An anytime Visibility–Voronoi graph-search algorithm for generating robust and feasible unmanned surface vehicle paths

While path planning for Unmanned Surface Vehicles (USVs) is in many ways similar to path planning for ground vehicles, the lack of reliable USV models and significant maritime environmental uncertainties requires an increased focus on robustness and safety. This paper presents a novel graph construc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Autonomous robots Ročník 46; číslo 8; s. 911 - 927
Hlavní autori: Schoener, Marco, Coyle, Eric, Thompson, David
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2022
Springer Nature B.V
Predmet:
ISSN:0929-5593, 1573-7527
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract While path planning for Unmanned Surface Vehicles (USVs) is in many ways similar to path planning for ground vehicles, the lack of reliable USV models and significant maritime environmental uncertainties requires an increased focus on robustness and safety. This paper presents a novel graph construction method based on Visibility–Voronoi diagrams that allow users to tune path optimality and path safety while considering vehicle dynamics and model uncertainty. The vehicle state is defined as both a 2D location and heading. The method is based on a roadmap generated from a Visibility–Voronoi diagram, and uses motion curves and path smoothing to ensure path feasibility. The roadmap can then be searched using any graph-search algorithm to return optimal paths subject to a cost function. This paper also shows how to generate and search this roadmap in an anytime fashion, which makes the method suitable for local planning where sensors are used to build a map of the environment in real-time. This approach is demonstrated effectively on underactuated systems, with empirical results from USV docking and obstacle field navigation scenarios. These case studies show the path maintains feasibility subject to a simplified vehicle model, and is able to maximize safety when navigating close to obstacles. Simulation results are also used to analyze algorithm complexity, prove suitability for local planning, and demonstrate the benefits of anytime roadmap generation.
AbstractList While path planning for Unmanned Surface Vehicles (USVs) is in many ways similar to path planning for ground vehicles, the lack of reliable USV models and significant maritime environmental uncertainties requires an increased focus on robustness and safety. This paper presents a novel graph construction method based on Visibility–Voronoi diagrams that allow users to tune path optimality and path safety while considering vehicle dynamics and model uncertainty. The vehicle state is defined as both a 2D location and heading. The method is based on a roadmap generated from a Visibility–Voronoi diagram, and uses motion curves and path smoothing to ensure path feasibility. The roadmap can then be searched using any graph-search algorithm to return optimal paths subject to a cost function. This paper also shows how to generate and search this roadmap in an anytime fashion, which makes the method suitable for local planning where sensors are used to build a map of the environment in real-time. This approach is demonstrated effectively on underactuated systems, with empirical results from USV docking and obstacle field navigation scenarios. These case studies show the path maintains feasibility subject to a simplified vehicle model, and is able to maximize safety when navigating close to obstacles. Simulation results are also used to analyze algorithm complexity, prove suitability for local planning, and demonstrate the benefits of anytime roadmap generation.
Author Schoener, Marco
Coyle, Eric
Thompson, David
Author_xml – sequence: 1
  givenname: Marco
  surname: Schoener
  fullname: Schoener, Marco
  organization: Embry-Riddle Aeronautical University
– sequence: 2
  givenname: Eric
  surname: Coyle
  fullname: Coyle, Eric
  email: coylee1@erau.edu
  organization: Embry-Riddle Aeronautical University
– sequence: 3
  givenname: David
  surname: Thompson
  fullname: Thompson, David
  organization: Embry-Riddle Aeronautical University
BookMark eNp9kMtKxTAQhoMoeLy8gKuA62gubdMsRbyB4EbdhjRN2khPckxS8ex8B9_QJzF6BMGFq2GY-f4Zvj2w7YM3ABwRfEIw5qeJ4JpUCFOKSl83iG-BBak5Q7ymfBsssKAC1bVgu2AvpSeMseAYL8DrmYfKr7NbGvjokuvc5PL64-39McTgg4NDVKsRJaOiHqGahhBdHpfQhggH401U2fkBxtDNKZekHlqjSsxk4OyXynvTwzRHq7SBL2Z0ugxWKo_pAOxYNSVz-FP3wcPlxf35Nbq9u7o5P7tFmhGRkeKkFn2PGWkobyutWW8q07KusU0taFcxq2zTd31LSVdVtmk6wTVVggnba9ayfXC8yV3F8DyblOVTmKMvJyXljJIKU0zKFt1s6RhSisbKVXRLFdeSYPllWG4My2JYfhuWvEDtH0i7XHwEn6Ny0_8o26Cp3PGDib9f_UN9AmX6lVY
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3335912
crossref_primary_10_1016_j_swevo_2024_101505
crossref_primary_10_3390_ijgi13060202
crossref_primary_10_1016_j_apor_2025_104497
crossref_primary_10_1007_s12206_024_1234_2
crossref_primary_10_1007_s11370_024_00527_4
crossref_primary_10_1016_j_oceaneng_2023_116530
crossref_primary_10_3390_jmse11051060
crossref_primary_10_3390_s24113573
crossref_primary_10_3390_sym15051091
crossref_primary_10_1038_s41598_025_96614_2
Cites_doi 10.1109/ROSE.2011.6058518
10.1109/TITS.2016.2604240
10.1109/ROBOT.1991.131810
10.1145/359156.359164
10.1016/j.oceaneng.2020.107388
10.3182/20140824-6-ZA-1003.01143
10.1109/IROS.2009.5354805
10.1002/9781119994138
10.1109/ISCID.2014.144
10.3390/s20051488
10.1109/MRA.2008.921540
10.1007/BF01386390
10.1007/978-981-4560-32-0_1
10.3182/20100906-3-IT-2019.0004
10.1179/000870493786962263
10.1016/j.ifacol.2016.10.331
10.1109/ROBOT.2006.1641879
10.1109/ROBOT.2003.1241920
10.1109/ICRA.2018.8461201
10.1017/S0373463318001005
10.2307/2372560
10.5772/17790
10.3138/FM57-6770-U75U-7727
10.1177/0278364911406761
10.1109/IROS40897.2019.8968503
10.1109/TRO.2004.838026
10.1109/TCYB.2015.2423635
10.1109/WCECS.2008.27
10.1177/027836499101000604
10.1109/TSSC.1968.300136
10.1109/70.127236
10.1177/0278364908096750
10.1073/pnas.93.4.1591
10.1109/JOE.2019.2898762
10.1109/ACCESS.2014.2302442
10.1145/10515.10549
10.1201/b14581
10.1109/LRA.2018.2801881
10.1016/j.artint.2003.12.001
10.2140/pjm.1990.145.367
10.1109/ICRA.2011.5980479
10.1109/OCEANS.2010.5664470
10.1109/CDC.2015.7402333
10.1109/OCEANS-Genova.2015.7271338
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10514-022-10056-7
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-7527
EndPage 927
ExternalDocumentID 10_1007_s10514_022_10056_7
GrantInformation_xml – fundername: U.S. Department of Defense
  grantid: Science, Mathematics, and Research for Transformation (SMART) Scholar Program
  funderid: http://dx.doi.org/10.13039/100000005
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
_50
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7SP
7TB
8FD
DWQXO
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-a7159dd03162784cc3de4e83b6f6592b43faf6dbd821b44f66b97c2a939fdc383
IEDL.DBID M7S
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000857270800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0929-5593
IngestDate Thu Nov 06 14:27:09 EST 2025
Tue Nov 18 20:53:56 EST 2025
Sat Nov 29 02:42:00 EST 2025
Fri Feb 21 02:44:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords USV
Path planning
Feasibility
Anytime algorithm
Graph search
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a7159dd03162784cc3de4e83b6f6592b43faf6dbd821b44f66b97c2a939fdc383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2732140201
PQPubID 326361
PageCount 17
ParticipantIDs proquest_journals_2732140201
crossref_primary_10_1007_s10514_022_10056_7
crossref_citationtrail_10_1007_s10514_022_10056_7
springer_journals_10_1007_s10514_022_10056_7
PublicationCentury 2000
PublicationDate 20221200
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 20221200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Autonomous robots
PublicationTitleAbbrev Auton Robot
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Caldwell, C. V., Dunlap, D. D., & Collins, E. G. (2010). Motion planning for an autonomous .underwater vehicle via sampling based model predictive control. In Oceans 2010 MTS/IEEE seattle (pp. 1–6). https://doi.org/10.1109/OCEANS.2010.5664470
Lozano-PérezTWesleyMAAn algorithm for planning collision-free paths among polyhedral obstaclesCommunication of ACM1979221056057010.1145/359156.359164
Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Wiley. https://doi.org/10.1002/9781119994138
Zhu, Z., Schmerling, E., & Pavone, M. (2015). A convex optimization approach to smooth trajectories for motion planning with car-like robots. In 2015 54th IEEE conference on decision and control (CDC) (pp. 835–842). https://doi.org/10.1109/CDC.2015.7402333
PeraltaFArzamendia LopezMGregorDGutiérrezDToralSA comparison of local path planning techniques of autonomous surface vehicles for monitoring applications: The ypacarai lake case-studySensors202010.3390/s20051488
DubinsLEOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangentsAmerican Journal of Mathematics19577934975168945710.2307/23725600098.35401
OmarRHailmaCKNElia NadiraSPerformance comparison of path planning methodsARPN Journal of Engineering and Applied Sciences20151088668872Omar, R., Hailma, C.K.N., Elia Nadira, SOmar, R., Hailma, C.K.N., Elia Nadira, S
KaramanSFrazzoliESampling-based algorithms for optimal motion planningThe International Journal of Robotics Research201130784689410.1177/02783649114067611220.91006
Kim, J., & Ostrowski, J. (2003). Motion planning a aerial robot using rapidly-exploring random trees with dynamic constraints. In 2003 IEEE international conference on robotics and automation (Cat. No.03CH37422) (Vol. 2, pp. 2200–2205). https://doi.org/10.1109/ROBOT.2003.1241920
Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., & Teller, S. (2011). Anytime motion planning using the rrt*. In 2011 IEEE international conference on robotics and automation (pp. 1478–1483). https://doi.org/10.1109/ICRA.2011.5980479
Stentz, A. T. (1995). The focussed d* algorithm for real-time replanning. In Proceedings of 14th international joint conference on artificial intelligence (IJCAI ’95) (pp. 1652–1659).
VisvalingamMWhyattJDLine generalisation by repeated elimination of pointsThe Cartographic Journal1993301465110.1179/000870493786962263
ParlangeliGIndiveriGDubins inspired 2d smooth paths with bounded curvature and curvature derivativeIFAC Proceedings Volumes2010431625225710.3182/20100906-3-IT-2019.00045. 7th IFAC Symposium on Intelligent Autonomous Vehicles
Sfeir, J., Saad, M., & Saliah-Hassane, H. (2011). An improved artificial potential field approach to real-time mobile robot path planning in an unknown environment. In 2011 IEEE international symposium on robotic and sensors environments (ROSE) (pp. 208–213). https://doi.org/10.1109/ROSE.2011.6058518
NiuHSavvarisATsourdosAJiZVoronoi-visibility roadmap-based path planning algorithm for unmanned surface vehiclesJournal of Navigation201972485087410.1017/S0373463318001005
ZhouLLiWAdaptive artificial potential field approach for obstacle avoidance path planning2014 Seventh International Symposium on Computational Intelligence and Design2014242943210.1109/ISCID.2014.144
Fortune, S. (1986). A sweepline algorithm for voronoi diagrams. In Proceedings of the second annual symposium on computational geometry, SCG ’86 (pp. 313–322). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/10515.10549
Schoener, M. A. (2019). Global estimation methodology for wave adaptation modular vessel dynamics using a genetic algorithm.
Barnes, J. E., Bloom, N. D., Cronin, S. P., Grady C. D., J. L. H., Helms, M. R., Hendrickson, J. J., Middlebrooks, N. R., Moline, N. D., III, Romney, J. S., Schoener, M. A., Schultz, N. C., Thompson, D. J., Zuercher, T. A., Reinholtz, C. F., Coyle, E. J., Currier, P. N., Butka, B. K., & Hockley, C. J. (2018). Design of the minion research platform for the 2018 maritime robotx challenge. Tech. rep., Embry-Riddle Aeronautical University, Department of Mechanical Engineering.
NiuHLuYSavvarisATsourdosAEfficient path planning algorithms for unmanned surface vehicleIFAC-PapersOnLine2016492312112610.1016/j.ifacol.2016.10.33110th IFAC Conference on Control Applications in Marine SystemsCAMS 2016
BhattacharyaPGavrilovaMLRoadmap-based path planning: Using the voronoi diagram for a clearance-based shortest pathIEEE Robotics Automation Magazine2008152586610.1109/MRA.2008.921540
Mask, J. L. (2011). System identification methodology for a wave adaptive modular unmanned surface vehicle.
ChengCXuPFChengHDingYZhengJGeTEnsemble learning approach based on stacking for unmanned surface vehicle’s dynamicsOcean Engineering202020710.1016/j.oceaneng.2020.107388
Kumar, R., Mandalika, A., Choudhury, S., & Srinivasa, S. S. (2019). LEGO: leveraging experience in roadmap generation for sampling-based planning. CoRR arxiv:1907.09574
Dunlap, D., Caldwell, C., Collins, E. J., & Chuy, O. (2011). Motion planning for mobile robots via sampling-based model predictive optimization, chap. 11 (pp. 211–232). IntechOpen. https://doi.org/10.5772/17790
Liu, Y., Song, R., & Bucknall, R (2015). A practical path planning and navigation algorithm for an unmanned surface vehicle using the fast marching algorithm. In OCEANS 2015 - Genova (pp. 1–7). https://doi.org/10.1109/OCEANS-Genova.2015.7271338
HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Transactions on Systems Science and Cybernetics19684210010710.1109/TSSC.1968.300136
KoenigSLikhachevMFurcyDLifelong planning a*Artificial Intelligence2004155193146205292610.1016/j.artint.2003.12.0011085.68674
ThompsonDCoyleEBrownJEfficient lidar-based object segmentation and mapping for maritime environmentsIEEE Journal of Oceanic Engineering2019PP10.1109/JOE.2019.289876211110.1109/JOE.2019.2898762
Choi, J. w., Curry, R., & Elkaim, G. (2008). Path planning based on bézier curve for autonomous ground vehicles (pp. 158–166). https://doi.org/10.1109/WCECS.2008.27
DouglasDHPeuckerTAlgorithms for the reduction of the number of points required to represent a digitized line or its caricatureCartographica: The International Journal for Geographic Information and Geovisualization19731011212210.3138/FM57-6770-U75U-7727
DijkstraEA note on two problems in connexion with graphsNumerische Mathematik19591126927110760910.1007/BF013863900092.16002
ReedsJASheppLAOptimal paths for a car that goes both forwards and backwardsPacific Journal of Mathematics19901452367393106989210.2140/pjm.1990.145.3671494.49027
KellerMHoffmannFHassCBertramTSeewaldAPlanning of optimal collision avoidance trajectories with timed elastic bandsIFAC Proceedings Volumes20144739822982710.3182/20140824-6-ZA-1003.0114319th IFAC World Congress
KoenigSLikhachevMFast replanning for navigation in unknown terrainIEEE Transactions on Robotics200521335436310.1109/TRO.2004.838026
Silva, J. A. R., & Grassi, V. (2018). Clothoid-based global path planning for autonomous vehicles in urban scenarios. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 4312–4318). https://doi.org/10.1109/ICRA.2018.8461201
HwangYAhujaNA potential field approach to path planningIEEE Transactions on Robotics and Automation199281233210.1109/70.127236
WangNSunJCErMJLiuYCA novel extreme learning control framework of unmanned surface vehiclesIEEE Transactions on Cybernetics20164651106111710.1109/TCYB.2015.2423635
Manzini Nicholas, A. (2017). Usv path planning using potential field model. https://calhoun.nps.edu/handle/10945/56152
Koren, Y., & Borenstein, J. (1991) Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings of 1991 IEEE international conference on robotics and automation (Vol. 2, pp. 1398–1404). https://doi.org/10.1109/ROBOT.1991.131810
Cai, P., Indhumathi, C., Cai, Y., Zheng, J., Gong, Y., Lim, T. S., & Wong, P. (2014). Collision detection using axis aligned bounding boxes (pp. 1–14). Springer. https://doi.org/10.1007/978-981-4560-32-0_1
Lau, B., Sprunk, C., & Burgard, W (2009). Kinodynamic motion planning for mobile robots using splines (pp. 2427–2433). https://doi.org/10.1109/IROS.2009.5354805
ElbanhawiMSimicMSampling-based robot motion planning: A reviewIEEE Access20142567710.1109/ACCESS.2014.2302442
ChitsazHLaValleSMBalkcomDJMasonMTMinimum wheel-rotation paths for differential-drive mobile robotsThe International Journal of Robotics Research2009281668010.1177/0278364908096750
Ericson, C. (2004). Real-time collision detection. CRC Press Inc.
Ferguson, D., Kalra, N., Stentz, A. (2006). Replanning with rrts. In Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006 (pp. 1243–1248). https://doi.org/10.1109/ROBOT.2006.1641879
RasekhipourYKhajepourAChenSKLitkouhiBA potential field-based model predictive path-planning controller for autonomous road vehiclesIEEE Transactions on Intelligent Transportation Systems20171851255126710.1109/TITS.2016.2604240
LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning. The annual research report.
BarraquandJLatombeJCRobot motion planning: A distributed representation approachThe International Journal of Robotics Research199110662864910.1177/027836499101000604
SethianJAA fast marching level set method for monotonically advancing frontsProceedings of the National Academy of Sciences199693415911595137401010.1073/pnas.93.4.15910852.65055
ChiangHTLTapiaLColreg-rrt: An rrt-based colregs-compliant motion planner for surface vehicle navigationIEEE Robotics and Automation Letters2018332024203110.1109/LRA.2018.2801881
Likhachev, M., Gordon, G. J., & Thrun, S. (2004). Ara*: Anytime a* with provable bounds on sub-optimality. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems (Vol. 16, pp. 767–774). MIT Press.
10056_CR28
D Thompson (10056_CR48) 2019; PP10.1109/JOE.2
10056_CR29
10056_CR27
Y Hwang (10056_CR20) 1992; 8
S Karaman (10056_CR21) 2011; 30
JA Sethian (10056_CR44) 1996; 93
PE Hart (10056_CR19) 1968; 4
10056_CR35
J Barraquand (10056_CR2) 1991; 10
10056_CR34
10056_CR31
10056_CR32
10056_CR30
JA Reeds (10056_CR42) 1990; 145
M Keller (10056_CR23) 2014; 47
10056_CR1
10056_CR4
10056_CR5
M Elbanhawi (10056_CR14) 2014; 2
10056_CR9
S Koenig (10056_CR25) 2005; 21
F Peralta (10056_CR40) 2020
Y Rasekhipour (10056_CR41) 2017; 18
L Zhou (10056_CR51) 2014; 2
E Dijkstra (10056_CR10) 1959; 1
10056_CR46
G Parlangeli (10056_CR39) 2010; 43
10056_CR47
10056_CR45
10056_CR43
C Cheng (10056_CR6) 2020; 207
H Niu (10056_CR36) 2016; 49
M Visvalingam (10056_CR49) 1993; 30
10056_CR13
P Bhattacharya (10056_CR3) 2008; 15
10056_CR52
10056_CR17
10056_CR18
N Wang (10056_CR50) 2016; 46
10056_CR15
10056_CR16
S Koenig (10056_CR26) 2004; 155
LE Dubins (10056_CR12) 1957; 79
R Omar (10056_CR38) 2015; 10
HTL Chiang (10056_CR7) 2018; 3
H Chitsaz (10056_CR8) 2009; 28
10056_CR24
10056_CR22
DH Douglas (10056_CR11) 1973; 10
T Lozano-Pérez (10056_CR33) 1979; 22
H Niu (10056_CR37) 2019; 72
References_xml – reference: NiuHSavvarisATsourdosAJiZVoronoi-visibility roadmap-based path planning algorithm for unmanned surface vehiclesJournal of Navigation201972485087410.1017/S0373463318001005
– reference: LaValle, S. (1998). Rapidly-exploring random trees: A new tool for path planning. The annual research report.
– reference: DubinsLEOn curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangentsAmerican Journal of Mathematics19577934975168945710.2307/23725600098.35401
– reference: ElbanhawiMSimicMSampling-based robot motion planning: A reviewIEEE Access20142567710.1109/ACCESS.2014.2302442
– reference: Ferguson, D., Kalra, N., Stentz, A. (2006). Replanning with rrts. In Proceedings 2006 IEEE international conference on robotics and automation, 2006. ICRA 2006 (pp. 1243–1248). https://doi.org/10.1109/ROBOT.2006.1641879
– reference: PeraltaFArzamendia LopezMGregorDGutiérrezDToralSA comparison of local path planning techniques of autonomous surface vehicles for monitoring applications: The ypacarai lake case-studySensors202010.3390/s20051488
– reference: DijkstraEA note on two problems in connexion with graphsNumerische Mathematik19591126927110760910.1007/BF013863900092.16002
– reference: Mask, J. L. (2011). System identification methodology for a wave adaptive modular unmanned surface vehicle.
– reference: ParlangeliGIndiveriGDubins inspired 2d smooth paths with bounded curvature and curvature derivativeIFAC Proceedings Volumes2010431625225710.3182/20100906-3-IT-2019.00045. 7th IFAC Symposium on Intelligent Autonomous Vehicles
– reference: Cai, P., Indhumathi, C., Cai, Y., Zheng, J., Gong, Y., Lim, T. S., & Wong, P. (2014). Collision detection using axis aligned bounding boxes (pp. 1–14). Springer. https://doi.org/10.1007/978-981-4560-32-0_1
– reference: ChengCXuPFChengHDingYZhengJGeTEnsemble learning approach based on stacking for unmanned surface vehicle’s dynamicsOcean Engineering202020710.1016/j.oceaneng.2020.107388
– reference: KoenigSLikhachevMFurcyDLifelong planning a*Artificial Intelligence2004155193146205292610.1016/j.artint.2003.12.0011085.68674
– reference: Ericson, C. (2004). Real-time collision detection. CRC Press Inc.
– reference: KoenigSLikhachevMFast replanning for navigation in unknown terrainIEEE Transactions on Robotics200521335436310.1109/TRO.2004.838026
– reference: Likhachev, M., Gordon, G. J., & Thrun, S. (2004). Ara*: Anytime a* with provable bounds on sub-optimality. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems (Vol. 16, pp. 767–774). MIT Press.
– reference: Lau, B., Sprunk, C., & Burgard, W (2009). Kinodynamic motion planning for mobile robots using splines (pp. 2427–2433). https://doi.org/10.1109/IROS.2009.5354805
– reference: KellerMHoffmannFHassCBertramTSeewaldAPlanning of optimal collision avoidance trajectories with timed elastic bandsIFAC Proceedings Volumes20144739822982710.3182/20140824-6-ZA-1003.0114319th IFAC World Congress
– reference: WangNSunJCErMJLiuYCA novel extreme learning control framework of unmanned surface vehiclesIEEE Transactions on Cybernetics20164651106111710.1109/TCYB.2015.2423635
– reference: VisvalingamMWhyattJDLine generalisation by repeated elimination of pointsThe Cartographic Journal1993301465110.1179/000870493786962263
– reference: HwangYAhujaNA potential field approach to path planningIEEE Transactions on Robotics and Automation199281233210.1109/70.127236
– reference: Sfeir, J., Saad, M., & Saliah-Hassane, H. (2011). An improved artificial potential field approach to real-time mobile robot path planning in an unknown environment. In 2011 IEEE international symposium on robotic and sensors environments (ROSE) (pp. 208–213). https://doi.org/10.1109/ROSE.2011.6058518
– reference: Schoener, M. A. (2019). Global estimation methodology for wave adaptation modular vessel dynamics using a genetic algorithm.
– reference: Koren, Y., & Borenstein, J. (1991) Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings of 1991 IEEE international conference on robotics and automation (Vol. 2, pp. 1398–1404). https://doi.org/10.1109/ROBOT.1991.131810
– reference: BarraquandJLatombeJCRobot motion planning: A distributed representation approachThe International Journal of Robotics Research199110662864910.1177/027836499101000604
– reference: OmarRHailmaCKNElia NadiraSPerformance comparison of path planning methodsARPN Journal of Engineering and Applied Sciences20151088668872Omar, R., Hailma, C.K.N., Elia Nadira, SOmar, R., Hailma, C.K.N., Elia Nadira, S
– reference: Liu, Y., Song, R., & Bucknall, R (2015). A practical path planning and navigation algorithm for an unmanned surface vehicle using the fast marching algorithm. In OCEANS 2015 - Genova (pp. 1–7). https://doi.org/10.1109/OCEANS-Genova.2015.7271338
– reference: Kim, J., & Ostrowski, J. (2003). Motion planning a aerial robot using rapidly-exploring random trees with dynamic constraints. In 2003 IEEE international conference on robotics and automation (Cat. No.03CH37422) (Vol. 2, pp. 2200–2205). https://doi.org/10.1109/ROBOT.2003.1241920
– reference: Silva, J. A. R., & Grassi, V. (2018). Clothoid-based global path planning for autonomous vehicles in urban scenarios. In 2018 IEEE international conference on robotics and automation (ICRA) (pp. 4312–4318). https://doi.org/10.1109/ICRA.2018.8461201
– reference: Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., & Teller, S. (2011). Anytime motion planning using the rrt*. In 2011 IEEE international conference on robotics and automation (pp. 1478–1483). https://doi.org/10.1109/ICRA.2011.5980479
– reference: ThompsonDCoyleEBrownJEfficient lidar-based object segmentation and mapping for maritime environmentsIEEE Journal of Oceanic Engineering2019PP10.1109/JOE.2019.289876211110.1109/JOE.2019.2898762
– reference: NiuHLuYSavvarisATsourdosAEfficient path planning algorithms for unmanned surface vehicleIFAC-PapersOnLine2016492312112610.1016/j.ifacol.2016.10.33110th IFAC Conference on Control Applications in Marine SystemsCAMS 2016
– reference: DouglasDHPeuckerTAlgorithms for the reduction of the number of points required to represent a digitized line or its caricatureCartographica: The International Journal for Geographic Information and Geovisualization19731011212210.3138/FM57-6770-U75U-7727
– reference: Fortune, S. (1986). A sweepline algorithm for voronoi diagrams. In Proceedings of the second annual symposium on computational geometry, SCG ’86 (pp. 313–322). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/10515.10549
– reference: Stentz, A. T. (1995). The focussed d* algorithm for real-time replanning. In Proceedings of 14th international joint conference on artificial intelligence (IJCAI ’95) (pp. 1652–1659).
– reference: Zhu, Z., Schmerling, E., & Pavone, M. (2015). A convex optimization approach to smooth trajectories for motion planning with car-like robots. In 2015 54th IEEE conference on decision and control (CDC) (pp. 835–842). https://doi.org/10.1109/CDC.2015.7402333
– reference: Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Wiley. https://doi.org/10.1002/9781119994138
– reference: HartPENilssonNJRaphaelBA formal basis for the heuristic determination of minimum cost pathsIEEE Transactions on Systems Science and Cybernetics19684210010710.1109/TSSC.1968.300136
– reference: RasekhipourYKhajepourAChenSKLitkouhiBA potential field-based model predictive path-planning controller for autonomous road vehiclesIEEE Transactions on Intelligent Transportation Systems20171851255126710.1109/TITS.2016.2604240
– reference: ReedsJASheppLAOptimal paths for a car that goes both forwards and backwardsPacific Journal of Mathematics19901452367393106989210.2140/pjm.1990.145.3671494.49027
– reference: KaramanSFrazzoliESampling-based algorithms for optimal motion planningThe International Journal of Robotics Research201130784689410.1177/02783649114067611220.91006
– reference: Kumar, R., Mandalika, A., Choudhury, S., & Srinivasa, S. S. (2019). LEGO: leveraging experience in roadmap generation for sampling-based planning. CoRR arxiv:1907.09574
– reference: Caldwell, C. V., Dunlap, D. D., & Collins, E. G. (2010). Motion planning for an autonomous .underwater vehicle via sampling based model predictive control. In Oceans 2010 MTS/IEEE seattle (pp. 1–6). https://doi.org/10.1109/OCEANS.2010.5664470
– reference: ZhouLLiWAdaptive artificial potential field approach for obstacle avoidance path planning2014 Seventh International Symposium on Computational Intelligence and Design2014242943210.1109/ISCID.2014.144
– reference: BhattacharyaPGavrilovaMLRoadmap-based path planning: Using the voronoi diagram for a clearance-based shortest pathIEEE Robotics Automation Magazine2008152586610.1109/MRA.2008.921540
– reference: Dunlap, D., Caldwell, C., Collins, E. J., & Chuy, O. (2011). Motion planning for mobile robots via sampling-based model predictive optimization, chap. 11 (pp. 211–232). IntechOpen. https://doi.org/10.5772/17790
– reference: ChiangHTLTapiaLColreg-rrt: An rrt-based colregs-compliant motion planner for surface vehicle navigationIEEE Robotics and Automation Letters2018332024203110.1109/LRA.2018.2801881
– reference: Choi, J. w., Curry, R., & Elkaim, G. (2008). Path planning based on bézier curve for autonomous ground vehicles (pp. 158–166). https://doi.org/10.1109/WCECS.2008.27
– reference: Barnes, J. E., Bloom, N. D., Cronin, S. P., Grady C. D., J. L. H., Helms, M. R., Hendrickson, J. J., Middlebrooks, N. R., Moline, N. D., III, Romney, J. S., Schoener, M. A., Schultz, N. C., Thompson, D. J., Zuercher, T. A., Reinholtz, C. F., Coyle, E. J., Currier, P. N., Butka, B. K., & Hockley, C. J. (2018). Design of the minion research platform for the 2018 maritime robotx challenge. Tech. rep., Embry-Riddle Aeronautical University, Department of Mechanical Engineering.
– reference: Lozano-PérezTWesleyMAAn algorithm for planning collision-free paths among polyhedral obstaclesCommunication of ACM1979221056057010.1145/359156.359164
– reference: SethianJAA fast marching level set method for monotonically advancing frontsProceedings of the National Academy of Sciences199693415911595137401010.1073/pnas.93.4.15910852.65055
– reference: Manzini Nicholas, A. (2017). Usv path planning using potential field model. https://calhoun.nps.edu/handle/10945/56152
– reference: ChitsazHLaValleSMBalkcomDJMasonMTMinimum wheel-rotation paths for differential-drive mobile robotsThe International Journal of Robotics Research2009281668010.1177/0278364908096750
– ident: 10056_CR45
  doi: 10.1109/ROSE.2011.6058518
– volume: 18
  start-page: 1255
  issue: 5
  year: 2017
  ident: 10056_CR41
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2016.2604240
– ident: 10056_CR27
  doi: 10.1109/ROBOT.1991.131810
– volume: 22
  start-page: 560
  issue: 10
  year: 1979
  ident: 10056_CR33
  publication-title: Communication of ACM
  doi: 10.1145/359156.359164
– volume: 207
  year: 2020
  ident: 10056_CR6
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2020.107388
– volume: 47
  start-page: 9822
  issue: 3
  year: 2014
  ident: 10056_CR23
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20140824-6-ZA-1003.01143
– ident: 10056_CR29
  doi: 10.1109/IROS.2009.5354805
– ident: 10056_CR18
  doi: 10.1002/9781119994138
– volume: 2
  start-page: 429
  year: 2014
  ident: 10056_CR51
  publication-title: 2014 Seventh International Symposium on Computational Intelligence and Design
  doi: 10.1109/ISCID.2014.144
– year: 2020
  ident: 10056_CR40
  publication-title: Sensors
  doi: 10.3390/s20051488
– ident: 10056_CR1
– volume: 15
  start-page: 58
  issue: 2
  year: 2008
  ident: 10056_CR3
  publication-title: IEEE Robotics Automation Magazine
  doi: 10.1109/MRA.2008.921540
– volume: 1
  start-page: 269
  issue: 1
  year: 1959
  ident: 10056_CR10
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01386390
– ident: 10056_CR34
– ident: 10056_CR30
– ident: 10056_CR4
  doi: 10.1007/978-981-4560-32-0_1
– ident: 10056_CR35
– volume: 43
  start-page: 252
  issue: 16
  year: 2010
  ident: 10056_CR39
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20100906-3-IT-2019.0004
– volume: 30
  start-page: 46
  issue: 1
  year: 1993
  ident: 10056_CR49
  publication-title: The Cartographic Journal
  doi: 10.1179/000870493786962263
– volume: 49
  start-page: 121
  issue: 23
  year: 2016
  ident: 10056_CR36
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.10.331
– ident: 10056_CR16
  doi: 10.1109/ROBOT.2006.1641879
– ident: 10056_CR24
  doi: 10.1109/ROBOT.2003.1241920
– ident: 10056_CR46
  doi: 10.1109/ICRA.2018.8461201
– volume: 72
  start-page: 850
  issue: 4
  year: 2019
  ident: 10056_CR37
  publication-title: Journal of Navigation
  doi: 10.1017/S0373463318001005
– volume: 79
  start-page: 497
  issue: 3
  year: 1957
  ident: 10056_CR12
  publication-title: American Journal of Mathematics
  doi: 10.2307/2372560
– volume: 10
  start-page: 8866
  year: 2015
  ident: 10056_CR38
  publication-title: ARPN Journal of Engineering and Applied Sciences
– ident: 10056_CR13
  doi: 10.5772/17790
– volume: 10
  start-page: 112
  year: 1973
  ident: 10056_CR11
  publication-title: Cartographica: The International Journal for Geographic Information and Geovisualization
  doi: 10.3138/FM57-6770-U75U-7727
– ident: 10056_CR31
– volume: 30
  start-page: 846
  issue: 7
  year: 2011
  ident: 10056_CR21
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364911406761
– ident: 10056_CR28
  doi: 10.1109/IROS40897.2019.8968503
– volume: 21
  start-page: 354
  issue: 3
  year: 2005
  ident: 10056_CR25
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2004.838026
– volume: 46
  start-page: 1106
  issue: 5
  year: 2016
  ident: 10056_CR50
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2423635
– ident: 10056_CR9
  doi: 10.1109/WCECS.2008.27
– volume: 10
  start-page: 628
  issue: 6
  year: 1991
  ident: 10056_CR2
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/027836499101000604
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 10056_CR19
  publication-title: IEEE Transactions on Systems Science and Cybernetics
  doi: 10.1109/TSSC.1968.300136
– volume: 8
  start-page: 23
  issue: 1
  year: 1992
  ident: 10056_CR20
  publication-title: IEEE Transactions on Robotics and Automation
  doi: 10.1109/70.127236
– volume: 28
  start-page: 66
  issue: 1
  year: 2009
  ident: 10056_CR8
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364908096750
– volume: 93
  start-page: 1591
  issue: 4
  year: 1996
  ident: 10056_CR44
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.93.4.1591
– volume: PP10.1109/JOE.2
  start-page: 1
  year: 2019
  ident: 10056_CR48
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/JOE.2019.2898762
– volume: 2
  start-page: 56
  year: 2014
  ident: 10056_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2302442
– ident: 10056_CR17
  doi: 10.1145/10515.10549
– ident: 10056_CR15
  doi: 10.1201/b14581
– volume: 3
  start-page: 2024
  issue: 3
  year: 2018
  ident: 10056_CR7
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2018.2801881
– volume: 155
  start-page: 93
  issue: 1
  year: 2004
  ident: 10056_CR26
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2003.12.001
– volume: 145
  start-page: 367
  issue: 2
  year: 1990
  ident: 10056_CR42
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1990.145.367
– ident: 10056_CR22
  doi: 10.1109/ICRA.2011.5980479
– ident: 10056_CR43
– ident: 10056_CR5
  doi: 10.1109/OCEANS.2010.5664470
– ident: 10056_CR52
  doi: 10.1109/CDC.2015.7402333
– ident: 10056_CR47
– ident: 10056_CR32
  doi: 10.1109/OCEANS-Genova.2015.7271338
SSID ssj0009700
Score 2.4285507
Snippet While path planning for Unmanned Surface Vehicles (USVs) is in many ways similar to path planning for ground vehicles, the lack of reliable USV models and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 911
SubjectTerms Algorithms
Artificial Intelligence
Barriers
Computer Imaging
Control
Cost function
Empirical analysis
Engineering
Environment models
Feasibility
Mechatronics
Obstacle avoidance
Optimization
Path planning
Pattern Recognition and Graphics
Robotics
Robotics and Automation
Safety
Search algorithms
Surface vehicles
System effectiveness
Uncertainty
Unmanned vehicles
Vehicles
Visibility
Vision
Voronoi graphs
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcIADO6JQkA_cwFKdRFmOFaLigCrEEvUWxVsbqU1Qlgpu_AN_yJcwThNSECDBOc7I8ng8z56ZNwidujZXtlCcmKzLiMU4J4CTXWIa3O1KSoUqH3P8a2cwcIdD76YqCsvqbPc6JFme1AvFbuDcic4-p5rAkjjLaAXcnavN8fbOb6h2q8ITcPwE8LJZlcp8L-OzO2ow5pewaOlt-pv_m-cW2qjQJe7Nt8M2WpLxDlpf4BzcRU-9GMMBoHvKYz-qkmOf315efc1lkES4pLAmcwvA4WSUpFE-nmIAt3hUclTrRGmcJqzIcpAksJIhiJlIXMTTUB_bOCtSFXKJZ3Ks54F12-NsDz30L-8vrkjVfoFwsMuchA5AHSHA6m0dneTcFNKSrslspWOxzDJVCHpmwjUosyxl28xzuBF6pqcEh5vvPmrFSSwPEA4dLihzPd61lSWlA1jZlpKBqhxqSE-2Ea21EPCKm1y3yJgEDauyXtUAVjUoVzVw2ujs45_HOTPHr6M7tXKDykqzAKCbQfUFmrbRea3M5vPP0g7_NvwIrRnlftBZMB3UytNCHqNVPsujLD0pd-87Khjrnw
  priority: 102
  providerName: Springer Nature
Title An anytime Visibility–Voronoi graph-search algorithm for generating robust and feasible unmanned surface vehicle paths
URI https://link.springer.com/article/10.1007/s10514-022-10056-7
https://www.proquest.com/docview/2732140201
Volume 46
WOSCitedRecordID wos000857270800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7527
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009700
  issn: 0929-5593
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOsChvNVtAfnAjVpdJ2kep4pWIA5otYJ2hXqJ4tey0pKFTRbBjf_AP-wv6YzXSygSXLj4kmRi6bPHnz3jbwD201jZWFvFQ9mWPJJKceTJKQ8DlbaNENq6w5zeadLppBcXWdcfuFU-rXLmE52j1iNFZ-RfcZkNBG12xPfrG05Voyi66ktozMMiqSQELnXvvBHd9VdQkAJwZM6hvzTjr84hVeCUyy5IDpMn_y9MDdt8ESB1687x6nt7vAYfPONkh9Mhsg5zptyAlWc6hJtwd1gydApUZ571Bj5h9v7vw2OP9A1GA-Zkrfl0VrBi2Mff1JdXDAkv6zvdakqeZuORnFQ1WtLMmgLNDA2blFcFuXJWTca2UIbdmkvqB6NSyNUW_D4--vXzhPuSDFzhXK15kSD90Ro9QUwRS6VCbSKThjK2FJ-VUWgLxF7qNBAyimwcyyxRQZGFmdUKd8PbsFCOSvMRWJEoLWSaqXZsI2MS5M-xMRJBS0RgMtMCMcMjV16vnMpmDPNGaZkwzBHD3GGYJy04ePrmeqrW8ebbOzPgcj9zq7xBrQVfZtA3j1-39ulta59hOXCjjTJhdmChHk_MLiyp23pQjfdg8cdRp3u258Yvtt1vf7A9O-_9A-BU-UE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQc-EcsLeADnMDqOonyc0BVBVStuqyQKKveQmyP25V2s2WTLfTWd-h78FA8CTPehAASvfXAOcnIjj_PjD0z3wA8T2PjYuuMDHVfy0gbI8lPTmUYmLSPSlnnL3NGg2Q4TA8Osg8r8L2theG0ylYnekVtZ4bvyDfIzAaKDztq8_iL5K5RHF1tW2gsYbGHp1_pyFa93n1L6_siCLbf7b_ZkU1XAWkIbrUsErLg1hKYYw66GRNajDANdew4xKij0BU0fG3TQOkocnGss8QERRZmzho60JHcK3A1Yu3vUwU_diS_TckLuRySPPWwKdJpSvXINZGcO6-YflMmfxrCzrv9KyDr7dz27f_tD92BW41HLbaWW-AurGB5D27-xrN4H75tlYKUXj2eohiNm4Tg0x9n5yPmb5iNhaftlsvBi2JySNOqj6aCHHpx6Hm5OTlczGd6UdUkyQqHBYmZoFiU04JNlagWc1cYFCd4xOMQ3Oq5egCfLmXqD2G1nJX4CESRGKt0mpl-7CLEhM4HMaImkCQqwAx7oNr1z03Dx85tQSZ5xyTNmMkJM7nHTJ704OWvb46XbCQXvr3eAiVvNFOVdyjpwasWat3jf0t7fLG0Z3B9Z__9IB_sDvfW4Ebgkc5ZP-uwWs8X-ASumZN6XM2f-j0j4PNlQ_AnqcdTBg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VghAc-EcECuwBTrBq_FOvfUCookRUraIcIKq4GO_ubBspcdrYKfTGO_A2PA5PwoyzxoBEbz1wtj3atb-dH8_MNwDP0sS4xDojI93XMtbGSPKTUxmFJu1jEFjX_MwZ76vhMD04yEZr8L3theGyylYnNorazg3_I98kMxsGHOwEm86XRYx2Bq-PTyRPkOJMaztOYwWRPTz7TOFb9Wp3h7718zAcvH3_5p30EwakIejVslBkza0lYCecgDMmshhjGunEcbpRx5EraCvapmGg49glic6UCYssypw1FNyR3EtwWVGMyYHfaOtjR_jr21_I_ZDktUe-Yce37ZGbIrmOPmAqTqn-NIqdp_tXcraxeYOb__PbugU3vKcttldH4zasYXkHrv_Gv3gXvmyXgpRhPZmhGE98ofDZj6_fxszrMJ-Ihs5brhYviukhbas-mgly9MVhw9fNReNiMdfLqiZJVjgsSMwUxbKcFWzCRLVcuMKgOMUjXofgEdDVPfhwIVu_D-vlvMQHIAplbKDTzPQTFyMqihsSRE2AUUGIGfYgaLGQG8_TzuNCpnnHMM34yQk_eYOfXPXgxa9njlcsJefevdGCJvcaq8o7xPTgZQu77vK_pT08X9pTuErIy_d3h3uP4FrYgJ6LgTZgvV4s8TFcMaf1pFo8aY6PgE8XjcCfHchb6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+anytime+Visibility%E2%80%93Voronoi+graph-search+algorithm+for+generating+robust+and+feasible+unmanned+surface+vehicle+paths&rft.jtitle=Autonomous+robots&rft.au=Schoener%2C+Marco&rft.au=Coyle%2C+Eric&rft.au=Thompson%2C+David&rft.date=2022-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=46&rft.issue=8&rft.spage=911&rft.epage=927&rft_id=info:doi/10.1007%2Fs10514-022-10056-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon