An anytime Visibility–Voronoi graph-search algorithm for generating robust and feasible unmanned surface vehicle paths
While path planning for Unmanned Surface Vehicles (USVs) is in many ways similar to path planning for ground vehicles, the lack of reliable USV models and significant maritime environmental uncertainties requires an increased focus on robustness and safety. This paper presents a novel graph construc...
Uložené v:
| Vydané v: | Autonomous robots Ročník 46; číslo 8; s. 911 - 927 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.12.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0929-5593, 1573-7527 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | While path planning for Unmanned Surface Vehicles (USVs) is in many ways similar to path planning for ground vehicles, the lack of reliable USV models and significant maritime environmental uncertainties requires an increased focus on robustness and safety. This paper presents a novel graph construction method based on Visibility–Voronoi diagrams that allow users to tune path optimality and path safety while considering vehicle dynamics and model uncertainty. The vehicle state is defined as both a 2D location and heading. The method is based on a roadmap generated from a Visibility–Voronoi diagram, and uses motion curves and path smoothing to ensure path feasibility. The roadmap can then be searched using any graph-search algorithm to return optimal paths subject to a cost function. This paper also shows how to generate and search this roadmap in an anytime fashion, which makes the method suitable for local planning where sensors are used to build a map of the environment in real-time. This approach is demonstrated effectively on underactuated systems, with empirical results from USV docking and obstacle field navigation scenarios. These case studies show the path maintains feasibility subject to a simplified vehicle model, and is able to maximize safety when navigating close to obstacles. Simulation results are also used to analyze algorithm complexity, prove suitability for local planning, and demonstrate the benefits of anytime roadmap generation. |
|---|---|
| AbstractList | While path planning for Unmanned Surface Vehicles (USVs) is in many ways similar to path planning for ground vehicles, the lack of reliable USV models and significant maritime environmental uncertainties requires an increased focus on robustness and safety. This paper presents a novel graph construction method based on Visibility–Voronoi diagrams that allow users to tune path optimality and path safety while considering vehicle dynamics and model uncertainty. The vehicle state is defined as both a 2D location and heading. The method is based on a roadmap generated from a Visibility–Voronoi diagram, and uses motion curves and path smoothing to ensure path feasibility. The roadmap can then be searched using any graph-search algorithm to return optimal paths subject to a cost function. This paper also shows how to generate and search this roadmap in an anytime fashion, which makes the method suitable for local planning where sensors are used to build a map of the environment in real-time. This approach is demonstrated effectively on underactuated systems, with empirical results from USV docking and obstacle field navigation scenarios. These case studies show the path maintains feasibility subject to a simplified vehicle model, and is able to maximize safety when navigating close to obstacles. Simulation results are also used to analyze algorithm complexity, prove suitability for local planning, and demonstrate the benefits of anytime roadmap generation. |
| Author | Schoener, Marco Coyle, Eric Thompson, David |
| Author_xml | – sequence: 1 givenname: Marco surname: Schoener fullname: Schoener, Marco organization: Embry-Riddle Aeronautical University – sequence: 2 givenname: Eric surname: Coyle fullname: Coyle, Eric email: coylee1@erau.edu organization: Embry-Riddle Aeronautical University – sequence: 3 givenname: David surname: Thompson fullname: Thompson, David organization: Embry-Riddle Aeronautical University |
| BookMark | eNp9kMtKxTAQhoMoeLy8gKuA62gubdMsRbyB4EbdhjRN2khPckxS8ex8B9_QJzF6BMGFq2GY-f4Zvj2w7YM3ABwRfEIw5qeJ4JpUCFOKSl83iG-BBak5Q7ymfBsssKAC1bVgu2AvpSeMseAYL8DrmYfKr7NbGvjokuvc5PL64-39McTgg4NDVKsRJaOiHqGahhBdHpfQhggH401U2fkBxtDNKZekHlqjSsxk4OyXynvTwzRHq7SBL2Z0ugxWKo_pAOxYNSVz-FP3wcPlxf35Nbq9u7o5P7tFmhGRkeKkFn2PGWkobyutWW8q07KusU0taFcxq2zTd31LSVdVtmk6wTVVggnba9ayfXC8yV3F8DyblOVTmKMvJyXljJIKU0zKFt1s6RhSisbKVXRLFdeSYPllWG4My2JYfhuWvEDtH0i7XHwEn6Ny0_8o26Cp3PGDib9f_UN9AmX6lVY |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3335912 crossref_primary_10_1016_j_swevo_2024_101505 crossref_primary_10_3390_ijgi13060202 crossref_primary_10_1016_j_apor_2025_104497 crossref_primary_10_1007_s12206_024_1234_2 crossref_primary_10_1007_s11370_024_00527_4 crossref_primary_10_1016_j_oceaneng_2023_116530 crossref_primary_10_3390_jmse11051060 crossref_primary_10_3390_s24113573 crossref_primary_10_3390_sym15051091 crossref_primary_10_1038_s41598_025_96614_2 |
| Cites_doi | 10.1109/ROSE.2011.6058518 10.1109/TITS.2016.2604240 10.1109/ROBOT.1991.131810 10.1145/359156.359164 10.1016/j.oceaneng.2020.107388 10.3182/20140824-6-ZA-1003.01143 10.1109/IROS.2009.5354805 10.1002/9781119994138 10.1109/ISCID.2014.144 10.3390/s20051488 10.1109/MRA.2008.921540 10.1007/BF01386390 10.1007/978-981-4560-32-0_1 10.3182/20100906-3-IT-2019.0004 10.1179/000870493786962263 10.1016/j.ifacol.2016.10.331 10.1109/ROBOT.2006.1641879 10.1109/ROBOT.2003.1241920 10.1109/ICRA.2018.8461201 10.1017/S0373463318001005 10.2307/2372560 10.5772/17790 10.3138/FM57-6770-U75U-7727 10.1177/0278364911406761 10.1109/IROS40897.2019.8968503 10.1109/TRO.2004.838026 10.1109/TCYB.2015.2423635 10.1109/WCECS.2008.27 10.1177/027836499101000604 10.1109/TSSC.1968.300136 10.1109/70.127236 10.1177/0278364908096750 10.1073/pnas.93.4.1591 10.1109/JOE.2019.2898762 10.1109/ACCESS.2014.2302442 10.1145/10515.10549 10.1201/b14581 10.1109/LRA.2018.2801881 10.1016/j.artint.2003.12.001 10.2140/pjm.1990.145.367 10.1109/ICRA.2011.5980479 10.1109/OCEANS.2010.5664470 10.1109/CDC.2015.7402333 10.1109/OCEANS-Genova.2015.7271338 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO F28 FR3 HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS S0W |
| DOI | 10.1007/s10514-022-10056-7 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Technology Collection |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-7527 |
| EndPage | 927 |
| ExternalDocumentID | 10_1007_s10514_022_10056_7 |
| GrantInformation_xml | – fundername: U.S. Department of Defense grantid: Science, Mathematics, and Research for Transformation (SMART) Scholar Program funderid: http://dx.doi.org/10.13039/100000005 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR _50 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7SP 7TB 8FD DWQXO F28 FR3 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-a7159dd03162784cc3de4e83b6f6592b43faf6dbd821b44f66b97c2a939fdc383 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000857270800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0929-5593 |
| IngestDate | Thu Nov 06 14:27:09 EST 2025 Tue Nov 18 20:53:56 EST 2025 Sat Nov 29 02:42:00 EST 2025 Fri Feb 21 02:44:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | USV Path planning Feasibility Anytime algorithm Graph search |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a7159dd03162784cc3de4e83b6f6592b43faf6dbd821b44f66b97c2a939fdc383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2732140201 |
| PQPubID | 326361 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2732140201 crossref_primary_10_1007_s10514_022_10056_7 crossref_citationtrail_10_1007_s10514_022_10056_7 springer_journals_10_1007_s10514_022_10056_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20221200 2022-12-00 20221201 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Autonomous robots |
| PublicationTitleAbbrev | Auton Robot |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Caldwell, C. V., Dunlap, D. D., & Collins, E. G. (2010). Motion planning for an autonomous .underwater vehicle via sampling based model predictive control. In Oceans 2010 MTS/IEEE seattle (pp. 1–6). https://doi.org/10.1109/OCEANS.2010.5664470 Lozano-PérezTWesleyMAAn algorithm for planning collision-free paths among polyhedral obstaclesCommunication of ACM1979221056057010.1145/359156.359164 Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Wiley. https://doi.org/10.1002/9781119994138 Zhu, Z., Schmerling, E., & Pavone, M. (2015). A convex optimization approach to smooth trajectories for motion planning with car-like robots. In 2015 54th IEEE conference on decision and control (CDC) (pp. 835–842). https://doi.org/10.1109/CDC.2015.7402333 PeraltaFArzamendia LopezMGregorDGutiérrezDToralSA comparison of local path planning techniques of autonomous surface vehicles for monitoring applications: The ypacarai lake case-studySensors202010.3390/s20051488 DubinsLEOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangentsAmerican Journal of Mathematics19577934975168945710.2307/23725600098.35401 OmarRHailmaCKNElia NadiraSPerformance comparison of path planning methodsARPN Journal of Engineering and Applied Sciences20151088668872Omar, R., Hailma, C.K.N., Elia Nadira, SOmar, R., Hailma, C.K.N., Elia Nadira, S KaramanSFrazzoliESampling-based algorithms for optimal motion planningThe International Journal of Robotics Research201130784689410.1177/02783649114067611220.91006 Kim, J., & Ostrowski, J. (2003). Motion planning a aerial robot using rapidly-exploring random trees with dynamic constraints. In 2003 IEEE international conference on robotics and automation (Cat. No.03CH37422) (Vol. 2, pp. 2200–2205). https://doi.org/10.1109/ROBOT.2003.1241920 Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., & Teller, S. (2011). Anytime motion planning using the rrt*. In 2011 IEEE international conference on robotics and automation (pp. 1478–1483). https://doi.org/10.1109/ICRA.2011.5980479 Stentz, A. T. (1995). The focussed d* algorithm for real-time replanning. In Proceedings of 14th international joint conference on artificial intelligence (IJCAI ’95) (pp. 1652–1659). VisvalingamMWhyattJDLine generalisation by repeated elimination of pointsThe Cartographic Journal1993301465110.1179/000870493786962263 ParlangeliGIndiveriGDubins inspired 2d smooth paths with bounded curvature and curvature derivativeIFAC Proceedings Volumes2010431625225710.3182/20100906-3-IT-2019.00045. 7th IFAC Symposium on Intelligent Autonomous Vehicles Sfeir, J., Saad, M., & Saliah-Hassane, H. (2011). An improved artificial potential field approach to real-time mobile robot path planning in an unknown environment. In 2011 IEEE international symposium on robotic and sensors environments (ROSE) (pp. 208–213). https://doi.org/10.1109/ROSE.2011.6058518 NiuHSavvarisATsourdosAJiZVoronoi-visibility roadmap-based path planning algorithm for unmanned surface vehiclesJournal of Navigation201972485087410.1017/S0373463318001005 ZhouLLiWAdaptive artificial potential field approach for obstacle avoidance path planning2014 Seventh International Symposium on Computational Intelligence and Design2014242943210.1109/ISCID.2014.144 Fortune, S. (1986). A sweepline algorithm for voronoi diagrams. In Proceedings of the second annual symposium on computational geometry, SCG ’86 (pp. 313–322). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/10515.10549 Schoener, M. A. (2019). Global estimation methodology for wave adaptation modular vessel dynamics using a genetic algorithm. Barnes, J. E., Bloom, N. D., Cronin, S. P., Grady C. D., J. L. H., Helms, M. R., Hendrickson, J. J., Middlebrooks, N. R., Moline, N. D., III, Romney, J. S., Schoener, M. A., Schultz, N. C., Thompson, D. J., Zuercher, T. A., Reinholtz, C. F., Coyle, E. J., Currier, P. N., Butka, B. K., & Hockley, C. J. (2018). Design of the minion research platform for the 2018 maritime robotx challenge. Tech. rep., Embry-Riddle Aeronautical University, Department of Mechanical Engineering. NiuHLuYSavvarisATsourdosAEfficient path planning algorithms for unmanned surface vehicleIFAC-PapersOnLine2016492312112610.1016/j.ifacol.2016.10.33110th IFAC Conference on Control Applications in Marine SystemsCAMS 2016 BhattacharyaPGavrilovaMLRoadmap-based path planning: Using the voronoi diagram for a clearance-based shortest pathIEEE Robotics Automation Magazine2008152586610.1109/MRA.2008.921540 Mask, J. L. (2011). System identification methodology for a wave adaptive modular unmanned surface vehicle. ChengCXuPFChengHDingYZhengJGeTEnsemble learning approach based on stacking for unmanned surface vehicle’s dynamicsOcean Engineering202020710.1016/j.oceaneng.2020.107388 Kumar, R., Mandalika, A., Choudhury, S., & Srinivasa, S. S. (2019). LEGO: leveraging experience in roadmap generation for sampling-based planning. CoRR arxiv:1907.09574 Dunlap, D., Caldwell, C., Collins, E. J., & Chuy, O. (2011). Motion planning for mobile robots via sampling-based model predictive optimization, chap. 11 (pp. 211–232). IntechOpen. https://doi.org/10.5772/17790 Liu, Y., Song, R., & Bucknall, R (2015). A practical path planning and navigation algorithm for an unmanned surface vehicle using the fast marching algorithm. In OCEANS 2015 - Genova (pp. 1–7). https://doi.org/10.1109/OCEANS-Genova.2015.7271338 HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Transactions on Systems Science and Cybernetics19684210010710.1109/TSSC.1968.300136 KoenigSLikhachevMFurcyDLifelong planning a*Artificial Intelligence2004155193146205292610.1016/j.artint.2003.12.0011085.68674 ThompsonDCoyleEBrownJEfficient lidar-based object segmentation and mapping for maritime environmentsIEEE Journal of Oceanic Engineering2019PP10.1109/JOE.2019.289876211110.1109/JOE.2019.2898762 Choi, J. w., Curry, R., & Elkaim, G. (2008). Path planning based on bézier curve for autonomous ground vehicles (pp. 158–166). https://doi.org/10.1109/WCECS.2008.27 DouglasDHPeuckerTAlgorithms for the reduction of the number of points required to represent a digitized line or its caricatureCartographica: The International Journal for Geographic Information and Geovisualization19731011212210.3138/FM57-6770-U75U-7727 DijkstraEA note on two problems in connexion with graphsNumerische Mathematik19591126927110760910.1007/BF013863900092.16002 ReedsJASheppLAOptimal paths for a car that goes both forwards and backwardsPacific Journal of Mathematics19901452367393106989210.2140/pjm.1990.145.3671494.49027 KellerMHoffmannFHassCBertramTSeewaldAPlanning of optimal collision avoidance trajectories with timed elastic bandsIFAC Proceedings Volumes20144739822982710.3182/20140824-6-ZA-1003.0114319th IFAC World Congress KoenigSLikhachevMFast replanning for navigation in unknown terrainIEEE Transactions on Robotics200521335436310.1109/TRO.2004.838026 Silva, J. A. R., & Grassi, V. (2018). Clothoid-based global path planning for autonomous vehicles in urban scenarios. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 4312–4318). https://doi.org/10.1109/ICRA.2018.8461201 HwangYAhujaNA potential field approach to path planningIEEE Transactions on Robotics and Automation199281233210.1109/70.127236 WangNSunJCErMJLiuYCA novel extreme learning control framework of unmanned surface vehiclesIEEE Transactions on Cybernetics20164651106111710.1109/TCYB.2015.2423635 Manzini Nicholas, A. (2017). Usv path planning using potential field model. https://calhoun.nps.edu/handle/10945/56152 Koren, Y., & Borenstein, J. (1991) Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings of 1991 IEEE international conference on robotics and automation (Vol. 2, pp. 1398–1404). https://doi.org/10.1109/ROBOT.1991.131810 Cai, P., Indhumathi, C., Cai, Y., Zheng, J., Gong, Y., Lim, T. S., & Wong, P. (2014). Collision detection using axis aligned bounding boxes (pp. 1–14). Springer. https://doi.org/10.1007/978-981-4560-32-0_1 Lau, B., Sprunk, C., & Burgard, W (2009). Kinodynamic motion planning for mobile robots using splines (pp. 2427–2433). https://doi.org/10.1109/IROS.2009.5354805 ElbanhawiMSimicMSampling-based robot motion planning: A reviewIEEE Access20142567710.1109/ACCESS.2014.2302442 ChitsazHLaValleSMBalkcomDJMasonMTMinimum wheel-rotation paths for differential-drive mobile robotsThe International Journal of Robotics Research2009281668010.1177/0278364908096750 Ericson, C. (2004). Real-time collision detection. CRC Press Inc. Ferguson, D., Kalra, N., Stentz, A. (2006). Replanning with rrts. In Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006 (pp. 1243–1248). https://doi.org/10.1109/ROBOT.2006.1641879 RasekhipourYKhajepourAChenSKLitkouhiBA potential field-based model predictive path-planning controller for autonomous road vehiclesIEEE Transactions on Intelligent Transportation Systems20171851255126710.1109/TITS.2016.2604240 LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning. The annual research report. BarraquandJLatombeJCRobot motion planning: A distributed representation approachThe International Journal of Robotics Research199110662864910.1177/027836499101000604 SethianJAA fast marching level set method for monotonically advancing frontsProceedings of the National Academy of Sciences199693415911595137401010.1073/pnas.93.4.15910852.65055 ChiangHTLTapiaLColreg-rrt: An rrt-based colregs-compliant motion planner for surface vehicle navigationIEEE Robotics and Automation Letters2018332024203110.1109/LRA.2018.2801881 Likhachev, M., Gordon, G. J., & Thrun, S. (2004). Ara*: Anytime a* with provable bounds on sub-optimality. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems (Vol. 16, pp. 767–774). MIT Press. 10056_CR28 D Thompson (10056_CR48) 2019; PP10.1109/JOE.2 10056_CR29 10056_CR27 Y Hwang (10056_CR20) 1992; 8 S Karaman (10056_CR21) 2011; 30 JA Sethian (10056_CR44) 1996; 93 PE Hart (10056_CR19) 1968; 4 10056_CR35 J Barraquand (10056_CR2) 1991; 10 10056_CR34 10056_CR31 10056_CR32 10056_CR30 JA Reeds (10056_CR42) 1990; 145 M Keller (10056_CR23) 2014; 47 10056_CR1 10056_CR4 10056_CR5 M Elbanhawi (10056_CR14) 2014; 2 10056_CR9 S Koenig (10056_CR25) 2005; 21 F Peralta (10056_CR40) 2020 Y Rasekhipour (10056_CR41) 2017; 18 L Zhou (10056_CR51) 2014; 2 E Dijkstra (10056_CR10) 1959; 1 10056_CR46 G Parlangeli (10056_CR39) 2010; 43 10056_CR47 10056_CR45 10056_CR43 C Cheng (10056_CR6) 2020; 207 H Niu (10056_CR36) 2016; 49 M Visvalingam (10056_CR49) 1993; 30 10056_CR13 P Bhattacharya (10056_CR3) 2008; 15 10056_CR52 10056_CR17 10056_CR18 N Wang (10056_CR50) 2016; 46 10056_CR15 10056_CR16 S Koenig (10056_CR26) 2004; 155 LE Dubins (10056_CR12) 1957; 79 R Omar (10056_CR38) 2015; 10 HTL Chiang (10056_CR7) 2018; 3 H Chitsaz (10056_CR8) 2009; 28 10056_CR24 10056_CR22 DH Douglas (10056_CR11) 1973; 10 T Lozano-Pérez (10056_CR33) 1979; 22 H Niu (10056_CR37) 2019; 72 |
| References_xml | – reference: NiuHSavvarisATsourdosAJiZVoronoi-visibility roadmap-based path planning algorithm for unmanned surface vehiclesJournal of Navigation201972485087410.1017/S0373463318001005 – reference: LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning. The annual research report. – reference: DubinsLEOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangentsAmerican Journal of Mathematics19577934975168945710.2307/23725600098.35401 – reference: ElbanhawiMSimicMSampling-based robot motion planning: A reviewIEEE Access20142567710.1109/ACCESS.2014.2302442 – reference: Ferguson, D., Kalra, N., Stentz, A. (2006). Replanning with rrts. In Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006 (pp. 1243–1248). https://doi.org/10.1109/ROBOT.2006.1641879 – reference: PeraltaFArzamendia LopezMGregorDGutiérrezDToralSA comparison of local path planning techniques of autonomous surface vehicles for monitoring applications: The ypacarai lake case-studySensors202010.3390/s20051488 – reference: DijkstraEA note on two problems in connexion with graphsNumerische Mathematik19591126927110760910.1007/BF013863900092.16002 – reference: Mask, J. L. (2011). System identification methodology for a wave adaptive modular unmanned surface vehicle. – reference: ParlangeliGIndiveriGDubins inspired 2d smooth paths with bounded curvature and curvature derivativeIFAC Proceedings Volumes2010431625225710.3182/20100906-3-IT-2019.00045. 7th IFAC Symposium on Intelligent Autonomous Vehicles – reference: Cai, P., Indhumathi, C., Cai, Y., Zheng, J., Gong, Y., Lim, T. S., & Wong, P. (2014). Collision detection using axis aligned bounding boxes (pp. 1–14). Springer. https://doi.org/10.1007/978-981-4560-32-0_1 – reference: ChengCXuPFChengHDingYZhengJGeTEnsemble learning approach based on stacking for unmanned surface vehicle’s dynamicsOcean Engineering202020710.1016/j.oceaneng.2020.107388 – reference: KoenigSLikhachevMFurcyDLifelong planning a*Artificial Intelligence2004155193146205292610.1016/j.artint.2003.12.0011085.68674 – reference: Ericson, C. (2004). Real-time collision detection. CRC Press Inc. – reference: KoenigSLikhachevMFast replanning for navigation in unknown terrainIEEE Transactions on Robotics200521335436310.1109/TRO.2004.838026 – reference: Likhachev, M., Gordon, G. J., & Thrun, S. (2004). Ara*: Anytime a* with provable bounds on sub-optimality. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems (Vol. 16, pp. 767–774). MIT Press. – reference: Lau, B., Sprunk, C., & Burgard, W (2009). Kinodynamic motion planning for mobile robots using splines (pp. 2427–2433). https://doi.org/10.1109/IROS.2009.5354805 – reference: KellerMHoffmannFHassCBertramTSeewaldAPlanning of optimal collision avoidance trajectories with timed elastic bandsIFAC Proceedings Volumes20144739822982710.3182/20140824-6-ZA-1003.0114319th IFAC World Congress – reference: WangNSunJCErMJLiuYCA novel extreme learning control framework of unmanned surface vehiclesIEEE Transactions on Cybernetics20164651106111710.1109/TCYB.2015.2423635 – reference: VisvalingamMWhyattJDLine generalisation by repeated elimination of pointsThe Cartographic Journal1993301465110.1179/000870493786962263 – reference: HwangYAhujaNA potential field approach to path planningIEEE Transactions on Robotics and Automation199281233210.1109/70.127236 – reference: Sfeir, J., Saad, M., & Saliah-Hassane, H. (2011). An improved artificial potential field approach to real-time mobile robot path planning in an unknown environment. In 2011 IEEE international symposium on robotic and sensors environments (ROSE) (pp. 208–213). https://doi.org/10.1109/ROSE.2011.6058518 – reference: Schoener, M. A. (2019). Global estimation methodology for wave adaptation modular vessel dynamics using a genetic algorithm. – reference: Koren, Y., & Borenstein, J. (1991) Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings of 1991 IEEE international conference on robotics and automation (Vol. 2, pp. 1398–1404). https://doi.org/10.1109/ROBOT.1991.131810 – reference: BarraquandJLatombeJCRobot motion planning: A distributed representation approachThe International Journal of Robotics Research199110662864910.1177/027836499101000604 – reference: OmarRHailmaCKNElia NadiraSPerformance comparison of path planning methodsARPN Journal of Engineering and Applied Sciences20151088668872Omar, R., Hailma, C.K.N., Elia Nadira, SOmar, R., Hailma, C.K.N., Elia Nadira, S – reference: Liu, Y., Song, R., & Bucknall, R (2015). A practical path planning and navigation algorithm for an unmanned surface vehicle using the fast marching algorithm. In OCEANS 2015 - Genova (pp. 1–7). https://doi.org/10.1109/OCEANS-Genova.2015.7271338 – reference: Kim, J., & Ostrowski, J. (2003). Motion planning a aerial robot using rapidly-exploring random trees with dynamic constraints. In 2003 IEEE international conference on robotics and automation (Cat. No.03CH37422) (Vol. 2, pp. 2200–2205). https://doi.org/10.1109/ROBOT.2003.1241920 – reference: Silva, J. A. R., & Grassi, V. (2018). Clothoid-based global path planning for autonomous vehicles in urban scenarios. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 4312–4318). https://doi.org/10.1109/ICRA.2018.8461201 – reference: Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., & Teller, S. (2011). Anytime motion planning using the rrt*. In 2011 IEEE international conference on robotics and automation (pp. 1478–1483). https://doi.org/10.1109/ICRA.2011.5980479 – reference: ThompsonDCoyleEBrownJEfficient lidar-based object segmentation and mapping for maritime environmentsIEEE Journal of Oceanic Engineering2019PP10.1109/JOE.2019.289876211110.1109/JOE.2019.2898762 – reference: NiuHLuYSavvarisATsourdosAEfficient path planning algorithms for unmanned surface vehicleIFAC-PapersOnLine2016492312112610.1016/j.ifacol.2016.10.33110th IFAC Conference on Control Applications in Marine SystemsCAMS 2016 – reference: DouglasDHPeuckerTAlgorithms for the reduction of the number of points required to represent a digitized line or its caricatureCartographica: The International Journal for Geographic Information and Geovisualization19731011212210.3138/FM57-6770-U75U-7727 – reference: Fortune, S. (1986). A sweepline algorithm for voronoi diagrams. In Proceedings of the second annual symposium on computational geometry, SCG ’86 (pp. 313–322). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/10515.10549 – reference: Stentz, A. T. (1995). The focussed d* algorithm for real-time replanning. In Proceedings of 14th international joint conference on artificial intelligence (IJCAI ’95) (pp. 1652–1659). – reference: Zhu, Z., Schmerling, E., & Pavone, M. (2015). A convex optimization approach to smooth trajectories for motion planning with car-like robots. In 2015 54th IEEE conference on decision and control (CDC) (pp. 835–842). https://doi.org/10.1109/CDC.2015.7402333 – reference: Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Wiley. https://doi.org/10.1002/9781119994138 – reference: HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Transactions on Systems Science and Cybernetics19684210010710.1109/TSSC.1968.300136 – reference: RasekhipourYKhajepourAChenSKLitkouhiBA potential field-based model predictive path-planning controller for autonomous road vehiclesIEEE Transactions on Intelligent Transportation Systems20171851255126710.1109/TITS.2016.2604240 – reference: ReedsJASheppLAOptimal paths for a car that goes both forwards and backwardsPacific Journal of Mathematics19901452367393106989210.2140/pjm.1990.145.3671494.49027 – reference: KaramanSFrazzoliESampling-based algorithms for optimal motion planningThe International Journal of Robotics Research201130784689410.1177/02783649114067611220.91006 – reference: Kumar, R., Mandalika, A., Choudhury, S., & Srinivasa, S. S. (2019). LEGO: leveraging experience in roadmap generation for sampling-based planning. CoRR arxiv:1907.09574 – reference: Caldwell, C. V., Dunlap, D. D., & Collins, E. G. (2010). Motion planning for an autonomous .underwater vehicle via sampling based model predictive control. In Oceans 2010 MTS/IEEE seattle (pp. 1–6). https://doi.org/10.1109/OCEANS.2010.5664470 – reference: ZhouLLiWAdaptive artificial potential field approach for obstacle avoidance path planning2014 Seventh International Symposium on Computational Intelligence and Design2014242943210.1109/ISCID.2014.144 – reference: BhattacharyaPGavrilovaMLRoadmap-based path planning: Using the voronoi diagram for a clearance-based shortest pathIEEE Robotics Automation Magazine2008152586610.1109/MRA.2008.921540 – reference: Dunlap, D., Caldwell, C., Collins, E. J., & Chuy, O. (2011). Motion planning for mobile robots via sampling-based model predictive optimization, chap. 11 (pp. 211–232). IntechOpen. https://doi.org/10.5772/17790 – reference: ChiangHTLTapiaLColreg-rrt: An rrt-based colregs-compliant motion planner for surface vehicle navigationIEEE Robotics and Automation Letters2018332024203110.1109/LRA.2018.2801881 – reference: Choi, J. w., Curry, R., & Elkaim, G. (2008). Path planning based on bézier curve for autonomous ground vehicles (pp. 158–166). https://doi.org/10.1109/WCECS.2008.27 – reference: Barnes, J. E., Bloom, N. D., Cronin, S. P., Grady C. D., J. L. H., Helms, M. R., Hendrickson, J. J., Middlebrooks, N. R., Moline, N. D., III, Romney, J. S., Schoener, M. A., Schultz, N. C., Thompson, D. J., Zuercher, T. A., Reinholtz, C. F., Coyle, E. J., Currier, P. N., Butka, B. K., & Hockley, C. J. (2018). Design of the minion research platform for the 2018 maritime robotx challenge. Tech. rep., Embry-Riddle Aeronautical University, Department of Mechanical Engineering. – reference: Lozano-PérezTWesleyMAAn algorithm for planning collision-free paths among polyhedral obstaclesCommunication of ACM1979221056057010.1145/359156.359164 – reference: SethianJAA fast marching level set method for monotonically advancing frontsProceedings of the National Academy of Sciences199693415911595137401010.1073/pnas.93.4.15910852.65055 – reference: Manzini Nicholas, A. (2017). Usv path planning using potential field model. https://calhoun.nps.edu/handle/10945/56152 – reference: ChitsazHLaValleSMBalkcomDJMasonMTMinimum wheel-rotation paths for differential-drive mobile robotsThe International Journal of Robotics Research2009281668010.1177/0278364908096750 – ident: 10056_CR45 doi: 10.1109/ROSE.2011.6058518 – volume: 18 start-page: 1255 issue: 5 year: 2017 ident: 10056_CR41 publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2016.2604240 – ident: 10056_CR27 doi: 10.1109/ROBOT.1991.131810 – volume: 22 start-page: 560 issue: 10 year: 1979 ident: 10056_CR33 publication-title: Communication of ACM doi: 10.1145/359156.359164 – volume: 207 year: 2020 ident: 10056_CR6 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2020.107388 – volume: 47 start-page: 9822 issue: 3 year: 2014 ident: 10056_CR23 publication-title: IFAC Proceedings Volumes doi: 10.3182/20140824-6-ZA-1003.01143 – ident: 10056_CR29 doi: 10.1109/IROS.2009.5354805 – ident: 10056_CR18 doi: 10.1002/9781119994138 – volume: 2 start-page: 429 year: 2014 ident: 10056_CR51 publication-title: 2014 Seventh International Symposium on Computational Intelligence and Design doi: 10.1109/ISCID.2014.144 – year: 2020 ident: 10056_CR40 publication-title: Sensors doi: 10.3390/s20051488 – ident: 10056_CR1 – volume: 15 start-page: 58 issue: 2 year: 2008 ident: 10056_CR3 publication-title: IEEE Robotics Automation Magazine doi: 10.1109/MRA.2008.921540 – volume: 1 start-page: 269 issue: 1 year: 1959 ident: 10056_CR10 publication-title: Numerische Mathematik doi: 10.1007/BF01386390 – ident: 10056_CR34 – ident: 10056_CR30 – ident: 10056_CR4 doi: 10.1007/978-981-4560-32-0_1 – ident: 10056_CR35 – volume: 43 start-page: 252 issue: 16 year: 2010 ident: 10056_CR39 publication-title: IFAC Proceedings Volumes doi: 10.3182/20100906-3-IT-2019.0004 – volume: 30 start-page: 46 issue: 1 year: 1993 ident: 10056_CR49 publication-title: The Cartographic Journal doi: 10.1179/000870493786962263 – volume: 49 start-page: 121 issue: 23 year: 2016 ident: 10056_CR36 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.10.331 – ident: 10056_CR16 doi: 10.1109/ROBOT.2006.1641879 – ident: 10056_CR24 doi: 10.1109/ROBOT.2003.1241920 – ident: 10056_CR46 doi: 10.1109/ICRA.2018.8461201 – volume: 72 start-page: 850 issue: 4 year: 2019 ident: 10056_CR37 publication-title: Journal of Navigation doi: 10.1017/S0373463318001005 – volume: 79 start-page: 497 issue: 3 year: 1957 ident: 10056_CR12 publication-title: American Journal of Mathematics doi: 10.2307/2372560 – volume: 10 start-page: 8866 year: 2015 ident: 10056_CR38 publication-title: ARPN Journal of Engineering and Applied Sciences – ident: 10056_CR13 doi: 10.5772/17790 – volume: 10 start-page: 112 year: 1973 ident: 10056_CR11 publication-title: Cartographica: The International Journal for Geographic Information and Geovisualization doi: 10.3138/FM57-6770-U75U-7727 – ident: 10056_CR31 – volume: 30 start-page: 846 issue: 7 year: 2011 ident: 10056_CR21 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364911406761 – ident: 10056_CR28 doi: 10.1109/IROS40897.2019.8968503 – volume: 21 start-page: 354 issue: 3 year: 2005 ident: 10056_CR25 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2004.838026 – volume: 46 start-page: 1106 issue: 5 year: 2016 ident: 10056_CR50 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2423635 – ident: 10056_CR9 doi: 10.1109/WCECS.2008.27 – volume: 10 start-page: 628 issue: 6 year: 1991 ident: 10056_CR2 publication-title: The International Journal of Robotics Research doi: 10.1177/027836499101000604 – volume: 4 start-page: 100 issue: 2 year: 1968 ident: 10056_CR19 publication-title: IEEE Transactions on Systems Science and Cybernetics doi: 10.1109/TSSC.1968.300136 – volume: 8 start-page: 23 issue: 1 year: 1992 ident: 10056_CR20 publication-title: IEEE Transactions on Robotics and Automation doi: 10.1109/70.127236 – volume: 28 start-page: 66 issue: 1 year: 2009 ident: 10056_CR8 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364908096750 – volume: 93 start-page: 1591 issue: 4 year: 1996 ident: 10056_CR44 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.93.4.1591 – volume: PP10.1109/JOE.2 start-page: 1 year: 2019 ident: 10056_CR48 publication-title: IEEE Journal of Oceanic Engineering doi: 10.1109/JOE.2019.2898762 – volume: 2 start-page: 56 year: 2014 ident: 10056_CR14 publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2302442 – ident: 10056_CR17 doi: 10.1145/10515.10549 – ident: 10056_CR15 doi: 10.1201/b14581 – volume: 3 start-page: 2024 issue: 3 year: 2018 ident: 10056_CR7 publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2018.2801881 – volume: 155 start-page: 93 issue: 1 year: 2004 ident: 10056_CR26 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2003.12.001 – volume: 145 start-page: 367 issue: 2 year: 1990 ident: 10056_CR42 publication-title: Pacific Journal of Mathematics doi: 10.2140/pjm.1990.145.367 – ident: 10056_CR22 doi: 10.1109/ICRA.2011.5980479 – ident: 10056_CR43 – ident: 10056_CR5 doi: 10.1109/OCEANS.2010.5664470 – ident: 10056_CR52 doi: 10.1109/CDC.2015.7402333 – ident: 10056_CR47 – ident: 10056_CR32 doi: 10.1109/OCEANS-Genova.2015.7271338 |
| SSID | ssj0009700 |
| Score | 2.4285507 |
| Snippet | While path planning for Unmanned Surface Vehicles (USVs) is in many ways similar to path planning for ground vehicles, the lack of reliable USV models and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 911 |
| SubjectTerms | Algorithms Artificial Intelligence Barriers Computer Imaging Control Cost function Empirical analysis Engineering Environment models Feasibility Mechatronics Obstacle avoidance Optimization Path planning Pattern Recognition and Graphics Robotics Robotics and Automation Safety Search algorithms Surface vehicles System effectiveness Uncertainty Unmanned vehicles Vehicles Visibility Vision Voronoi graphs |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6JQkA_cwFKdRFmOFaLigCrEEvUWxVsbqU1Qlgpu_AN_yJcwThNSECDBOc7I8ng8z56ZNwidujZXtlCcmKzLiMU4J4CTXWIa3O1KSoUqH3P8a2cwcIdD76YqCsvqbPc6JFme1AvFbuDcic4-p5rAkjjLaAXcnavN8fbOb6h2q8ITcPwE8LJZlcp8L-OzO2ow5pewaOlt-pv_m-cW2qjQJe7Nt8M2WpLxDlpf4BzcRU-9GMMBoHvKYz-qkmOf315efc1lkES4pLAmcwvA4WSUpFE-nmIAt3hUclTrRGmcJqzIcpAksJIhiJlIXMTTUB_bOCtSFXKJZ3Ks54F12-NsDz30L-8vrkjVfoFwsMuchA5AHSHA6m0dneTcFNKSrslspWOxzDJVCHpmwjUosyxl28xzuBF6pqcEh5vvPmrFSSwPEA4dLihzPd61lSWlA1jZlpKBqhxqSE-2Ea21EPCKm1y3yJgEDauyXtUAVjUoVzVw2ujs45_HOTPHr6M7tXKDykqzAKCbQfUFmrbRea3M5vPP0g7_NvwIrRnlftBZMB3UytNCHqNVPsujLD0pd-87Khjrnw priority: 102 providerName: Springer Nature |
| Title | An anytime Visibility–Voronoi graph-search algorithm for generating robust and feasible unmanned surface vehicle paths |
| URI | https://link.springer.com/article/10.1007/s10514-022-10056-7 https://www.proquest.com/docview/2732140201 |
| Volume | 46 |
| WOSCitedRecordID | wos000857270800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7527 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009700 issn: 0929-5593 databaseCode: RSV dateStart: 19970301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOsChvNVtAfnAjVpdJ2kep4pWIA5otYJ2hXqJ4tey0pKFTRbBjf_AP-wv6YzXSygSXLj4kmRi6bPHnz3jbwD201jZWFvFQ9mWPJJKceTJKQ8DlbaNENq6w5zeadLppBcXWdcfuFU-rXLmE52j1iNFZ-RfcZkNBG12xPfrG05Voyi66ktozMMiqSQELnXvvBHd9VdQkAJwZM6hvzTjr84hVeCUyy5IDpMn_y9MDdt8ESB1687x6nt7vAYfPONkh9Mhsg5zptyAlWc6hJtwd1gydApUZ571Bj5h9v7vw2OP9A1GA-Zkrfl0VrBi2Mff1JdXDAkv6zvdakqeZuORnFQ1WtLMmgLNDA2blFcFuXJWTca2UIbdmkvqB6NSyNUW_D4--vXzhPuSDFzhXK15kSD90Ro9QUwRS6VCbSKThjK2FJ-VUWgLxF7qNBAyimwcyyxRQZGFmdUKd8PbsFCOSvMRWJEoLWSaqXZsI2MS5M-xMRJBS0RgMtMCMcMjV16vnMpmDPNGaZkwzBHD3GGYJy04ePrmeqrW8ebbOzPgcj9zq7xBrQVfZtA3j1-39ulta59hOXCjjTJhdmChHk_MLiyp23pQjfdg8cdRp3u258Yvtt1vf7A9O-_9A-BU-UE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQc-EcsLeADnMDqOonyc0BVBVStuqyQKKveQmyP25V2s2WTLfTWd-h78FA8CTPehAASvfXAOcnIjj_PjD0z3wA8T2PjYuuMDHVfy0gbI8lPTmUYmLSPSlnnL3NGg2Q4TA8Osg8r8L2theG0ylYnekVtZ4bvyDfIzAaKDztq8_iL5K5RHF1tW2gsYbGHp1_pyFa93n1L6_siCLbf7b_ZkU1XAWkIbrUsErLg1hKYYw66GRNajDANdew4xKij0BU0fG3TQOkocnGss8QERRZmzho60JHcK3A1Yu3vUwU_diS_TckLuRySPPWwKdJpSvXINZGcO6-YflMmfxrCzrv9KyDr7dz27f_tD92BW41HLbaWW-AurGB5D27-xrN4H75tlYKUXj2eohiNm4Tg0x9n5yPmb5iNhaftlsvBi2JySNOqj6aCHHpx6Hm5OTlczGd6UdUkyQqHBYmZoFiU04JNlagWc1cYFCd4xOMQ3Oq5egCfLmXqD2G1nJX4CESRGKt0mpl-7CLEhM4HMaImkCQqwAx7oNr1z03Dx85tQSZ5xyTNmMkJM7nHTJ704OWvb46XbCQXvr3eAiVvNFOVdyjpwasWat3jf0t7fLG0Z3B9Z__9IB_sDvfW4Ebgkc5ZP-uwWs8X-ASumZN6XM2f-j0j4PNlQ_AnqcdTBg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VghAc-EcECuwBTrBq_FOvfUCookRUraIcIKq4GO_ubBspcdrYKfTGO_A2PA5PwoyzxoBEbz1wtj3atb-dH8_MNwDP0sS4xDojI93XMtbGSPKTUxmFJu1jEFjX_MwZ76vhMD04yEZr8L3theGyylYnNorazg3_I98kMxsGHOwEm86XRYx2Bq-PTyRPkOJMaztOYwWRPTz7TOFb9Wp3h7718zAcvH3_5p30EwakIejVslBkza0lYCecgDMmshhjGunEcbpRx5EraCvapmGg49glic6UCYssypw1FNyR3EtwWVGMyYHfaOtjR_jr21_I_ZDktUe-Yce37ZGbIrmOPmAqTqn-NIqdp_tXcraxeYOb__PbugU3vKcttldH4zasYXkHrv_Gv3gXvmyXgpRhPZmhGE98ofDZj6_fxszrMJ-Ihs5brhYviukhbas-mgly9MVhw9fNReNiMdfLqiZJVjgsSMwUxbKcFWzCRLVcuMKgOMUjXofgEdDVPfhwIVu_D-vlvMQHIAplbKDTzPQTFyMqihsSRE2AUUGIGfYgaLGQG8_TzuNCpnnHMM34yQk_eYOfXPXgxa9njlcsJefevdGCJvcaq8o7xPTgZQu77vK_pT08X9pTuErIy_d3h3uP4FrYgJ6LgTZgvV4s8TFcMaf1pFo8aY6PgE8XjcCfHchb6Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+anytime+Visibility%E2%80%93Voronoi+graph-search+algorithm+for+generating+robust+and+feasible+unmanned+surface+vehicle+paths&rft.jtitle=Autonomous+robots&rft.au=Schoener%2C+Marco&rft.au=Coyle%2C+Eric&rft.au=Thompson%2C+David&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=46&rft.issue=8&rft.spage=911&rft.epage=927&rft_id=info:doi/10.1007%2Fs10514-022-10056-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon |