Validation of a 3-D adaptive stable generalized/eXtended finite element method for mixed-mode brittle fracture propagation

In this paper, a Stable Generalized/eXtended Finite Element Method (SGFEM) is combined with mesh adaptivity for the robust and computationally efficient simulation of mixed-mode brittle fracture propagation. Both h -refinement around the fracture front and p -enrichment of the analysis domain are us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture Jg. 225; H. 2; S. 129 - 152
Hauptverfasser: Mukhtar, Faisal M., Alves, Phillipe D., Duarte, C. Armando
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.10.2020
Springer Nature B.V
Schlagworte:
ISSN:0376-9429, 1573-2673
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a Stable Generalized/eXtended Finite Element Method (SGFEM) is combined with mesh adaptivity for the robust and computationally efficient simulation of mixed-mode brittle fracture propagation. Both h -refinement around the fracture front and p -enrichment of the analysis domain are used to control discretization errors. A Linear Elastic Fracture Mechanics (LEFM) model based on Griffith’s criterion is adopted. LEFM scaling relations are used at each fracture propagation step to back calculate SIFs that meet Griffith’s criterion. As a result, no iterations are necessary to find loading scaling parameters or fracture size that meets Griffith’s criterion. The method is validated against several experimental data sets for mode I and mode I+II fracture propagation problems. Very good agreement between SGFEM and experimental results is observed. These include fracture path, Crack Opening Displacement (COD), and load and fracture length versus COD curves. The computational efficiency of the method is also assessed.
AbstractList In this paper, a Stable Generalized/eXtended Finite Element Method (SGFEM) is combined with mesh adaptivity for the robust and computationally efficient simulation of mixed-mode brittle fracture propagation. Both h-refinement around the fracture front and p-enrichment of the analysis domain are used to control discretization errors. A Linear Elastic Fracture Mechanics (LEFM) model based on Griffith’s criterion is adopted. LEFM scaling relations are used at each fracture propagation step to back calculate SIFs that meet Griffith’s criterion. As a result, no iterations are necessary to find loading scaling parameters or fracture size that meets Griffith’s criterion. The method is validated against several experimental data sets for mode I and mode I+II fracture propagation problems. Very good agreement between SGFEM and experimental results is observed. These include fracture path, Crack Opening Displacement (COD), and load and fracture length versus COD curves. The computational efficiency of the method is also assessed.
In this paper, a Stable Generalized/eXtended Finite Element Method (SGFEM) is combined with mesh adaptivity for the robust and computationally efficient simulation of mixed-mode brittle fracture propagation. Both h -refinement around the fracture front and p -enrichment of the analysis domain are used to control discretization errors. A Linear Elastic Fracture Mechanics (LEFM) model based on Griffith’s criterion is adopted. LEFM scaling relations are used at each fracture propagation step to back calculate SIFs that meet Griffith’s criterion. As a result, no iterations are necessary to find loading scaling parameters or fracture size that meets Griffith’s criterion. The method is validated against several experimental data sets for mode I and mode I+II fracture propagation problems. Very good agreement between SGFEM and experimental results is observed. These include fracture path, Crack Opening Displacement (COD), and load and fracture length versus COD curves. The computational efficiency of the method is also assessed.
Author Duarte, C. Armando
Alves, Phillipe D.
Mukhtar, Faisal M.
Author_xml – sequence: 1
  givenname: Faisal M.
  orcidid: 0000-0001-5276-4828
  surname: Mukhtar
  fullname: Mukhtar, Faisal M.
  email: faisalmu@kfupm.edu.sa
  organization: Dept. of Civil and Env. Eng., King Fahd University of Petroleum & Minerals
– sequence: 2
  givenname: Phillipe D.
  surname: Alves
  fullname: Alves, Phillipe D.
  organization: Dept. of Civil and Env. Eng., University of Illinois at Urbana-Champaign
– sequence: 3
  givenname: C. Armando
  orcidid: 0000-0002-0048-0679
  surname: Duarte
  fullname: Duarte, C. Armando
  organization: Dept. of Civil and Env. Eng., University of Illinois at Urbana-Champaign
BookMark eNp9kEtrHDEQhEVwIOvHH_BJkLNijSRLo2NwnmDwxTG5iR6pZyMzI20kbUj866PsBgI5-NRQ1FfV1Ck5STkhIZcDfzNwbq7qwA1XjAvOOFfaMvuCbIZrI5nQRp6QDZdGM6uEfUVOa33knFszqg15eoAlBmgxJ5pnClSydxQC7Fr8gbQ2mBakW0xYuu8JwxV-bZgCBjrHFBtSXHDF1OiK7Vvuai50jT8xsDUHpFOJrfWEuYBv-4J0V_IOtoe-c_JyhqXixd97Rr58eH9_84nd3n38fPP2lnk52MbAWGNH0ErCNAUQEwQlYDY6DLJLap7NKLVWRmhpub8OQglvjReBa1TeyzPy-pjbu7_vsTb3mPcl9UonlBrkqJTV3TUeXb7kWgvOzsd2-LMViIsbuPuztDsu7frS7rC0sx0V_6G7Elcov56H5BGq3Zy2WP599Qz1Gw6ElGY
CitedBy_id crossref_primary_10_1016_j_engfracmech_2024_109996
crossref_primary_10_1016_j_cma_2024_117585
crossref_primary_10_1016_j_ijmecsci_2024_109149
crossref_primary_10_1016_j_tafmec_2022_103250
crossref_primary_10_1016_j_compstruc_2023_107043
crossref_primary_10_1016_j_finel_2021_103554
crossref_primary_10_1002_nag_3378
crossref_primary_10_1016_j_engfracmech_2025_111173
crossref_primary_10_1016_j_ijmecsci_2023_108815
crossref_primary_10_3390_pr10112449
crossref_primary_10_1016_j_tafmec_2023_104044
crossref_primary_10_1016_j_enganabound_2023_11_030
crossref_primary_10_1016_j_mechrescom_2024_104275
crossref_primary_10_1016_j_tafmec_2024_104413
crossref_primary_10_1016_j_cma_2022_115408
Cites_doi 10.1016/j.cma.2020.112970
10.1016/j.ijmecsci.2019.01.040
10.1016/S0168-874X(00)00035-4
10.1002/nag.2305
10.1016/S0022-5096(01)00008-4
10.1007/BF00038891
10.1016/j.cma.2016.02.030
10.1007/s10704-014-9966-0
10.1002/nme.829
10.1016/j.engfracmech.2008.10.015
10.1016/0013-7944(69)90010-1
10.1016/S0045-7825(96)01087-0
10.1016/j.cma.2014.10.052
10.1007/BF00019788
10.1186/s40323-017-0090-3
10.1007/s10704-017-0185-3
10.1016/j.cma.2018.11.018
10.1007/s10704-019-00381-x
10.1016/j.engfracmech.2012.04.014
10.1007/s00466-014-1003-7
10.1007/s00211-014-0609-1
10.1111/j.1460-2695.2004.00855.x
10.1016/j.cma.2016.08.019
10.1016/j.jmps.2013.11.001
10.1002/nme.2419
10.1016/0013-7944(95)00247-2
10.2118/96968-MS
10.1016/0013-7944(70)90026-3
10.1007/s00466-008-0356-1
10.1016/j.cma.2017.08.008
10.1088/0965-0393/17/4/043001
10.1016/j.actamat.2005.10.053
10.1016/S0045-7825(97)00039-X
10.1016/j.ijfatigue.2013.04.013
10.1016/j.engfracmech.2017.03.035
10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
10.1007/978-94-007-6680-8
10.1023/A:1020980311611
10.1002/nme.1620100103
10.1016/j.cma.2018.08.029
10.1002/nme.1620090302
10.1115/1.3656897
10.1137/0731051
10.1002/nme.4573
10.1007/s10704-010-9476-7
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
10.1002/nme.471
10.1016/S0045-7949(99)00211-4
10.1016/j.cma.2011.09.012
10.1023/B:FRAC.0000005373.73286.5d
10.1007/s10704-017-0212-4
10.1016/j.engfracmech.2010.06.009
10.1016/j.ijsolstr.2007.02.044
10.1007/s00466-010-0491-3
10.1016/j.ijfatigue.2017.05.026
10.1115/1.3656900
10.1016/j.cma.2019.112614
ContentType Journal Article
Copyright Springer Nature B.V. 2020
Springer Nature B.V. 2020.
Copyright_xml – notice: Springer Nature B.V. 2020
– notice: Springer Nature B.V. 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s10704-020-00469-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Databases
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-2673
EndPage 152
ExternalDocumentID 10_1007_s10704_020_00469_9
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PKN
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~02
~8M
~A~
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-a79798a643abbda2bad42af76d133ab4ff783664726390c5d242c97c2d06e4cc3
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000557326600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0376-9429
IngestDate Tue Nov 04 22:32:01 EST 2025
Tue Nov 18 21:33:37 EST 2025
Sat Nov 29 01:49:32 EST 2025
Fri Feb 21 02:34:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Generalized FEM
Validation
Brittle fracture
EXtended FEM
Mixed-mode
Mesh adaptivity
Fracture propagation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a79798a643abbda2bad42af76d133ab4ff783664726390c5d242c97c2d06e4cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5276-4828
0000-0002-0048-0679
PQID 2441384496
PQPubID 2043781
PageCount 24
ParticipantIDs proquest_journals_2441384496
crossref_citationtrail_10_1007_s10704_020_00469_9
crossref_primary_10_1007_s10704_020_00469_9
springer_journals_10_1007_s10704_020_00469_9
PublicationCentury 2000
PublicationDate 20201000
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of fracture
PublicationTitleAbbrev Int J Fract
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References NikfamMZeinoddiniMAghebatiFArghaeiAExperimental and XFEM modelling of high cycle fatigue crack growth in steel welded T-jointsInt J Mech Sci2019153–15417819310.1016/j.ijmecsci.2019.01.040
PhamKRavi-ChandarKLandisCExperimental validation of a phase-field model for fractureInt J Fract201720518310110.1007/s10704-017-0185-3
ZhangQBanerjeeUBabuškaIHigher order stable generalized finite element methodNumerische Mathematik2014128112910.1007/s00211-014-0609-1
LoehnertSA stabilization technique for the regularization of nearly singular extended finite elementsComput Mech201454252353310.1007/s00466-014-1003-7
BittencourtTWawezynekPIngraffeaASousaJQuasi-automatic simulation of crack propagation for 2D LEFM problemsEng Fract Mech199655232133410.1016/0013-7944(95)00247-2
Duarte C (2016) ISET-An Adaptive Generalized Finite Element Solver, Reference Manual. ISET Developers, http://gfem.cee.illinois.edu
FerrieEBuffiereJYLudwigWGravouilAEdwardsLFatigue crack propagation: In situ visualization using X-ray microtomography and 3D similation using the extended finite element methodActa Materialia2006541111112210.1016/j.actamat.2005.10.0531:CAS:528:DC%2BD28XnvVGjsw%3D%3D
TianRWenLWangLThree-dimensional improved XFEM (IXFEM) for static crack problemsComput Methods Appl Mech Eng201934333936710.1016/j.cma.2018.08.029
OdenJDuarteCZienkiewiczOA new cloud-based hp finite element methodComput Methods Appl Mech Eng199815311712610.1016/S0045-7825(97)00039-X
NdeffoMMassinPMoësNMartinAGopalakrishnanSOn the construction of approximation space to model discontinuities and cracks with linear and quadratic extended finite elementsAdv Model Simul Eng Sci20174110.1186/s40323-017-0090-3
ShiJChoppDLuaJSukumarNBelytschkoTAbaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictionsEng Fract Mech201077142840286310.1016/j.engfracmech.2010.06.009
VarfolomeevIBurdackMMorozSSiegeleDKadauKFatigue crack growth rates and paths in two planar specimens under mixed mode loadingInt J Fatigue201458121910.1016/j.ijfatigue.2013.04.013
Oden J, Duarte C (1997) Chapter: Clouds, Cracks and FEMs. In: B. Reddy (ed.) Recent Developments in Computational and Applied Mechanics, pp. 302–321. International Center for Numerical Methods in Engineering, CIMNE, Barcelona, Spain http://gfem.cee.illinois.edu/papers/jMartin_color.pdf
DuarteCBabuškaIOdenJGeneralized finite element methods for three dimensional structural mechanics problemsComput Struct20007721523210.1016/S0045-7949(99)00211-4
GuptaPDuarteCDhankharAAccuracy and robustness of stress intensity factor extraction methods for the generalized/eXtended Finite Element MethodEng Fract Mech201717912015310.1016/j.engfracmech.2017.03.035
CGAL: Computational Geometry Algorithms Library (2012). http://www.cgal.org
SzaboBBabuškaIFinite Elem Analy1991New YorkWiley
VenturaGBudynEBelytschkoTVector level sets for description of propagating cracks in finite elementsInt J Num Methods Eng200358101571159210.1002/nme.829
BabuškaIMelenkJThe partition of unity methodInt J Num Methods Eng19974072775810.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
ChanSTubaIWilsonWOn the finite element method in linear fracture mechanicsEng Fract Mech1970211710.1016/0013-7944(70)90026-3
RichardHAFullandMSanderMTheoretical crack path predictionFatigue Fract Eng Mater Struct2005281–231210.1111/j.1460-2695.2004.00855.x
ShabirZVan der GiessenEDuarteCSimoneAOn the applicability of linear elastic fracture mechanics scaling relations in the analysis of intergranular fracture of brittle polycrystalsInt J Fract2019220220521910.1007/s10704-019-00381-x
BelytschkoTGracieRVenturaGA review of extended/generalized finite element methods for material modelingModel Simul Mater Sci Eng20091704300110.1088/0965-0393/17/4/043001
GinerESukumarNTarancónJEFuenmayorFJAn Abaqus implementation of the extended finite element methodEng Fract Mech200976334736810.1016/j.engfracmech.2008.10.015
BabuškaIBanerjeeUKergreneKStrongly stable generalized finite element method: application to interface problemsComput Methods Appl Mech Eng2017327589210.1016/j.cma.2017.08.008
NuismerRAn energy release rate criterion for mixed mode fractureInt J Fracture19751124525010.1007/BF00038891
ErdoganFSihGOn the crack extension in plates under plane loading and transverse shearJ Basic Eng19638551952710.1115/1.3656897
GuptaPDuarteCSimulation of non-planar three-dimensional hydraulic fracture propagationInt J Num Analyt Methods Geomech2014381397143010.1002/nag.23051:CAS:528:DC%2BC2cXhtlGmsLfO
SchöllmannMRichardHKullmerGFullandMA new criterion for the prediction of crack development in multiaxially loaded structuresInt J Fract2002117212914110.1023/A:1020980311611
LeblondJBFrelatJDevelopment of fracture facets from a crack loaded in mode i+ iii: solution and application of a model 2d problemJ Mech Phys Solids20146413315310.1016/j.jmps.2013.11.001
SommerEFormation of fracture ‘lances’ in glassEngineering Fracture Mechanics19691353954610.1016/0013-7944(69)90010-1
PereiraJDuarteCJiaoXGuoyDGeneralized finite element method enrichment functions for curved singularities in 3D fracture mechanics problemsComput Mech2009441739210.1007/s00466-008-0356-1
Banks-SillsLShermanDComparison of methods for calculating stress intensity factors with quarter-point elementsInt J Fract19863212714010.1007/BF00019788
DolbowJMoësNBelytschkoTDiscontinuous enrichment in finite elements with a partition of unity methodFinite Elem Analy Des20003623526010.1016/S0168-874X(00)00035-4
KergreneKBabuškaIBanerjeeUStable generalized finite element method and associated iterative schemes; application to interface problemsComput Methods Appl Mech Eng201630513610.1016/j.cma.2016.02.030
Abaqus: Version 6.14 Documentation. Dassault Systemes Simulia Corporation, Providence, RI, USA (2014)
PereiraJDuarteCJiaoXThree-dimensional crack growth with hp-generalized finite element and face offsetting methodsComput Mech201046343145310.1007/s00466-010-0491-3
BelytschkoTBlackTElastic crack growth in finite elements with minimal remeshingInt J Num Methods Eng19994560162010.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
WuJNguyenVNguyenCSutulaDBordasSSinaieSPhase field modelling of fractureAdv Appl Mech201910.1016/j.cma.2019.112614
PhamKRavi-ChandarKThe formation and growth of echelon cracks in brittle materialsInt J Fract2017206222924410.1007/s10704-017-0212-4
Rungamornrat J, Wheeler M, Mear M (2005) A numerical technique for simulating nonplanar evolution of hydraulic fractures. In: Proceedings of the SPE Annual Technical Conference and Exhibition, p. 9. Dallas, TX, USA SPE-96968-MS
BergaraADoradoJMartin-MeizosoAMartínez-EsnaolaJFatigue crack propagation in complex stress fields: experiments and numerical simulations using the extended finite element method (XFEM)Int J Fatigue201710311212110.1016/j.ijfatigue.2017.05.026
LazarusVLeblondJBMouchrifSECrack front rotation and segmentation in mixed mode i+ iii or i+ ii+ iii. Part ii: Comparison with experimentsJ Mech Phys Solids20014971421144310.1016/S0022-5096(01)00008-4
GrégoireDMaigreHRéthoréJCombescureADynamic crack propagation under mixed-mode loading—comparison between experiments and X-FEM simulationsInt J Solids Struct200744206517653410.1016/j.ijsolstr.2007.02.0441:CAS:528:DC%2BD2sXht1ClsbfO
HeathMScientific computing: an introductory survey1997McGraw-HillMcGraw-Hill series in computer science
HenshellRShawKCrack tip finite elements are unnecessaryInt J Num Methods Eng19759349550710.1002/nme.1620090302
Sanchez-RivadeneiraAShauerNMazurowskiBDuarteCA stable generalized/extended p-hierarchical FEM for three-dimensional linear elastic fracture mechanicsComput Methods Appl Mech Eng202036411297010.1016/j.cma.2020.112970
MelenkJBabuškaIThe partition of unity finite element method: Basic theory and applicationsComput Methods Appl Mech Eng199613928931410.1016/S0045-7825(96)01087-0
Sanchez-RivadeneiraADuarteCA stable generalized/extended FEM with discontinuous interpolants for fracture mechanicsComput Methods Appl Mech Eng201934587691810.1016/j.cma.2018.11.018
BabuškaICalozGOsbornJSpecial finite element methods for a class of second order elliptic problems with rough coefficientsSIAM J Num Analy199431494598110.1137/0731051
LazarusVBrittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loadingInt J Fract20031221–2234610.1023/B:FRAC.0000005373.73286.5d
LinBMearMRavi-ChandarKCriterion for initiation of cracks under mixed-mode i+ iii loadingInt J Fract2010165217518810.1007/s10704-010-9476-7
GuptaPPereiraJKimDJDuarteCEasonTAnalysis of three-dimensional fracture mechanics problems: a non-intrusive approach using a generalized finite element methodEng Fract Mech201290416410.1016/j.engfracmech.2012.04.014
KunaMFinite elements in fracture mechanics: theory “numerics” applications2013DordrechtSpringer10.1007/978-94-007-6680-8
ParisAErdoganFA critical analysis of crack propagation lawsJ Basic Eng19638552853410.1115/1.36569001:CAS:528:DyaF2cXitF2mtA%3D%3D
BarsoumROn the use of isoparametric finite elements in linear fracture mechanicsInt J Num Methods Eng1976101253710.1002/nme.1620100103
Pereira J (2010) Generalized finite element methods for three-dimensional crack growth simulations. PhD Dissertation, University of Illinois at Urbana-Champaign Urbana. IL, USA
VenturaGXuJBelytschkoTA vector level set method and new discontinuity approximations for crack growth by efgInt J Num Methods Eng20025692394410.1002/nme.471
GriffithAAThe phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of LondonSeries A, Containing Papers of a Mathematical or Physical Character1921221163198
PereiraJDuarteCGuoyDJiaoXHp-Generalized FEM and crack surface representation for non-planar 3-D cracksInt J Num Methods Eng200977560163310.1002/nme.2419
GarzonJO’HaraPDuarteCButtlarWImprovements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalesc
V Lazarus (469_CR33) 2003; 122
P Gupta (469_CR25) 2012; 90
J Oden (469_CR44) 1998; 153
JB Leblond (469_CR35) 2014; 64
Q Zhang (469_CR69) 2016; 311
J Wu (469_CR67) 2019
M Kuna (469_CR32) 2013
469_CR45
J Dolbow (469_CR15) 2000; 36
469_CR47
J Melenk (469_CR38) 1996; 139
E Sommer (469_CR61) 1969; 1
K Pham (469_CR53) 2017; 205
D Grégoire (469_CR22) 2007; 44
V Lazarus (469_CR34) 2001; 49
I Babuška (469_CR2) 2012; 201–204
I Varfolomeev (469_CR64) 2014; 58
J Shi (469_CR60) 2010; 77
HA Richard (469_CR54) 2005; 28
I Babuška (469_CR5) 2017; 327
B Szabo (469_CR62) 1991
E Giner (469_CR21) 2009; 76
S Chan (469_CR14) 1970; 2
G Ventura (469_CR66) 2003; 58
I Babuška (469_CR4) 1994; 31
T Belytschko (469_CR9) 2009; 17
469_CR31
J Pereira (469_CR48) 2009; 77
J Pereira (469_CR49) 2009; 44
R Tian (469_CR63) 2019; 343
K Kergrene (469_CR30) 2016; 305
K Pham (469_CR52) 2017; 206
A Sanchez-Rivadeneira (469_CR57) 2020; 364
R Barsoum (469_CR7) 1976; 10
Z Shabir (469_CR59) 2019; 220
J Garzon (469_CR20) 2014; 97
B Lin (469_CR36) 2010; 165
N Moës (469_CR40) 1999; 46
A Sanchez-Rivadeneira (469_CR56) 2019; 345
469_CR29
M Nikfam (469_CR42) 2019; 153–154
P Gupta (469_CR26) 2017; 179
T Bittencourt (469_CR11) 1996; 55
M Heath (469_CR27) 1997
E Ferrie (469_CR19) 2006; 54
R Henshell (469_CR28) 1975; 9
A Mesgarnejad (469_CR39) 2015; 290
S Loehnert (469_CR37) 2014; 54
M Schöllmann (469_CR58) 2002; 117
I Babuška (469_CR3) 1997; 40
AA Griffith (469_CR23) 1921; 221
469_CR1
A Bergara (469_CR10) 2017; 103
P Gupta (469_CR24) 2014; 38
L Banks-Sills (469_CR6) 1986; 32
A Paris (469_CR46) 1963; 85
Q Zhang (469_CR68) 2014; 128
T Belytschko (469_CR8) 1999; 45
C Duarte (469_CR17) 2000; 77
469_CR16
J Pereira (469_CR50) 2010; 46
469_CR12
469_CR13
R Nuismer (469_CR43) 1975; 11
K Pham (469_CR51) 2014; 189
F Erdogan (469_CR18) 1963; 85
469_CR55
M Ndeffo (469_CR41) 2017; 4
G Ventura (469_CR65) 2002; 56
References_xml – reference: BittencourtTWawezynekPIngraffeaASousaJQuasi-automatic simulation of crack propagation for 2D LEFM problemsEng Fract Mech199655232133410.1016/0013-7944(95)00247-2
– reference: NikfamMZeinoddiniMAghebatiFArghaeiAExperimental and XFEM modelling of high cycle fatigue crack growth in steel welded T-jointsInt J Mech Sci2019153–15417819310.1016/j.ijmecsci.2019.01.040
– reference: GuptaPDuarteCDhankharAAccuracy and robustness of stress intensity factor extraction methods for the generalized/eXtended Finite Element MethodEng Fract Mech201717912015310.1016/j.engfracmech.2017.03.035
– reference: Ingraffea AR, Grigoriu M (1990) Probabilistic fracture mechanics: A validation of predictive capability. Report 90-8 Department of Structural Engineering Cornell University
– reference: KergreneKBabuškaIBanerjeeUStable generalized finite element method and associated iterative schemes; application to interface problemsComput Methods Appl Mech Eng201630513610.1016/j.cma.2016.02.030
– reference: BabuškaICalozGOsbornJSpecial finite element methods for a class of second order elliptic problems with rough coefficientsSIAM J Num Analy199431494598110.1137/0731051
– reference: BergaraADoradoJMartin-MeizosoAMartínez-EsnaolaJFatigue crack propagation in complex stress fields: experiments and numerical simulations using the extended finite element method (XFEM)Int J Fatigue201710311212110.1016/j.ijfatigue.2017.05.026
– reference: GinerESukumarNTarancónJEFuenmayorFJAn Abaqus implementation of the extended finite element methodEng Fract Mech200976334736810.1016/j.engfracmech.2008.10.015
– reference: GriffithAAThe phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of LondonSeries A, Containing Papers of a Mathematical or Physical Character1921221163198
– reference: LoehnertSA stabilization technique for the regularization of nearly singular extended finite elementsComput Mech201454252353310.1007/s00466-014-1003-7
– reference: SzaboBBabuškaIFinite Elem Analy1991New YorkWiley
– reference: Pereira J (2010) Generalized finite element methods for three-dimensional crack growth simulations. PhD Dissertation, University of Illinois at Urbana-Champaign Urbana. IL, USA
– reference: WuJNguyenVNguyenCSutulaDBordasSSinaieSPhase field modelling of fractureAdv Appl Mech201910.1016/j.cma.2019.112614
– reference: BabuškaIBanerjeeUStable generalized finite element method (SGFEM)Comput Methods Appl Mech Eng2012201–2049111110.1016/j.cma.2011.09.012
– reference: MelenkJBabuškaIThe partition of unity finite element method: Basic theory and applicationsComput Methods Appl Mech Eng199613928931410.1016/S0045-7825(96)01087-0
– reference: Sanchez-RivadeneiraADuarteCA stable generalized/extended FEM with discontinuous interpolants for fracture mechanicsComput Methods Appl Mech Eng201934587691810.1016/j.cma.2018.11.018
– reference: BabuškaIMelenkJThe partition of unity methodInt J Num Methods Eng19974072775810.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
– reference: RichardHAFullandMSanderMTheoretical crack path predictionFatigue Fract Eng Mater Struct2005281–231210.1111/j.1460-2695.2004.00855.x
– reference: ZhangQBabuškaIBanerjeeURobustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularitiesComput Methods Appl Mech Eng201631147650210.1016/j.cma.2016.08.019
– reference: GuptaPDuarteCSimulation of non-planar three-dimensional hydraulic fracture propagationInt J Num Analyt Methods Geomech2014381397143010.1002/nag.23051:CAS:528:DC%2BC2cXhtlGmsLfO
– reference: Bravos CMAA (2004) Um sistema de refinamento h-p adaptativo utilizando elementos finitos hierarquicos multidimensionais. Ph.D. thesis, Faculdade de Engenharia Mecanica, Universidade Estadual de Campinas
– reference: LazarusVLeblondJBMouchrifSECrack front rotation and segmentation in mixed mode i+ iii or i+ ii+ iii. Part ii: Comparison with experimentsJ Mech Phys Solids20014971421144310.1016/S0022-5096(01)00008-4
– reference: NuismerRAn energy release rate criterion for mixed mode fractureInt J Fracture19751124525010.1007/BF00038891
– reference: Abaqus: Version 6.14 Documentation. Dassault Systemes Simulia Corporation, Providence, RI, USA (2014)
– reference: VarfolomeevIBurdackMMorozSSiegeleDKadauKFatigue crack growth rates and paths in two planar specimens under mixed mode loadingInt J Fatigue201458121910.1016/j.ijfatigue.2013.04.013
– reference: CGAL: Computational Geometry Algorithms Library (2012). http://www.cgal.org
– reference: GuptaPPereiraJKimDJDuarteCEasonTAnalysis of three-dimensional fracture mechanics problems: a non-intrusive approach using a generalized finite element methodEng Fract Mech201290416410.1016/j.engfracmech.2012.04.014
– reference: KunaMFinite elements in fracture mechanics: theory “numerics” applications2013DordrechtSpringer10.1007/978-94-007-6680-8
– reference: BelytschkoTGracieRVenturaGA review of extended/generalized finite element methods for material modelingModel Simul Mater Sci Eng20091704300110.1088/0965-0393/17/4/043001
– reference: VenturaGXuJBelytschkoTA vector level set method and new discontinuity approximations for crack growth by efgInt J Num Methods Eng20025692394410.1002/nme.471
– reference: Duarte C (2016) ISET-An Adaptive Generalized Finite Element Solver, Reference Manual. ISET Developers, http://gfem.cee.illinois.edu
– reference: ErdoganFSihGOn the crack extension in plates under plane loading and transverse shearJ Basic Eng19638551952710.1115/1.3656897
– reference: HenshellRShawKCrack tip finite elements are unnecessaryInt J Num Methods Eng19759349550710.1002/nme.1620090302
– reference: DolbowJMoësNBelytschkoTDiscontinuous enrichment in finite elements with a partition of unity methodFinite Elem Analy Des20003623526010.1016/S0168-874X(00)00035-4
– reference: PhamKRavi-ChandarKLandisCExperimental validation of a phase-field model for fractureInt J Fract201720518310110.1007/s10704-017-0185-3
– reference: MoësNDolbowJBelytschkoTA finite element method for crack growth without remeshingInt J Num Methods Eng19994613115010.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– reference: NdeffoMMassinPMoësNMartinAGopalakrishnanSOn the construction of approximation space to model discontinuities and cracks with linear and quadratic extended finite elementsAdv Model Simul Eng Sci20174110.1186/s40323-017-0090-3
– reference: Rungamornrat J, Wheeler M, Mear M (2005) A numerical technique for simulating nonplanar evolution of hydraulic fractures. In: Proceedings of the SPE Annual Technical Conference and Exhibition, p. 9. Dallas, TX, USA SPE-96968-MS
– reference: OdenJDuarteCZienkiewiczOA new cloud-based hp finite element methodComput Methods Appl Mech Eng199815311712610.1016/S0045-7825(97)00039-X
– reference: ShiJChoppDLuaJSukumarNBelytschkoTAbaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictionsEng Fract Mech201077142840286310.1016/j.engfracmech.2010.06.009
– reference: ParisAErdoganFA critical analysis of crack propagation lawsJ Basic Eng19638552853410.1115/1.36569001:CAS:528:DyaF2cXitF2mtA%3D%3D
– reference: Sanchez-RivadeneiraAShauerNMazurowskiBDuarteCA stable generalized/extended p-hierarchical FEM for three-dimensional linear elastic fracture mechanicsComput Methods Appl Mech Eng202036411297010.1016/j.cma.2020.112970
– reference: BelytschkoTBlackTElastic crack growth in finite elements with minimal remeshingInt J Num Methods Eng19994560162010.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
– reference: SchöllmannMRichardHKullmerGFullandMA new criterion for the prediction of crack development in multiaxially loaded structuresInt J Fract2002117212914110.1023/A:1020980311611
– reference: HeathMScientific computing: an introductory survey1997McGraw-HillMcGraw-Hill series in computer science
– reference: PereiraJDuarteCJiaoXGuoyDGeneralized finite element method enrichment functions for curved singularities in 3D fracture mechanics problemsComput Mech2009441739210.1007/s00466-008-0356-1
– reference: LazarusVBrittle fracture and fatigue propagation paths of 3D plane cracks under uniform remote tensile loadingInt J Fract20031221–2234610.1023/B:FRAC.0000005373.73286.5d
– reference: PhamKRavi-ChandarKFurther examination of the criterion for crack initiation under mixed-mode i+ iii loadingInt J Fract2014189212113810.1007/s10704-014-9966-01:CAS:528:DC%2BC2cXhsFamtr3I
– reference: Banks-SillsLShermanDComparison of methods for calculating stress intensity factors with quarter-point elementsInt J Fract19863212714010.1007/BF00019788
– reference: LeblondJBFrelatJDevelopment of fracture facets from a crack loaded in mode i+ iii: solution and application of a model 2d problemJ Mech Phys Solids20146413315310.1016/j.jmps.2013.11.001
– reference: BarsoumROn the use of isoparametric finite elements in linear fracture mechanicsInt J Num Methods Eng1976101253710.1002/nme.1620100103
– reference: VenturaGBudynEBelytschkoTVector level sets for description of propagating cracks in finite elementsInt J Num Methods Eng200358101571159210.1002/nme.829
– reference: TianRWenLWangLThree-dimensional improved XFEM (IXFEM) for static crack problemsComput Methods Appl Mech Eng201934333936710.1016/j.cma.2018.08.029
– reference: PereiraJDuarteCJiaoXThree-dimensional crack growth with hp-generalized finite element and face offsetting methodsComput Mech201046343145310.1007/s00466-010-0491-3
– reference: ZhangQBanerjeeUBabuškaIHigher order stable generalized finite element methodNumerische Mathematik2014128112910.1007/s00211-014-0609-1
– reference: Kumar A, Lopez-Pamies O (2020) Personal Communication
– reference: ShabirZVan der GiessenEDuarteCSimoneAOn the applicability of linear elastic fracture mechanics scaling relations in the analysis of intergranular fracture of brittle polycrystalsInt J Fract2019220220521910.1007/s10704-019-00381-x
– reference: GrégoireDMaigreHRéthoréJCombescureADynamic crack propagation under mixed-mode loading—comparison between experiments and X-FEM simulationsInt J Solids Struct200744206517653410.1016/j.ijsolstr.2007.02.0441:CAS:528:DC%2BD2sXht1ClsbfO
– reference: SommerEFormation of fracture ‘lances’ in glassEngineering Fracture Mechanics19691353954610.1016/0013-7944(69)90010-1
– reference: PereiraJDuarteCGuoyDJiaoXHp-Generalized FEM and crack surface representation for non-planar 3-D cracksInt J Num Methods Eng200977560163310.1002/nme.2419
– reference: FerrieEBuffiereJYLudwigWGravouilAEdwardsLFatigue crack propagation: In situ visualization using X-ray microtomography and 3D similation using the extended finite element methodActa Materialia2006541111112210.1016/j.actamat.2005.10.0531:CAS:528:DC%2BD28XnvVGjsw%3D%3D
– reference: Oden J, Duarte C (1997) Chapter: Clouds, Cracks and FEMs. In: B. Reddy (ed.) Recent Developments in Computational and Applied Mechanics, pp. 302–321. International Center for Numerical Methods in Engineering, CIMNE, Barcelona, Spain http://gfem.cee.illinois.edu/papers/jMartin_color.pdf
– reference: LinBMearMRavi-ChandarKCriterion for initiation of cracks under mixed-mode i+ iii loadingInt J Fract2010165217518810.1007/s10704-010-9476-7
– reference: PhamKRavi-ChandarKThe formation and growth of echelon cracks in brittle materialsInt J Fract2017206222924410.1007/s10704-017-0212-4
– reference: ChanSTubaIWilsonWOn the finite element method in linear fracture mechanicsEng Fract Mech1970211710.1016/0013-7944(70)90026-3
– reference: GarzonJO’HaraPDuarteCButtlarWImprovements of explicit crack surface representation and update within the generalized finite element method with application to three-dimensional crack coalescenceInt J Num Methods Eng201497423127310.1002/nme.4573
– reference: DuarteCBabuškaIOdenJGeneralized finite element methods for three dimensional structural mechanics problemsComput Struct20007721523210.1016/S0045-7949(99)00211-4
– reference: MesgarnejadABourdinBKhonsariMValidation simulations for the variational approach to fractureComput Methods Appl Mech Eng201529042043710.1016/j.cma.2014.10.052
– reference: BabuškaIBanerjeeUKergreneKStrongly stable generalized finite element method: application to interface problemsComput Methods Appl Mech Eng2017327589210.1016/j.cma.2017.08.008
– volume: 364
  start-page: 112970
  year: 2020
  ident: 469_CR57
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.112970
– volume: 153–154
  start-page: 178
  year: 2019
  ident: 469_CR42
  publication-title: Int J Mech Sci
  doi: 10.1016/j.ijmecsci.2019.01.040
– volume: 36
  start-page: 235
  year: 2000
  ident: 469_CR15
  publication-title: Finite Elem Analy Des
  doi: 10.1016/S0168-874X(00)00035-4
– volume: 38
  start-page: 1397
  year: 2014
  ident: 469_CR24
  publication-title: Int J Num Analyt Methods Geomech
  doi: 10.1002/nag.2305
– volume: 49
  start-page: 1421
  issue: 7
  year: 2001
  ident: 469_CR34
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(01)00008-4
– volume: 11
  start-page: 245
  year: 1975
  ident: 469_CR43
  publication-title: Int J Fracture
  doi: 10.1007/BF00038891
– volume: 305
  start-page: 1
  year: 2016
  ident: 469_CR30
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.02.030
– volume: 189
  start-page: 121
  issue: 2
  year: 2014
  ident: 469_CR51
  publication-title: Int J Fract
  doi: 10.1007/s10704-014-9966-0
– ident: 469_CR16
– volume: 58
  start-page: 1571
  issue: 10
  year: 2003
  ident: 469_CR66
  publication-title: Int J Num Methods Eng
  doi: 10.1002/nme.829
– volume: 76
  start-page: 347
  issue: 3
  year: 2009
  ident: 469_CR21
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2008.10.015
– ident: 469_CR12
– volume: 1
  start-page: 539
  issue: 3
  year: 1969
  ident: 469_CR61
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/0013-7944(69)90010-1
– volume: 139
  start-page: 289
  year: 1996
  ident: 469_CR38
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01087-0
– ident: 469_CR45
– volume-title: Scientific computing: an introductory survey
  year: 1997
  ident: 469_CR27
– ident: 469_CR1
– volume: 290
  start-page: 420
  year: 2015
  ident: 469_CR39
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.10.052
– volume: 32
  start-page: 127
  year: 1986
  ident: 469_CR6
  publication-title: Int J Fract
  doi: 10.1007/BF00019788
– volume: 4
  start-page: 1
  year: 2017
  ident: 469_CR41
  publication-title: Adv Model Simul Eng Sci
  doi: 10.1186/s40323-017-0090-3
– volume: 205
  start-page: 83
  issue: 1
  year: 2017
  ident: 469_CR53
  publication-title: Int J Fract
  doi: 10.1007/s10704-017-0185-3
– volume: 345
  start-page: 876
  year: 2019
  ident: 469_CR56
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.11.018
– ident: 469_CR31
– volume-title: Finite Elem Analy
  year: 1991
  ident: 469_CR62
– volume: 221
  start-page: 163
  year: 1921
  ident: 469_CR23
  publication-title: Series A, Containing Papers of a Mathematical or Physical Character
– volume: 220
  start-page: 205
  issue: 2
  year: 2019
  ident: 469_CR59
  publication-title: Int J Fract
  doi: 10.1007/s10704-019-00381-x
– volume: 90
  start-page: 41
  year: 2012
  ident: 469_CR25
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2012.04.014
– volume: 54
  start-page: 523
  issue: 2
  year: 2014
  ident: 469_CR37
  publication-title: Comput Mech
  doi: 10.1007/s00466-014-1003-7
– volume: 128
  start-page: 1
  issue: 1
  year: 2014
  ident: 469_CR68
  publication-title: Numerische Mathematik
  doi: 10.1007/s00211-014-0609-1
– volume: 28
  start-page: 3
  issue: 1–2
  year: 2005
  ident: 469_CR54
  publication-title: Fatigue Fract Eng Mater Struct
  doi: 10.1111/j.1460-2695.2004.00855.x
– volume: 311
  start-page: 476
  year: 2016
  ident: 469_CR69
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.08.019
– volume: 64
  start-page: 133
  year: 2014
  ident: 469_CR35
  publication-title: J Mech Phys Solids
  doi: 10.1016/j.jmps.2013.11.001
– volume: 77
  start-page: 601
  issue: 5
  year: 2009
  ident: 469_CR48
  publication-title: Int J Num Methods Eng
  doi: 10.1002/nme.2419
– ident: 469_CR29
– volume: 55
  start-page: 321
  issue: 2
  year: 1996
  ident: 469_CR11
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(95)00247-2
– ident: 469_CR55
  doi: 10.2118/96968-MS
– volume: 2
  start-page: 1
  year: 1970
  ident: 469_CR14
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(70)90026-3
– volume: 44
  start-page: 73
  issue: 1
  year: 2009
  ident: 469_CR49
  publication-title: Comput Mech
  doi: 10.1007/s00466-008-0356-1
– volume: 327
  start-page: 58
  year: 2017
  ident: 469_CR5
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.08.008
– volume: 17
  start-page: 043001
  year: 2009
  ident: 469_CR9
  publication-title: Model Simul Mater Sci Eng
  doi: 10.1088/0965-0393/17/4/043001
– volume: 54
  start-page: 1111
  year: 2006
  ident: 469_CR19
  publication-title: Acta Materialia
  doi: 10.1016/j.actamat.2005.10.053
– volume: 153
  start-page: 117
  year: 1998
  ident: 469_CR44
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(97)00039-X
– volume: 58
  start-page: 12
  year: 2014
  ident: 469_CR64
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2013.04.013
– volume: 179
  start-page: 120
  year: 2017
  ident: 469_CR26
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2017.03.035
– volume: 40
  start-page: 727
  year: 1997
  ident: 469_CR3
  publication-title: Int J Num Methods Eng
  doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
– volume: 45
  start-page: 601
  year: 1999
  ident: 469_CR8
  publication-title: Int J Num Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
– volume-title: Finite elements in fracture mechanics: theory “numerics” applications
  year: 2013
  ident: 469_CR32
  doi: 10.1007/978-94-007-6680-8
– volume: 117
  start-page: 129
  issue: 2
  year: 2002
  ident: 469_CR58
  publication-title: Int J Fract
  doi: 10.1023/A:1020980311611
– ident: 469_CR47
– volume: 10
  start-page: 25
  issue: 1
  year: 1976
  ident: 469_CR7
  publication-title: Int J Num Methods Eng
  doi: 10.1002/nme.1620100103
– volume: 343
  start-page: 339
  year: 2019
  ident: 469_CR63
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.08.029
– volume: 9
  start-page: 495
  issue: 3
  year: 1975
  ident: 469_CR28
  publication-title: Int J Num Methods Eng
  doi: 10.1002/nme.1620090302
– volume: 85
  start-page: 519
  year: 1963
  ident: 469_CR18
  publication-title: J Basic Eng
  doi: 10.1115/1.3656897
– volume: 31
  start-page: 945
  issue: 4
  year: 1994
  ident: 469_CR4
  publication-title: SIAM J Num Analy
  doi: 10.1137/0731051
– volume: 97
  start-page: 231
  issue: 4
  year: 2014
  ident: 469_CR20
  publication-title: Int J Num Methods Eng
  doi: 10.1002/nme.4573
– volume: 165
  start-page: 175
  issue: 2
  year: 2010
  ident: 469_CR36
  publication-title: Int J Fract
  doi: 10.1007/s10704-010-9476-7
– volume: 46
  start-page: 131
  year: 1999
  ident: 469_CR40
  publication-title: Int J Num Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– volume: 56
  start-page: 923
  year: 2002
  ident: 469_CR65
  publication-title: Int J Num Methods Eng
  doi: 10.1002/nme.471
– volume: 77
  start-page: 215
  year: 2000
  ident: 469_CR17
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(99)00211-4
– volume: 201–204
  start-page: 91
  year: 2012
  ident: 469_CR2
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2011.09.012
– volume: 122
  start-page: 23
  issue: 1–2
  year: 2003
  ident: 469_CR33
  publication-title: Int J Fract
  doi: 10.1023/B:FRAC.0000005373.73286.5d
– ident: 469_CR13
– volume: 206
  start-page: 229
  issue: 2
  year: 2017
  ident: 469_CR52
  publication-title: Int J Fract
  doi: 10.1007/s10704-017-0212-4
– volume: 77
  start-page: 2840
  issue: 14
  year: 2010
  ident: 469_CR60
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2010.06.009
– volume: 44
  start-page: 6517
  issue: 20
  year: 2007
  ident: 469_CR22
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2007.02.044
– volume: 46
  start-page: 431
  issue: 3
  year: 2010
  ident: 469_CR50
  publication-title: Comput Mech
  doi: 10.1007/s00466-010-0491-3
– volume: 103
  start-page: 112
  year: 2017
  ident: 469_CR10
  publication-title: Int J Fatigue
  doi: 10.1016/j.ijfatigue.2017.05.026
– volume: 85
  start-page: 528
  year: 1963
  ident: 469_CR46
  publication-title: J Basic Eng
  doi: 10.1115/1.3656900
– year: 2019
  ident: 469_CR67
  publication-title: Adv Appl Mech
  doi: 10.1016/j.cma.2019.112614
SSID ssj0009784
Score 2.3759842
Snippet In this paper, a Stable Generalized/eXtended Finite Element Method (SGFEM) is combined with mesh adaptivity for the robust and computationally efficient...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Automotive Engineering
Back propagation
Brittle fracture
Characterization and Evaluation of Materials
Chemistry and Materials Science
Civil Engineering
Classical Mechanics
Computational efficiency
Computer simulation
Crack opening displacement
Crack propagation
Criteria
Finite element analysis
Finite element method
Fracture mechanics
Linear elastic fracture mechanics
Materials Science
Mechanical Engineering
Original Paper
Propagation
Propagation modes
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWgMMDAG1EoyAMbWE0TJ44nhICKqULioW6RnyhSaUvaItSv5zpxCSDBwpzESXTs62P73nMQOmWxThVTMYkTGRKqAka4jAwB8hFRG8eMCVqaTbBeL-33-Z3fcJv4tMpFTCwDtR4pt0fehmmoE6WU8uRi_Eqca5Q7XfUWGstoxakkdMrUvftadJellXwUSwiHwOuLZnzpHHP5F6Grq4YlIuHfJ6aabf44IC3nne7mf794C214xokvqy6yjZbMcAetf9Eh3EXzJ2DjlbkSHlkscESusdBi7GIhBv4oBwY_VwLV-dzotulXW-fY5o6zYlMloePKjxoDEcYv-bvRxBntYFnkTikZW1eRNSsMhh-BOFa-bw89dm8erm6JN2UgCkbrlAjGGU8FEBkhpRahFJqGwrJEw2pXSGqtqwtxovTAfQIVa-AAijMV6iAxVKloHzWGo6E5QFjFKrSaGaO0pToIpLSCSYg6kRSwMNVN1FkgkimvWO6MMwZZrbXsUMwAxaxEMeNNdPb5zLjS6_jz7tYCusyP3UlW49ZE5wvw68u_t3b4d2tHaC10_a3MBGyhxrSYmWO0qt6m-aQ4KXvuB6uI9I8
  priority: 102
  providerName: ProQuest
Title Validation of a 3-D adaptive stable generalized/eXtended finite element method for mixed-mode brittle fracture propagation
URI https://link.springer.com/article/10.1007/s10704-020-00469-9
https://www.proquest.com/docview/2441384496
Volume 225
WOSCitedRecordID wos000557326600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: KB.
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009784
  issn: 0376-9429
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1B4QAHdkRZKh-4gSFNnDg-sgoJqUJs6i3yiiJBQW1BqF_POAsFBEhwjuMkY3vmOZ55D2CbxybVXMc0TlRImQ44FSqyFMFHxFwccy5ZITbBO5202xUXVVHYoM52r48kC0_9odiN-4yJ0FdC46aOikmYwnCXesGGy6vbMdUuT0vSKJ5Qge62KpX5vo_P4WiMMb8cixbR5nT-f--5AHMVuiQH5XRYhAnbW4LZD5yDyzC6ReRdCimRR0ckiegxkUY-eb9HECuqe0vuSjLqfGTNvu2Wv8mJyz0-JbZMOCel9jRB0Ese8ldrqBfVIaqfe1Zk4nz11XPfEvxY9FnF81bg5vTk-uiMVgIMVOPKHFLJBRepRNAilTIyVNKwUDqeGNzZSsWc8zUgnoAecU6gY4PxXguuQxMklmkdrUKj99iza0B0rENnuLXaOGaCQCknuUIPEymJm1DThHY9Dpmu2Mm9SMZ9NuZV9nbN0K5ZYddMNGHn_Z6nkpvj19ab9fBm1TodZAhu2lHKmEiasFsP5_jyz72t_635BsyEfkYUWYCb0Bj2n-0WTOuXYT7ot2Dq8KRzcdmCyfPDvZZPP71qFXP6DVCq7eQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQceCMWCswBTmA1dZw4PiCEKFWrlhUSBe0t-Ikild1ld8ujP4rfyDhOCCDRWw-ckziJ83ke8cz3ATyShaustAUrSsOZsJlkyuSeUfCRi1AUUmrRik3I8biaTNSbNfjR98LEssreJraG2s1s_Ee-SW5oK6-EUOXz-WcWVaPi7movoZFgse-_f6WUbflsb5u-72POd14dvtxlnaoAswS3FdNSSVVp8sTaGKe50U5wHWTpKF3TRoQQGxsiqzo578wWjpyYVdJyl5VeWJvTuOfgPD0OV22p4NuB5FdWia5KlkyRoe-adLpWPRnrPXjs46aUlKk_HeEQ3f61Idv6uZ2r_9sMXYMrXUSNL9ISuA5rfnoDLv_Gs3gTTt5TtpHEo3AWUGPOtlE7PY-2Hik-NkcePyYC7ubEu00_SVsDGJoYk6NPRfaY9LaRAn381HzzjkUhITSLJjJBY4gdZ8cLjzRxZKfb-92Cd2fy8rdhfTqb-juAtrA8OOm9dUG4LDMmaGnIquZGU-LtRrDVI6C2HSN7FAY5qgcu6YiamlBTt6ip1Qie_LpmnvhITj17o4dK3dmmZT3gZARPe7ANh_892t3TR3sIF3cPXx_UB3vj_XtwiUest1WPG7C-Whz7-3DBflk1y8WDdtUgfDhrEP4E_AJR0Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6xgib2MDYYohswP-wNrIbEiePHaawCMVWVYKhvkX-iSKyt0hah_vWc43TppjFp2nMcJznb5-_i-74D-MRTk2uuU5pmKqZMR5wKlViK4CNhLk05l6wuNsEHg3w0EsM1Fn-d7b46kgycBq_SNJ73psb11ohv3GdPxJ4VjQEeFS9gk_lEeh-vX9-2srs8DwJSPKMCXW9Dm_lzH79uTS3e_O2ItN55-jv__85v4HWDOsnnME3ewoYd78KrNS3CPVjeIiIPBZbIxBFJEnpOpJFT7w8JYkh1b8ldEKkul9b07Cj8Pieu9LiV2JCITkJNaoJgmPwoH62hvtgOUVXp1ZKJ86ysRWUJfjj6svp57-B7_-vNlwvaFGagGlfsnEouuMglghmplJGxkobF0vHMYMQrFXPOc0O8MD3in0inBnGAFlzHJsos0zrZh854MrYHQHSqY2e4tdo4ZqJIKSe5Qs-TKInBqenC2WpMCt2olvviGfdFq7fs7VqgXYvaroXowsnPe6ZBs-OvrQ9XQ10063dWIOg5S3LGRNaF09XQtpef7-39vzX_CC-H5_3i2-Xg6gNsx35y1ImCh9CZVwt7BFv6YV7OquN6Wj8Bip32Pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+a+3-D+adaptive+stable+generalized%2FeXtended+finite+element+method+for+mixed-mode+brittle+fracture+propagation&rft.jtitle=International+journal+of+fracture&rft.au=Mukhtar%2C+Faisal+M.&rft.au=Alves%2C+Phillipe+D.&rft.au=Duarte%2C+C.+Armando&rft.date=2020-10-01&rft.pub=Springer+Netherlands&rft.issn=0376-9429&rft.eissn=1573-2673&rft.volume=225&rft.issue=2&rft.spage=129&rft.epage=152&rft_id=info:doi/10.1007%2Fs10704-020-00469-9&rft.externalDocID=10_1007_s10704_020_00469_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon