A Bi-GRU-based encoder–decoder framework for multivariate time series forecasting

Drought forecasting is crucial for minimizing the effects of drought, alerting people to its dangers, and assisting decision-makers in taking preventative action. This article suggests an encoder–decoder framework for multivariate times series (EDFMTS) forecasting. EDFMTS is composed of three layers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Jg. 28; H. 9-10; S. 6775 - 6786
Hauptverfasser: Balti, Hanen, Ben Abbes, Ali, Farah, Imed Riadh
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2024
Springer Nature B.V
Schlagworte:
ISSN:1432-7643, 1433-7479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Drought forecasting is crucial for minimizing the effects of drought, alerting people to its dangers, and assisting decision-makers in taking preventative action. This article suggests an encoder–decoder framework for multivariate times series (EDFMTS) forecasting. EDFMTS is composed of three layers: a temporal attention context layer, a gated recurrent unit (GRU)-based decoder component, and a bidirectional gated recurrent unit (Bi-GRU)-based encoder component. The proposed framework was evaluated using multivariate gathered from various sources in China (remote-sensing sensors, climate sensors, biophysical sensors, and so on). According to experimental results, the proposed framework outperformed the baseline methods in univariate and multivariate times series (TS) forecasting. The correlation coefficient of determination ( R 2 ), root-mean-squared error (RMSE), and the mean absolute error (MAE) were used for the evaluation of the framework performance. The R 2 , RMSE, and MAE are 0.94, 0.20, and 0.13, respectively, for EDFMTS. In contrast, the RMSE provided by autoregressive integrated moving average (ARIMA), PROPHET, long short-term memory (LSTM), GRU and convolutional neural network (CNN)-LSTM are 0.72, 0.92, 0.36, 0.40, and 0.27, respectively.
AbstractList Drought forecasting is crucial for minimizing the effects of drought, alerting people to its dangers, and assisting decision-makers in taking preventative action. This article suggests an encoder–decoder framework for multivariate times series (EDFMTS) forecasting. EDFMTS is composed of three layers: a temporal attention context layer, a gated recurrent unit (GRU)-based decoder component, and a bidirectional gated recurrent unit (Bi-GRU)-based encoder component. The proposed framework was evaluated using multivariate gathered from various sources in China (remote-sensing sensors, climate sensors, biophysical sensors, and so on). According to experimental results, the proposed framework outperformed the baseline methods in univariate and multivariate times series (TS) forecasting. The correlation coefficient of determination ( R 2 ), root-mean-squared error (RMSE), and the mean absolute error (MAE) were used for the evaluation of the framework performance. The R 2 , RMSE, and MAE are 0.94, 0.20, and 0.13, respectively, for EDFMTS. In contrast, the RMSE provided by autoregressive integrated moving average (ARIMA), PROPHET, long short-term memory (LSTM), GRU and convolutional neural network (CNN)-LSTM are 0.72, 0.92, 0.36, 0.40, and 0.27, respectively.
Drought forecasting is crucial for minimizing the effects of drought, alerting people to its dangers, and assisting decision-makers in taking preventative action. This article suggests an encoder–decoder framework for multivariate times series (EDFMTS) forecasting. EDFMTS is composed of three layers: a temporal attention context layer, a gated recurrent unit (GRU)-based decoder component, and a bidirectional gated recurrent unit (Bi-GRU)-based encoder component. The proposed framework was evaluated using multivariate gathered from various sources in China (remote-sensing sensors, climate sensors, biophysical sensors, and so on). According to experimental results, the proposed framework outperformed the baseline methods in univariate and multivariate times series (TS) forecasting. The correlation coefficient of determination (R2), root-mean-squared error (RMSE), and the mean absolute error (MAE) were used for the evaluation of the framework performance. The R2, RMSE, and MAE are 0.94, 0.20, and 0.13, respectively, for EDFMTS. In contrast, the RMSE provided by autoregressive integrated moving average (ARIMA), PROPHET, long short-term memory (LSTM), GRU and convolutional neural network (CNN)-LSTM are 0.72, 0.92, 0.36, 0.40, and 0.27, respectively.
Author Ben Abbes, Ali
Farah, Imed Riadh
Balti, Hanen
Author_xml – sequence: 1
  givenname: Hanen
  orcidid: 0000-0003-2725-226X
  surname: Balti
  fullname: Balti, Hanen
  email: hanen.balti@ensi-uma.tn
  organization: Riadi Laboratory,ENSI, University of Manouba
– sequence: 2
  givenname: Ali
  orcidid: 0000-0001-5714-7562
  surname: Ben Abbes
  fullname: Ben Abbes, Ali
  organization: Riadi Laboratory,ENSI, University of Manouba
– sequence: 3
  givenname: Imed Riadh
  surname: Farah
  fullname: Farah, Imed Riadh
  organization: Riadi Laboratory,ENSI, University of Manouba
BookMark eNp9kM9KAzEQxoNUsFVfwNOC5-hkZ3fTPdbiPygIas8hm52U1Ha3JqnizXfwDX0St60geOhpPpjvN9_wDVivaRti7EzAhQCQlwEgB-CQIocyR8HLA9YXGSKXmSx7W51yWWR4xAYhzAFSIXPss6dRcuX47eOUVzpQnVBj2pr89-dXTVuVWK-X9N76l8S2PlmuF9G9ae90pCS6JSWBvKOwWZLRIbpmdsIOrV4EOv2dx2x6c_08vuOTh9v78WjCDYoyco25tFWlbVHnuiogR2OGaC1qYyXqNKttlVepqQopCIbUmWWhs1yQrYTVgMfsfHd35dvXNYWo5u3aN12kQpCIJRSl6FzpzmV8G4Inq1beLbX_UALUpjy1K0915altearsoOE_yLioo2ub6LVb7Edxh4Yup5mR__tqD_UDyUCH9g
CitedBy_id crossref_primary_10_3390_en18133324
crossref_primary_10_1142_S0219519425400743
crossref_primary_10_1103_PhysRevD_111_024067
crossref_primary_10_1007_s12145_025_01791_3
crossref_primary_10_1007_s11063_025_11791_5
crossref_primary_10_1007_s00607_024_01373_z
crossref_primary_10_1007_s10664_025_10674_6
crossref_primary_10_1109_ACCESS_2024_3443172
crossref_primary_10_1016_j_mex_2024_102800
crossref_primary_10_1109_JIOT_2024_3418993
crossref_primary_10_1007_s11269_024_03785_0
crossref_primary_10_32604_cmc_2024_058374
crossref_primary_10_1088_1742_6596_3007_1_012050
crossref_primary_10_3390_sym17071063
Cites_doi 10.1016/j.asoc.2023.110172
10.3390/w10111543
10.1175/2009JCLI2909.1
10.1016/j.scitotenv.2019.135139
10.3390/app9071345
10.3390/w11050977
10.1007/s00521-021-06505-6
10.1016/j.energy.2019.05.230
10.1007/s11227-022-04386-7
10.3390/a11090132
10.1080/00031305.2017.1380080
10.1016/j.neucom.2019.12.118
10.1016/j.ecoinf.2020.101136
10.1007/s00477-017-1437-5
10.1016/j.jhydrol.2017.12.044
10.1007/s00477-021-02078-x
10.1155/2022/5596676
10.1007/s12517-020-5234-y
10.1016/j.rser.2017.02.085
10.1016/j.engappai.2010.09.007
10.1007/s00703-019-00675-8
10.1007/s12517-020-06140-w
10.1609/aaai.v31i1.10735
10.1109/ICOTEN52080.2021.9493513
10.24963/ijcai.2021/225
10.1109/MWSCAS.2017.8053243
10.1109/ICMLA.2019.00020
10.1007/s11053-019-09512-6
10.1109/CSAIEE54046.2021.9543210
10.1109/YAC.2016.7804912
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00500-023-09531-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: AAdvanced Technologies & Aerospace Database (subscription)
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 6786
ExternalDocumentID 10_1007_s00500_023_09531_9
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-a357fbbaf6d5ab6053cc83ff3acf73a24dfb5b2cb671e08e7fb76a451efb1fa03
IEDL.DBID RSV
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001136826400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 01:55:11 EST 2025
Sat Nov 29 03:36:35 EST 2025
Tue Nov 18 21:24:47 EST 2025
Fri Feb 21 02:40:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9-10
Keywords Deep learning
Encoder–decoder
Multivariate time series
Drought forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a357fbbaf6d5ab6053cc83ff3acf73a24dfb5b2cb671e08e7fb76a451efb1fa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5714-7562
0000-0003-2725-226X
PQID 3073390691
PQPubID 2043697
PageCount 12
ParticipantIDs proquest_journals_3073390691
crossref_primary_10_1007_s00500_023_09531_9
crossref_citationtrail_10_1007_s00500_023_09531_9
springer_journals_10_1007_s00500_023_09531_9
PublicationCentury 2000
PublicationDate 20240500
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Rhif, Ben Abbes, Martinez (CR20) 2020
Xu, Chen, Zhang (CR26) 2018; 557
Balti, Ben Abbes, Mellouli (CR2) 2020
CR16
Tak-chung (CR22) 2011; 24
CR12
CR10
Zhang, Li, Chen (CR30) 2017; 31
CR32
CR31
Docheshmeh Gorgij, Alizamir, Kisi (CR7) 2022; 34
Rhif, Abbes, Farah (CR19) 2019
Chen, Huang, Jin (CR4) 2012; 5
Taylor, Letham (CR23) 2018; 72
CR3
CR6
Du, Liu, Liu (CR8) 2018
Miao, Pan, Wang (CR18) 2019
Li, Chen, Wu (CR17) 2020; 132
CR29
CR25
Deb, Zhang, Yang (CR5) 2017; 74
Du, Li, Yang (CR9) 2020; 388
Rhif, Abbes, Martínez (CR21) 2023; 137
Jasim, Awchi (CR14) 2020
Zhang, Li, Chen (CR28) 2022
Hu, Liu, Hao (CR13) 2022; 78
Ahmed, Deo, Feng (CR1) 2022; 36
Hu, Wu, Li (CR11) 2018
Kim, Cho (CR15) 2019; 182
Vicente-Serrano, Beguería, López-Moreno (CR24) 2010; 23
Yang, Mou, Meng (CR27) 2020
A Docheshmeh Gorgij (9531_CR7) 2022; 34
9531_CR31
9531_CR10
Z Li (9531_CR17) 2020; 132
9531_CR32
9531_CR12
X Hu (9531_CR13) 2022; 78
9531_CR16
AI Jasim (9531_CR14) 2020
SJ Taylor (9531_CR23) 2018; 72
9531_CR6
M Rhif (9531_CR21) 2023; 137
H Balti (9531_CR2) 2020
AA Ahmed (9531_CR1) 2022; 36
TY Kim (9531_CR15) 2019; 182
F Tak-chung (9531_CR22) 2011; 24
J Chen (9531_CR4) 2012; 5
M Yang (9531_CR27) 2020
H Zhang (9531_CR28) 2022
Y Zhang (9531_CR30) 2017; 31
9531_CR25
L Xu (9531_CR26) 2018; 557
9531_CR29
9531_CR3
J Du (9531_CR8) 2018
M Rhif (9531_CR19) 2019
M Rhif (9531_CR20) 2020
SM Vicente-Serrano (9531_CR24) 2010; 23
S Du (9531_CR9) 2020; 388
C Deb (9531_CR5) 2017; 74
Q Miao (9531_CR18) 2019
C Hu (9531_CR11) 2018
References_xml – volume: 137
  start-page: 172
  issue: 110
  year: 2023
  ident: CR21
  article-title: Veg-W2TCN: a parallel hybrid forecasting framework for non-stationary time series using wavelet and temporal convolution network model
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110172
– year: 2018
  ident: CR11
  article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation
  publication-title: Water
  doi: 10.3390/w10111543
– volume: 23
  start-page: 1696
  issue: 7
  year: 2010
  end-page: 1718
  ident: CR24
  article-title: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index
  publication-title: J Clim
  doi: 10.1175/2009JCLI2909.1
– year: 2020
  ident: CR27
  article-title: Modeling the effects of precipitation and temperature patterns on agricultural drought in China from 1949 to 2015
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135139
– year: 2019
  ident: CR19
  article-title: Wavelet transform application for/in non-stationary time-series analysis: a review
  publication-title: Appl Sci
  doi: 10.3390/app9071345
– year: 2019
  ident: CR18
  article-title: Improving monsoon precipitation prediction using combined convolutional and long short term memory neural network
  publication-title: Water
  doi: 10.3390/w11050977
– volume: 5
  start-page: 1260
  issue: 4
  year: 2012
  end-page: 1268
  ident: CR4
  article-title: SPI-based drought characteristics analysis and prediction for Xiqiao Station in Yunnan Province, China
  publication-title: Disaster Adv
– ident: CR16
– volume: 34
  start-page: 2425
  issue: 3
  year: 2022
  end-page: 2442
  ident: CR7
  article-title: Drought modelling by standard precipitation index (SPI) in a semi-arid climate using deep learning method: long short-term memory
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06505-6
– ident: CR12
– volume: 182
  start-page: 72
  year: 2019
  end-page: 81
  ident: CR15
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– ident: CR10
– ident: CR6
– volume: 78
  start-page: 12686
  issue: 10
  year: 2022
  end-page: 12709
  ident: CR13
  article-title: Attention-based conv-LSTM and Bi-LSTM networks for large-scale traffic speed prediction
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04386-7
– ident: CR29
– year: 2018
  ident: CR8
  article-title: Study of precipitation forecast based on deep belief networks
  publication-title: Algorithms
  doi: 10.3390/a11090132
– volume: 72
  start-page: 37
  issue: 1
  year: 2018
  end-page: 45
  ident: CR23
  article-title: Forecasting at scale
  publication-title: Am Stat
  doi: 10.1080/00031305.2017.1380080
– ident: CR25
– volume: 388
  start-page: 269
  year: 2020
  end-page: 279
  ident: CR9
  article-title: Multivariate time series forecasting via attention-based encoder–decoder framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.118
– year: 2020
  ident: CR2
  article-title: A review of drought monitoring with big data: issues, methods, challenges and research directions
  publication-title: Ecol Inform
  doi: 10.1016/j.ecoinf.2020.101136
– volume: 31
  start-page: 2471
  issue: 10
  year: 2017
  end-page: 2481
  ident: CR30
  article-title: Multi-models for SPI drought forecasting in the north of Haihe River Basin, China
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-017-1437-5
– ident: CR3
– volume: 557
  start-page: 378
  year: 2018
  end-page: 390
  ident: CR26
  article-title: A comparison of large-scale climate signals and the North American Multi-Model Ensemble (NMME) for drought prediction in China
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.12.044
– volume: 36
  start-page: 831
  issue: 3
  year: 2022
  end-page: 849
  ident: CR1
  article-title: Hybrid deep learning method for a week-ahead evapotranspiration forecasting
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-021-02078-x
– ident: CR31
– ident: CR32
– year: 2022
  ident: CR28
  article-title: A novel encoder–decoder model for multivariate time series forecasting
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/5596676
– year: 2020
  ident: CR14
  article-title: Regional meteorological drought assessment in Iraq
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-5234-y
– volume: 74
  start-page: 902
  year: 2017
  end-page: 924
  ident: CR5
  article-title: A review on time series forecasting techniques for building energy consumption
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.02.085
– volume: 24
  start-page: 164
  issue: 1
  year: 2011
  end-page: 181
  ident: CR22
  article-title: A review on time series data mining
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.09.007
– volume: 132
  start-page: 113
  issue: 1
  year: 2020
  end-page: 130
  ident: CR17
  article-title: Application of penalized linear regression and ensemble methods for drought forecasting in Northeast China
  publication-title: Meteorol Atmos Phys
  doi: 10.1007/s00703-019-00675-8
– year: 2020
  ident: CR20
  article-title: A deep learning approach for forecasting non-stationary big remote sensing time series
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-06140-w
– year: 2019
  ident: 9531_CR18
  publication-title: Water
  doi: 10.3390/w11050977
– ident: 9531_CR29
  doi: 10.1609/aaai.v31i1.10735
– volume: 557
  start-page: 378
  year: 2018
  ident: 9531_CR26
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.12.044
– volume: 34
  start-page: 2425
  issue: 3
  year: 2022
  ident: 9531_CR7
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06505-6
– volume: 5
  start-page: 1260
  issue: 4
  year: 2012
  ident: 9531_CR4
  publication-title: Disaster Adv
– volume: 74
  start-page: 902
  year: 2017
  ident: 9531_CR5
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.02.085
– year: 2020
  ident: 9531_CR2
  publication-title: Ecol Inform
  doi: 10.1016/j.ecoinf.2020.101136
– year: 2020
  ident: 9531_CR27
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135139
– year: 2022
  ident: 9531_CR28
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/5596676
– ident: 9531_CR3
  doi: 10.1109/ICOTEN52080.2021.9493513
– ident: 9531_CR25
  doi: 10.24963/ijcai.2021/225
– volume: 24
  start-page: 164
  issue: 1
  year: 2011
  ident: 9531_CR22
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.09.007
– ident: 9531_CR6
  doi: 10.1109/MWSCAS.2017.8053243
– ident: 9531_CR12
  doi: 10.1109/ICMLA.2019.00020
– year: 2020
  ident: 9531_CR20
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-06140-w
– volume: 388
  start-page: 269
  year: 2020
  ident: 9531_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.118
– volume: 23
  start-page: 1696
  issue: 7
  year: 2010
  ident: 9531_CR24
  publication-title: J Clim
  doi: 10.1175/2009JCLI2909.1
– year: 2020
  ident: 9531_CR14
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-020-5234-y
– volume: 36
  start-page: 831
  issue: 3
  year: 2022
  ident: 9531_CR1
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-021-02078-x
– ident: 9531_CR32
– volume: 182
  start-page: 72
  year: 2019
  ident: 9531_CR15
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– ident: 9531_CR31
  doi: 10.1007/s11053-019-09512-6
– year: 2018
  ident: 9531_CR8
  publication-title: Algorithms
  doi: 10.3390/a11090132
– volume: 78
  start-page: 12686
  issue: 10
  year: 2022
  ident: 9531_CR13
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04386-7
– volume: 137
  start-page: 172
  issue: 110
  year: 2023
  ident: 9531_CR21
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.110172
– ident: 9531_CR16
  doi: 10.1109/CSAIEE54046.2021.9543210
– year: 2019
  ident: 9531_CR19
  publication-title: Appl Sci
  doi: 10.3390/app9071345
– ident: 9531_CR10
  doi: 10.1109/YAC.2016.7804912
– volume: 132
  start-page: 113
  issue: 1
  year: 2020
  ident: 9531_CR17
  publication-title: Meteorol Atmos Phys
  doi: 10.1007/s00703-019-00675-8
– volume: 72
  start-page: 37
  issue: 1
  year: 2018
  ident: 9531_CR23
  publication-title: Am Stat
  doi: 10.1080/00031305.2017.1380080
– year: 2018
  ident: 9531_CR11
  publication-title: Water
  doi: 10.3390/w10111543
– volume: 31
  start-page: 2471
  issue: 10
  year: 2017
  ident: 9531_CR30
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-017-1437-5
SSID ssj0021753
Score 2.4487064
Snippet Drought forecasting is crucial for minimizing the effects of drought, alerting people to its dangers, and assisting decision-makers in taking preventative...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6775
SubjectTerms Accuracy
Application of Soft Computing
Artificial Intelligence
Artificial neural networks
Autoregressive models
Big Data
Climate change
Coders
Computational Intelligence
Control
Correlation coefficients
Datasets
Deep learning
Drought
Engineering
Forecasting
Forecasting techniques
General circulation models
Mathematical Logic and Foundations
Mechatronics
Multivariate analysis
Neural networks
Optimization
Precipitation
Rain
Remote sensing
Remote sensors
Robotics
Root-mean-square errors
Sensors
Support vector machines
Time series
Variables
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aPXixPrFaJQdvGuy-d09SxepBSlErxcuSJxSkrd3as__Bf-gvcSbNtijYi7eFZMOy32Qeycw3hJyGvhQ6SjxmwtBnYRYKxrHYJ_E1Hjl4SWx5tp_vk3Y77fWyjjtwK1xaZakTraJWQ4ln5BcoixCfx5l3OXpj2DUKb1ddC41VsoYsCdi6oRO9zAMux0IJLgF4kWB6XdGMLZ1D4pMGA4vFkHHNY9lPw7TwNn9dkFq706r-94u3yKbzOGlzJiLbZEUPdki17OZA3ebeJY9NetVntw9dhpZNUWS4VHr89fGptH2ipkzkouDpUpuKOIVQG7xVii3qKUqzLnBQS15gPvUe6bZunq7vmGu5wCTsxQnjQZQYIbiJVcQFhDqBlGlgTMClSQLuh8qISAC-ceLpRqphchLzMPK0EZ7hjWCfVAbDgT4gFHQtV34gMm54KFOVZhLUS6wgIOe-rxs14pX_O5eOjxzbYrzmcyZli1EOGOUWozyrkbP5O6MZG8fS2fUSmNztzCJfoFIj5yW0i-G_VztcvtoR2fDB35nlQtZJZTJ-18dkXU4n_WJ8YuXyG0K-6ME
  priority: 102
  providerName: ProQuest
Title A Bi-GRU-based encoder–decoder framework for multivariate time series forecasting
URI https://link.springer.com/article/10.1007/s00500-023-09531-9
https://www.proquest.com/docview/3073390691
Volume 28
WOSCitedRecordID wos001136826400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSgMxEB60etCD1apYrSUHbxrY_-weW2kVlFJaK-JlSbIJFKRKt_bsO_iGPomT7e5WRQW9LAvJhmWSzHyTzHwDcOI5Uiif2VR7nkO9yBOUm2Qf5ihz5GCzIOPZvr1mvV54dxf186SwtIh2L64kM01dJrsZqhKLoo2hhiPNptEqrKG5C03BhsHwtnSzcu5JBAKIHdHg5qky34_x2RwtMeaXa9HM2nSr__vPbdjK0SVpLZbDDqyoSQ2qReUGkm_kGmx-oCHchWGLtMf0YjCixqYlxHBbJmr69vKaqOyN6CKEiyDGJVkQ4hydbMSpxBSnJ2Ydq9Q0KslTE0m9B6Nu5-b8kubFFqjEXTij3PWZFoLrIPG5QCfHlTJ0tXa51Mzljpdo4Quc2YDZygoVdmYB93xbaWFrbrn7UJk8TtQBENSyPHFcEXHNPRkmYSRRsQQJuuLccZRVB7uQeSxzJnJTEOMhLjmUMxnGKMM4k2Ec1eG0_OZpwcPxa-9GMZVxvifT2GgzN7KCyK7DWTF1y-afRzv8W_cj2HAQ-SyiIhtQmU2f1TGsy_lsnE6bsNbu9PqDJqxeMYrPvn_fzNbvOz0a5ok
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qLRJs-gCqTmmLF2UFFonjxMkCodK3ZhghaFF3qZ_SSDAtk9CqO_6B_-hH9Uu49iQzKhLdddFdJD8kx-c-bN97LsAmZ1rZVMTUcc4oL7ii0if7CGb9lUMsssCz_a0n-v385KT4PAPXbS6MD6tsdWJQ1OZM-zvydx6LeD7PivjD-U_qq0b519W2hMYYFl17dYlHtur94Q7u72vG9naPtg9oU1WAaoRbTWWSCqeUdJlJpUJvPtE6T5xLpHYikYwbp1KFS8hEbKPcYmeRSZ7G1qnYySjBeR_BHE9y4eWqK-jkgNewXqILgl4rmvomSSek6nmilYiihaSe4S2mxW1DOPVu_3mQDXZub-Gh_aFFmG88arI1FoElmLHDZ7DQVqsgjfJ6Dl-3yMcB3f9yTL3lNsQzeBo7uvn9x9jwRVwbqEbQkych1PJCooDWltSDH5Z4abWVb7RaVj5e_AUc38vSlmF2eDa0K0DQlkjDElVIJ7nOTV5oVJ-ZiXgmGbNRB-J2f0vd8K37sh_fywlTdMBEiZgoAybKogNvJmPOx2wjd_Zea4FQNpqnKqco6MDbFkrT5v_Ptnr3bK_gycHRp17ZO-x3X8JThr7dOO5zDWbr0S-7Do_1RT2oRhtBJgic3jfE_gI5jknz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4oGqMHUdSIovbgTRv20X0d8YEaCSEihNumz4TEIIGVs__Bf-gvsV12AY2aGG-btNtsZqadb7Yz3wCcEocz6QU2VoQ4mESEYWqKfQJHml8OduCnPNvdRtBshr1e1Fqo4k-z3fMryWlNg2FpGiTVoVDVWeGboS2xsPY32PCl2ThahhViEulNvN7uzkKujIdSgwKNI7Xzzcpmvl_js2ua480vV6Sp56kX___NW7CZoU5Um5rJNizJQQmKeUcHlG3wEmws0BPuQLuGLvr45qGDja8TyHBeCjl6f30TMn1CKk_tQhr7ojQ5caKDb41fkWlaj4x9y7EZlJyOTYb1LnTq14-XtzhrwoC53p0Jpq4XKMao8oVHmQ5-XM5DVymXchW41CFCMY9pjfuBLa1Q6smBT4lnS8VsRS13DwqD54HcB6RPXyocl0VUUcJDEUZcHzi-0CE6dRxplcHO5R_zjKHcNMp4imfcyqkMYy3DOJVhHJXhbPbOcMrP8evsSq7WONur49iccm5k-ZFdhvNcjfPhn1c7-Nv0E1hrXdXjxl3z_hDWHQ2OpomTFSgkoxd5BKt8kvTHo-PUhD8A_lju5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bi-GRU-based+encoder%E2%80%93decoder+framework+for+multivariate+time+series+forecasting&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Balti%2C+Hanen&rft.au=Ben+Abbes%2C+Ali&rft.au=Farah%2C+Imed+Riadh&rft.date=2024-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=28&rft.issue=9-10&rft.spage=6775&rft.epage=6786&rft_id=info:doi/10.1007%2Fs00500-023-09531-9&rft.externalDocID=10_1007_s00500_023_09531_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon