzonJO’HaraPDuarteCButtlarWImprovements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescenceInt J Num Methods Eng201497423127310.1002/nme.4573 – reference: DuarteCBabuškaIOdenJGeneralized finite element methods for three dimensional structural mechanics problemsComput Struct20007721523210.1016/S0045-7949(99)00211-4 – reference: MesgarnejadABourdinBKhonsariMValidation simulations for the variational approach to fractureComput Methods Appl Mech Eng201529042043710.1016/j.cma.2014.10.052 – reference: BabuškaIBanerjeeUKergreneKStrongly stable generalized finite element method: application to interface problemsComput Methods Appl Mech Eng2017327589210.1016/j.cma.2017.08.008 – volume: 364 start-page: 112970 year: 2020 ident: 469_CR57 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.112970 – volume: 153–154 start-page: 178 year: 2019 ident: 469_CR42 publication-title: Int J Mech Sci doi: 10.1016/j.ijmecsci.2019.01.040 – volume: 36 start-page: 235 year: 2000 ident: 469_CR15 publication-title: Finite Elem Analy Des doi: 10.1016/S0168-874X(00)00035-4 – volume: 38 start-page: 1397 year: 2014 ident: 469_CR24 publication-title: Int J Num Analyt Methods Geomech doi: 10.1002/nag.2305 – volume: 49 start-page: 1421 issue: 7 year: 2001 ident: 469_CR34 publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(01)00008-4 – volume: 11 start-page: 245 year: 1975 ident: 469_CR43 publication-title: Int J Fracture doi: 10.1007/BF00038891 – volume: 305 start-page: 1 year: 2016 ident: 469_CR30 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2016.02.030 – volume: 189 start-page: 121 issue: 2 year: 2014 ident: 469_CR51 publication-title: Int J Fract doi: 10.1007/s10704-014-9966-0 – ident: 469_CR16 – volume: 58 start-page: 1571 issue: 10 year: 2003 ident: 469_CR66 publication-title: Int J Num Methods Eng doi: 10.1002/nme.829 – volume: 76 start-page: 347 issue: 3 year: 2009 ident: 469_CR21 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2008.10.015 – ident: 469_CR12 – volume: 1 start-page: 539 issue: 3 year: 1969 ident: 469_CR61 publication-title: Engineering Fracture Mechanics doi: 10.1016/0013-7944(69)90010-1 – volume: 139 start-page: 289 year: 1996 ident: 469_CR38 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(96)01087-0 – ident: 469_CR45 – volume-title: Scientific computing: an introductory survey year: 1997 ident: 469_CR27 – ident: 469_CR1 – volume: 290 start-page: 420 year: 2015 ident: 469_CR39 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.10.052 – volume: 32 start-page: 127 year: 1986 ident: 469_CR6 publication-title: Int J Fract doi: 10.1007/BF00019788 – volume: 4 start-page: 1 year: 2017 ident: 469_CR41 publication-title: Adv Model Simul Eng Sci doi: 10.1186/s40323-017-0090-3 – volume: 205 start-page: 83 issue: 1 year: 2017 ident: 469_CR53 publication-title: Int J Fract doi: 10.1007/s10704-017-0185-3 – volume: 345 start-page: 876 year: 2019 ident: 469_CR56 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.11.018 – ident: 469_CR31 – volume-title: Finite Elem Analy year: 1991 ident: 469_CR62 – volume: 221 start-page: 163 year: 1921 ident: 469_CR23 publication-title: Series A, Containing Papers of a Mathematical or Physical Character – volume: 220 start-page: 205 issue: 2 year: 2019 ident: 469_CR59 publication-title: Int J Fract doi: 10.1007/s10704-019-00381-x – volume: 90 start-page: 41 year: 2012 ident: 469_CR25 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2012.04.014 – volume: 54 start-page: 523 issue: 2 year: 2014 ident: 469_CR37 publication-title: Comput Mech doi: 10.1007/s00466-014-1003-7 – volume: 128 start-page: 1 issue: 1 year: 2014 ident: 469_CR68 publication-title: Numerische Mathematik doi: 10.1007/s00211-014-0609-1 – volume: 28 start-page: 3 issue: 1–2 year: 2005 ident: 469_CR54 publication-title: Fatigue Fract Eng Mater Struct doi: 10.1111/j.1460-2695.2004.00855.x – volume: 311 start-page: 476 year: 2016 ident: 469_CR69 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2016.08.019 – volume: 64 start-page: 133 year: 2014 ident: 469_CR35 publication-title: J Mech Phys Solids doi: 10.1016/j.jmps.2013.11.001 – volume: 77 start-page: 601 issue: 5 year: 2009 ident: 469_CR48 publication-title: Int J Num Methods Eng doi: 10.1002/nme.2419 – ident: 469_CR29 – volume: 55 start-page: 321 issue: 2 year: 1996 ident: 469_CR11 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(95)00247-2 – ident: 469_CR55 doi: 10.2118/96968-MS – volume: 2 start-page: 1 year: 1970 ident: 469_CR14 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(70)90026-3 – volume: 44 start-page: 73 issue: 1 year: 2009 ident: 469_CR49 publication-title: Comput Mech doi: 10.1007/s00466-008-0356-1 – volume: 327 start-page: 58 year: 2017 ident: 469_CR5 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.08.008 – volume: 17 start-page: 043001 year: 2009 ident: 469_CR9 publication-title: Model Simul Mater Sci Eng doi: 10.1088/0965-0393/17/4/043001 – volume: 54 start-page: 1111 year: 2006 ident: 469_CR19 publication-title: Acta Materialia doi: 10.1016/j.actamat.2005.10.053 – volume: 153 start-page: 117 year: 1998 ident: 469_CR44 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(97)00039-X – volume: 58 start-page: 12 year: 2014 ident: 469_CR64 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2013.04.013 – volume: 179 start-page: 120 year: 2017 ident: 469_CR26 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2017.03.035 – volume: 40 start-page: 727 year: 1997 ident: 469_CR3 publication-title: Int J Num Methods Eng doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N – volume: 45 start-page: 601 year: 1999 ident: 469_CR8 publication-title: Int J Num Methods Eng doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S – volume-title: Finite elements in fracture mechanics: theory “numerics” applications year: 2013 ident: 469_CR32 doi: 10.1007/978-94-007-6680-8 – volume: 117 start-page: 129 issue: 2 year: 2002 ident: 469_CR58 publication-title: Int J Fract doi: 10.1023/A:1020980311611 – ident: 469_CR47 – volume: 10 start-page: 25 issue: 1 year: 1976 ident: 469_CR7 publication-title: Int J Num Methods Eng doi: 10.1002/nme.1620100103 – volume: 343 start-page: 339 year: 2019 ident: 469_CR63 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.08.029 – volume: 9 start-page: 495 issue: 3 year: 1975 ident: 469_CR28 publication-title: Int J Num Methods Eng doi: 10.1002/nme.1620090302 – volume: 85 start-page: 519 year: 1963 ident: 469_CR18 publication-title: J Basic Eng doi: 10.1115/1.3656897 – volume: 31 start-page: 945 issue: 4 year: 1994 ident: 469_CR4 publication-title: SIAM J Num Analy doi: 10.1137/0731051 – volume: 97 start-page: 231 issue: 4 year: 2014 ident: 469_CR20 publication-title: Int J Num Methods Eng doi: 10.1002/nme.4573 – volume: 165 start-page: 175 issue: 2 year: 2010 ident: 469_CR36 publication-title: Int J Fract doi: 10.1007/s10704-010-9476-7 – volume: 46 start-page: 131 year: 1999 ident: 469_CR40 publication-title: Int J Num Methods Eng doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J – volume: 56 start-page: 923 year: 2002 ident: 469_CR65 publication-title: Int J Num Methods Eng doi: 10.1002/nme.471 – volume: 77 start-page: 215 year: 2000 ident: 469_CR17 publication-title: Comput Struct doi: 10.1016/S0045-7949(99)00211-4 – volume: 201–204 start-page: 91 year: 2012 ident: 469_CR2 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2011.09.012 – volume: 122 start-page: 23 issue: 1–2 year: 2003 ident: 469_CR33 publication-title: Int J Fract doi: 10.1023/B:FRAC.0000005373.73286.5d – ident: 469_CR13 – volume: 206 start-page: 229 issue: 2 year: 2017 ident: 469_CR52 publication-title: Int J Fract doi: 10.1007/s10704-017-0212-4 – volume: 77 start-page: 2840 issue: 14 year: 2010 ident: 469_CR60 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2010.06.009 – volume: 44 start-page: 6517 issue: 20 year: 2007 ident: 469_CR22 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2007.02.044 – volume: 46 start-page: 431 issue: 3 year: 2010 ident: 469_CR50 publication-title: Comput Mech doi: 10.1007/s00466-010-0491-3 – volume: 103 start-page: 112 year: 2017 ident: 469_CR10 publication-title: Int J Fatigue doi: 10.1016/j.ijfatigue.2017.05.026 – volume: 85 start-page: 528 year: 1963 ident: 469_CR46 publication-title: J Basic Eng doi: 10.1115/1.3656900 – year: 2019 ident: 469_CR67 publication-title: Adv Appl Mech doi: 10.1016/j.cma.2019.112614 |
| SSID | ssj0009784 |
| Score | 2.3759842 |
| Snippet | In this paper, a Stable Generalized/eXtended Finite Element Method (SGFEM) is combined with mesh adaptivity for the robust and computationally efficient... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 129 |
| SubjectTerms | Automotive Engineering Back propagation Brittle fracture Characterization and Evaluation of Materials Chemistry and Materials Science Civil Engineering Classical Mechanics Computational efficiency Computer simulation Crack opening displacement Crack propagation Criteria Finite element analysis Finite element method Fracture mechanics Linear elastic fracture mechanics Materials Science Mechanical Engineering Original Paper Propagation Propagation modes |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgMMDAG1EoyAMbWE0TJ44nhICKqULioW6RnyhSaUvaItSv5zpxCSDBwpzESXTs62P73nMQOmWxThVTMYkTGRKqAka4jAwB8hFRG8eMCVqaTbBeL-33-Z3fcJv4tMpFTCwDtR4pt0fehmmoE6WU8uRi_Eqca5Q7XfUWGstoxakkdMrUvftadJellXwUSwiHwOuLZnzpHHP5F6Grq4YlIuHfJ6aabf44IC3nne7mf794C214xokvqy6yjZbMcAetf9Eh3EXzJ2DjlbkSHlkscESusdBi7GIhBv4oBwY_VwLV-dzotulXW-fY5o6zYlMloePKjxoDEcYv-bvRxBntYFnkTikZW1eRNSsMhh-BOFa-bw89dm8erm6JN2UgCkbrlAjGGU8FEBkhpRahFJqGwrJEw2pXSGqtqwtxovTAfQIVa-AAijMV6iAxVKloHzWGo6E5QFjFKrSaGaO0pToIpLSCSYg6kRSwMNVN1FkgkimvWO6MMwZZrbXsUMwAxaxEMeNNdPb5zLjS6_jz7tYCusyP3UlW49ZE5wvw68u_t3b4d2tHaC10_a3MBGyhxrSYmWO0qt6m-aQ4KXvuB6uI9I8 priority: 102 providerName: ProQuest |
| Title | Validation of a 3-D adaptive stable generalized/eXtended finite element method for mixed-mode brittle fracture propagation |
| URI | https://link.springer.com/article/10.1007/s10704-020-00469-9 https://www.proquest.com/docview/2441384496 |
| Volume | 225 |
| WOSCitedRecordID | wos000557326600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-2673 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1573-2673 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: KB. dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-2673 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-2673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009784 issn: 0376-9429 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1B4QAHdkRZKh-4gSFNnDg-sgoJqUJs6i3yiiJBQW1BqF_POAsFBEhwjuMkY3vmOZ55D2CbxybVXMc0TlRImQ44FSqyFMFHxFwccy5ZITbBO5202xUXVVHYoM52r48kC0_9odiN-4yJ0FdC46aOikmYwnCXesGGy6vbMdUuT0vSKJ5Qge62KpX5vo_P4WiMMb8cixbR5nT-f--5AHMVuiQH5XRYhAnbW4LZD5yDyzC6ReRdCimRR0ckiegxkUY-eb9HECuqe0vuSjLqfGTNvu2Wv8mJyz0-JbZMOCel9jRB0Ese8ldrqBfVIaqfe1Zk4nz11XPfEvxY9FnF81bg5vTk-uiMVgIMVOPKHFLJBRepRNAilTIyVNKwUDqeGNzZSsWc8zUgnoAecU6gY4PxXguuQxMklmkdrUKj99iza0B0rENnuLXaOGaCQCknuUIPEymJm1DThHY9Dpmu2Mm9SMZ9NuZV9nbN0K5ZYddMNGHn_Z6nkpvj19ab9fBm1TodZAhu2lHKmEiasFsP5_jyz72t_635BsyEfkYUWYCb0Bj2n-0WTOuXYT7ot2Dq8KRzcdmCyfPDvZZPP71qFXP6DVCq7eQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWCswBTmA1dZw4PiCEKFWrlhUSBe0t-Ikild1ld8ujP4rfyDhOCCDRWw-ckziJ83ke8cz3ATyShaustAUrSsOZsJlkyuSeUfCRi1AUUmrRik3I8biaTNSbNfjR98LEssreJraG2s1s_Ee-SW5oK6-EUOXz-WcWVaPi7movoZFgse-_f6WUbflsb5u-72POd14dvtxlnaoAswS3FdNSSVVp8sTaGKe50U5wHWTpKF3TRoQQGxsiqzo578wWjpyYVdJyl5VeWJvTuOfgPD0OV22p4NuB5FdWia5KlkyRoe-adLpWPRnrPXjs46aUlKk_HeEQ3f61Idv6uZ2r_9sMXYMrXUSNL9ISuA5rfnoDLv_Gs3gTTt5TtpHEo3AWUGPOtlE7PY-2Hik-NkcePyYC7ubEu00_SVsDGJoYk6NPRfaY9LaRAn381HzzjkUhITSLJjJBY4gdZ8cLjzRxZKfb-92Cd2fy8rdhfTqb-juAtrA8OOm9dUG4LDMmaGnIquZGU-LtRrDVI6C2HSN7FAY5qgcu6YiamlBTt6ip1Qie_LpmnvhITj17o4dK3dmmZT3gZARPe7ANh_892t3TR3sIF3cPXx_UB3vj_XtwiUest1WPG7C-Whz7-3DBflk1y8WDdtUgfDhrEP4E_AJR0Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6xgib2MDYYohswP-wNrIbEiePHaawCMVWVYKhvkX-iSKyt0hah_vWc43TppjFp2nMcJznb5-_i-74D-MRTk2uuU5pmKqZMR5wKlViK4CNhLk05l6wuNsEHg3w0EsM1Fn-d7b46kgycBq_SNJ73psb11ohv3GdPxJ4VjQEeFS9gk_lEeh-vX9-2srs8DwJSPKMCXW9Dm_lzH79uTS3e_O2ItN55-jv__85v4HWDOsnnME3ewoYd78KrNS3CPVjeIiIPBZbIxBFJEnpOpJFT7w8JYkh1b8ldEKkul9b07Cj8Pieu9LiV2JCITkJNaoJgmPwoH62hvtgOUVXp1ZKJ86ysRWUJfjj6svp57-B7_-vNlwvaFGagGlfsnEouuMglghmplJGxkobF0vHMYMQrFXPOc0O8MD3in0inBnGAFlzHJsos0zrZh854MrYHQHSqY2e4tdo4ZqJIKSe5Qs-TKInBqenC2WpMCt2olvviGfdFq7fs7VqgXYvaroXowsnPe6ZBs-OvrQ9XQ10063dWIOg5S3LGRNaF09XQtpef7-39vzX_CC-H5_3i2-Xg6gNsx35y1ImCh9CZVwt7BFv6YV7OquN6Wj8Bip32Pg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+a+3-D+adaptive+stable+generalized%2FeXtended+finite+element+method+for+mixed-mode+brittle+fracture+propagation&rft.jtitle=International+journal+of+fracture&rft.au=Mukhtar%2C+Faisal+M.&rft.au=Alves%2C+Phillipe+D.&rft.au=Duarte%2C+C.+Armando&rft.date=2020-10-01&rft.pub=Springer+Netherlands&rft.issn=0376-9429&rft.eissn=1573-2673&rft.volume=225&rft.issue=2&rft.spage=129&rft.epage=152&rft_id=info:doi/10.1007%2Fs10704-020-00469-9&rft.externalDocID=10_1007_s10704_020_00469_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon |