Approximation guarantees for parallelized maximization of monotone non-submodular function with a cardinality constraint

Emerging applications in machine learning have imposed the problem of monotone non-submodular maximization subject to a cardinality constraint. Meanwhile, parallelism is prevalent for large-scale optimization problems in bigdata scenario while adaptive complexity is an important measurement of paral...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization Jg. 43; H. 5; S. 1671 - 1690
Hauptverfasser: Cui, Min, Xu, Dachuan, Guo, Longkun, Wu, Dan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2022
Springer Nature B.V
Schlagworte:
ISSN:1382-6905, 1573-2886
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Emerging applications in machine learning have imposed the problem of monotone non-submodular maximization subject to a cardinality constraint. Meanwhile, parallelism is prevalent for large-scale optimization problems in bigdata scenario while adaptive complexity is an important measurement of parallelism since it quantifies the number of sequential rounds by which the multiple independent functions can be evaluated in parallel. For a monotone non-submodular function and a cardinality constraint, this paper devises an adaptive algorithm for maximizing the function value with the cardinality constraint through employing the generic submodularity ratio γ to connect the monotone set function with submodularity. The algorithm achieves an approximation ratio of 1 - e - γ 2 - ε and consumes O ( log ( n / η ) / ε 2 ) adaptive rounds and O ( n log log ( k ) / ε 3 ) oracle queries in expectation. Furthermore, when γ = 1 , the algorithm achieves an approximation guarantee 1 - 1 / e - ε , achieving the same ratio as the state-of-art result for the submodular version of the problem.
AbstractList Emerging applications in machine learning have imposed the problem of monotone non-submodular maximization subject to a cardinality constraint. Meanwhile, parallelism is prevalent for large-scale optimization problems in bigdata scenario while adaptive complexity is an important measurement of parallelism since it quantifies the number of sequential rounds by which the multiple independent functions can be evaluated in parallel. For a monotone non-submodular function and a cardinality constraint, this paper devises an adaptive algorithm for maximizing the function value with the cardinality constraint through employing the generic submodularity ratio γ to connect the monotone set function with submodularity. The algorithm achieves an approximation ratio of 1-e-γ2-ε and consumes O(log(n/η)/ε2) adaptive rounds and O(nloglog(k)/ε3) oracle queries in expectation. Furthermore, when γ=1, the algorithm achieves an approximation guarantee 1-1/e-ε, achieving the same ratio as the state-of-art result for the submodular version of the problem.
Emerging applications in machine learning have imposed the problem of monotone non-submodular maximization subject to a cardinality constraint. Meanwhile, parallelism is prevalent for large-scale optimization problems in bigdata scenario while adaptive complexity is an important measurement of parallelism since it quantifies the number of sequential rounds by which the multiple independent functions can be evaluated in parallel. For a monotone non-submodular function and a cardinality constraint, this paper devises an adaptive algorithm for maximizing the function value with the cardinality constraint through employing the generic submodularity ratio γ to connect the monotone set function with submodularity. The algorithm achieves an approximation ratio of 1 - e - γ 2 - ε and consumes O ( log ( n / η ) / ε 2 ) adaptive rounds and O ( n log log ( k ) / ε 3 ) oracle queries in expectation. Furthermore, when γ = 1 , the algorithm achieves an approximation guarantee 1 - 1 / e - ε , achieving the same ratio as the state-of-art result for the submodular version of the problem.
Author Guo, Longkun
Cui, Min
Xu, Dachuan
Wu, Dan
Author_xml – sequence: 1
  givenname: Min
  surname: Cui
  fullname: Cui, Min
  organization: Department of Operations Research and Information Engineering, Beijing University of Technology
– sequence: 2
  givenname: Dachuan
  surname: Xu
  fullname: Xu, Dachuan
  organization: Department of Operations Research and Information Engineering, Beijing University of Technology
– sequence: 3
  givenname: Longkun
  orcidid: 0000-0003-2891-4253
  surname: Guo
  fullname: Guo, Longkun
  email: longkun.guo@gmail.com
  organization: Shandong Key Laboratory of Computer Networks, School of Computer Science and Technology, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 4
  givenname: Dan
  surname: Wu
  fullname: Wu, Dan
  organization: School of Mathematics and Statistics, Henan University of Science and Technology
BookMark eNp9kM1qwzAQhEVJoUnaF-hJ0LNaSbZl-RhC_yDQS3sWsi2nCrbkSjJN_PRV4kKhh5x2F2Z2Z78FmBlrFAC3BN8TjPMHTzDPOcKUoDiSAo0XYE6yPEGUczaLfcIpYgXOrsDC-x3GOPbpHOxXfe_sXncyaGvgdpBOmqCUh411sI9T26pWj6qGnYwyPU5C28DOGhtiDBizID-Una2HVjrYDKY6ab51-IQSVtLV2shWhwOsrPHBSW3CNbhsZOvVzW9dgo-nx_f1C9q8Pb-uVxtUJaQISFIu0yyry5rKPK8Zw6qgjHCaEqxoVhS0VKpIc9WUKSaE0EzJPOVNnlLGGqaSJbib9sY3vwblg9jZwcU4XlDGC5JllPCoopOqctZ7pxrRu8jEHQTB4khYTIRFJCxOhMUYTfyfqdLhhOf4YnvemkxWH--YrXJ_qc64fgC3dJYJ
CitedBy_id crossref_primary_10_1007_s10878_025_01267_6
crossref_primary_10_1016_j_tcs_2024_114409
Cites_doi 10.1007/978-3-030-27195-4_23
10.1137/1.9781611975482.19
10.1145/3313276.3316389
10.4086/toc.2015.v011a004
10.1609/aaai.v35i9.16998
10.1109/FOCS.2018.00019
10.1016/j.patrec.2010.08.008
10.1145/3357713.3384287
10.1137/130929205
10.1137/1.9781611975482.17
10.1287/moor.3.3.177
10.1609/aaai.v32i1.11650
10.1016/j.tcs.2020.11.007
10.1007/BF01588971
10.1145/3188745.3188752
10.1145/3313276.3316406
10.1145/2746539.2746624
10.1137/090779346
10.1214/aoms/1177729330
10.1109/ICDE.2017.137
10.1007/s10898-019-00800-2
10.1137/1.9781611975482.18
10.1002/0471722154
10.1137/1.9781611975482.21
10.1137/1.9781611975482.20
10.1007/978-3-030-26176-4_54
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
DOI 10.1007/s10878-021-00719-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
EndPage 1690
ExternalDocumentID 10_1007_s10878_021_00719_z
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province
  grantid: 2017J01753
  funderid: http://dx.doi.org/10.13039/501100003392
– fundername: Outstanding Youth Innovation Team Project for Universities of Shandong Province
  grantid: 2020KJN008
– fundername: National Natural Science Foundation of China
  grantid: 11701150; 61772005
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11531014; 11871081
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c319t-a28a455dbd2a77d660e926182410e25992bee947efb4011125ea748f74266f6e3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000629293800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Thu Sep 18 00:04:24 EDT 2025
Tue Nov 18 21:05:52 EST 2025
Sat Nov 29 04:54:35 EST 2025
Fri Feb 21 02:45:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Non-submodular optimization
Submodularity ratio
Parallel algorithm
Cardinality constraint
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a28a455dbd2a77d660e926182410e25992bee947efb4011125ea748f74266f6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2891-4253
PQID 2689155218
PQPubID 2043856
PageCount 20
ParticipantIDs proquest_journals_2689155218
crossref_primary_10_1007_s10878_021_00719_z
crossref_citationtrail_10_1007_s10878_021_00719_z
springer_journals_10_1007_s10878_021_00719_z
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References AttigeriGManoharaPMMRadhikaMPFeature selection using submodular approach for financial big dataJ Inf Process Syst201915613061325
Chekuri C, Quanrud K (2019b) Parallelizing greedy for submodular set function maximization in matroids and beyond. In: Proceedings of the 51st annual ACM SIGACT symposium on theory of computing, pp 78–89
Ene A, Nguyn HL (2020) Parallel algorithm for non-monotone DR-submodular maximization. In: Proceedings of the 37th international conference on machine learning, pp 2902–2911
Lin Y, Chen W, Lui JC (2017) Boosting information spread: an algorithmic approach. In: Proceedings of the international conference on data engineering, pp 883–894
Agarwal A, Assadi S, Khanna S (2019) Stochastic submodular cover with limited adaptivity. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, pp 323–342
Balkanski E, Singer Y (2018) The adaptive complexity of maximizing a submodular function. In: Proceedings of the 50th annual ACM SIGACT symposium on theory of computing, pp 1138–1151
Pan X, Jegelka S, Gonzalez JE, Bradley JK, Jordan MI (2014) Parallel double greedy submodular maximization. In: Proceedings of the 27th international conference on neural information processing systems, vol 1, pp 118–126
ChernoffHA measure of asymptotic efficiency for tests of a hypothesis based on the sum of observationsAnn Math Stat19522344935075751810.1214/aoms/1177729330
Mirrokni V, Zadimoghaddam M (2015) Randomized composable core-sets for distributed submodular maximization. In: Proceedings of the 47th annual ACM symposium on theory of computing, pp 153–162
Ene A, Nguyn HL, Vladu A (2019) Submodular maximization with matroid and packing constraints in parallel. In: Proceedings of the 51st annual ACM SIGACT symposium on theory of computing, pp 90–101
Nong Q, Sun T, Gong S, Fang Q, Du D, Shao X (2019) Maximize a monotone function with a generic submodularity ratio. In: Proceedings of the international proceedings on algorithmic applications in management, pp 249–260
TangSBeyond pointwise submodularity: non-monotone adaptive submodular maximization in linear timeTheor Comput Sci2021850249261418303510.1016/j.tcs.2020.11.007
KempeDKleinbergJTardosEMaximizing the spread of influence through a social networkTheory Comput2015111105147333984710.4086/toc.2015.v011a004
NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath Oper Res19783317718850665610.1287/moor.3.3.177
BuchbinderNFeldmanMNaorJSchwartzRA tight linear time (1/2)-approximation for unconstrained submodular maximizationSIAM J Comput201544513841402341614010.1137/130929205
Balkanski E, Singer Y (2020) A lower bound for parallel submodular minimization. In: Proceedings of the 52nd annual ACM SIGACT symposium on theory of computing, pp 130–139
GolovinDKrauseAAdaptive submodularity: theory and applications in active learning and stochastic optimizationJ Artif Intell Res201042142748628748071230.90141
Kuhnle A (2021) Nearly linear-time, parallelizable algorithms for non-monotone submodular maximization. In: Proceedings of the 35th AAAI conference on artificial intelligence
Zhang Z, Liu B, Wang Y, Xu D, Zhang D (2019) Greedy algorithm for maximization of non-submodular functions subject to knapsack constraint. In: Proceedings of the international proceedings on computing and combinatorics conference, pp 651–662
Breuer A, Balkanski E, Singer Y (2020) The FAST algorithm for submodular maximization. In: Proceedings of the 37th international conference on machine learning, pp 1134–1143
Chekuri C, Quanrud K (2019a) Submodular function maximization in parallel via the multilinear relaxation. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, pp 303–322
FeigeUMirrokniVVondrakJMaximizing non-monotone submodular functionsSIAM J Comput201140411331153282531210.1137/090779346
NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions IMath Program197814126529450386610.1007/BF01588971
Fahrbach M, Miller GL, Peng R, Sawlani S, Wang J, Xu SC (2018) Graph sketching against adaptive adversaries applied to the minimum degree algorithm. In: Proceedings of the 59th annual symposium on foundations of computer science, pp 101–112
KawaharaYNaganoKOkamotoYSubmodular fractional programming for balanced clusteringPattern Recogn Lett201142223524310.1016/j.patrec.2010.08.008
AlonNSpencerJThe probabilistic method2000New YorkWiley10.1002/0471722154
Kuhnle A, Smith J, Crawford VG, Thai MT (2018) Fast maximization of non-submodular, monotonic functions on the integer lattice. In: Proceedings of the 35th international proceedings on international conference on machine learning, pp 2786–2795
Lin H, Bilmes JA (2011) A class of submodular functions for document summarization. In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies, vol 1, pp 510–520
Balkanski E, Rubinstein A, Singer Y (2019) An exponential speedup in parallel running time for submodular maximization without loss in approximation. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, pp 283–302
Bian AA, Buhmann JM, Krause A, Tschiatschek S (2017) Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of the 34th international proceedings on international conference on machine learning, vol 70, pp 498–507
Fahrbach M, Mirrokni V, Zadimoghaddam M (2019) Submodular maximization with nearly optimal approximation, adaptivity and query complexity. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, pp 255–273
Parambath SA, Chawla S, Vijayakumar N (2018) SAGA: a submodular greedy algorithm for group recommendation. In: Proceedings of international conference on international conference on artificial intelligence, pp 3900–3908
Ene A, Nguyen HL (2019) Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, pp 274–282
GongSNongQLiuWFangQParametric monotone function maximization with matroid constraintsJ Global Optim2019753833849401996910.1007/s10898-019-00800-2
Wei K, Iyer R, Bilmes JA (2015) Submodularity in data subset selection and active learning. In: Proceedings of the 32nd international conference on international conference on machine learning, vol 37, pp 1954–1963
719_CR23
719_CR24
719_CR25
719_CR26
719_CR27
D Kempe (719_CR22) 2015; 11
GL Nemhauser (719_CR28) 1978; 14
S Tang (719_CR33) 2021; 850
S Gong (719_CR20) 2019; 75
G Attigeri (719_CR3) 2019; 15
U Feige (719_CR18) 2011; 40
719_CR34
719_CR1
719_CR13
719_CR35
719_CR14
719_CR15
719_CR6
719_CR16
GL Nemhauser (719_CR29) 1978; 3
719_CR5
719_CR17
719_CR4
N Alon (719_CR2) 2000
D Golovin (719_CR19) 2010; 42
Y Kawahara (719_CR21) 2011; 42
719_CR8
719_CR7
N Buchbinder (719_CR9) 2015; 44
H Chernoff (719_CR12) 1952; 23
719_CR30
719_CR31
719_CR10
719_CR32
719_CR11
References_xml – reference: Fahrbach M, Miller GL, Peng R, Sawlani S, Wang J, Xu SC (2018) Graph sketching against adaptive adversaries applied to the minimum degree algorithm. In: Proceedings of the 59th annual symposium on foundations of computer science, pp 101–112
– reference: Zhang Z, Liu B, Wang Y, Xu D, Zhang D (2019) Greedy algorithm for maximization of non-submodular functions subject to knapsack constraint. In: Proceedings of the international proceedings on computing and combinatorics conference, pp 651–662
– reference: Fahrbach M, Mirrokni V, Zadimoghaddam M (2019) Submodular maximization with nearly optimal approximation, adaptivity and query complexity. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, pp 255–273
– reference: NemhauserGLWolseyLAFisherMLAn analysis of approximations for maximizing submodular set functions IMath Program197814126529450386610.1007/BF01588971
– reference: Wei K, Iyer R, Bilmes JA (2015) Submodularity in data subset selection and active learning. In: Proceedings of the 32nd international conference on international conference on machine learning, vol 37, pp 1954–1963
– reference: Kuhnle A, Smith J, Crawford VG, Thai MT (2018) Fast maximization of non-submodular, monotonic functions on the integer lattice. In: Proceedings of the 35th international proceedings on international conference on machine learning, pp 2786–2795
– reference: Ene A, Nguyen HL (2019) Submodular maximization with nearly-optimal approximation and adaptivity in nearly-linear time. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, pp 274–282
– reference: Ene A, Nguyn HL (2020) Parallel algorithm for non-monotone DR-submodular maximization. In: Proceedings of the 37th international conference on machine learning, pp 2902–2911
– reference: GongSNongQLiuWFangQParametric monotone function maximization with matroid constraintsJ Global Optim2019753833849401996910.1007/s10898-019-00800-2
– reference: Balkanski E, Rubinstein A, Singer Y (2019) An exponential speedup in parallel running time for submodular maximization without loss in approximation. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, pp 283–302
– reference: Breuer A, Balkanski E, Singer Y (2020) The FAST algorithm for submodular maximization. In: Proceedings of the 37th international conference on machine learning, pp 1134–1143
– reference: Mirrokni V, Zadimoghaddam M (2015) Randomized composable core-sets for distributed submodular maximization. In: Proceedings of the 47th annual ACM symposium on theory of computing, pp 153–162
– reference: Lin H, Bilmes JA (2011) A class of submodular functions for document summarization. In: Proceedings of the 49th annual meeting of the association for computational linguistics: human language technologies, vol 1, pp 510–520
– reference: Parambath SA, Chawla S, Vijayakumar N (2018) SAGA: a submodular greedy algorithm for group recommendation. In: Proceedings of international conference on international conference on artificial intelligence, pp 3900–3908
– reference: Agarwal A, Assadi S, Khanna S (2019) Stochastic submodular cover with limited adaptivity. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, pp 323–342
– reference: Bian AA, Buhmann JM, Krause A, Tschiatschek S (2017) Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of the 34th international proceedings on international conference on machine learning, vol 70, pp 498–507
– reference: Ene A, Nguyn HL, Vladu A (2019) Submodular maximization with matroid and packing constraints in parallel. In: Proceedings of the 51st annual ACM SIGACT symposium on theory of computing, pp 90–101
– reference: GolovinDKrauseAAdaptive submodularity: theory and applications in active learning and stochastic optimizationJ Artif Intell Res201042142748628748071230.90141
– reference: AttigeriGManoharaPMMRadhikaMPFeature selection using submodular approach for financial big dataJ Inf Process Syst201915613061325
– reference: KawaharaYNaganoKOkamotoYSubmodular fractional programming for balanced clusteringPattern Recogn Lett201142223524310.1016/j.patrec.2010.08.008
– reference: FeigeUMirrokniVVondrakJMaximizing non-monotone submodular functionsSIAM J Comput201140411331153282531210.1137/090779346
– reference: AlonNSpencerJThe probabilistic method2000New YorkWiley10.1002/0471722154
– reference: Chekuri C, Quanrud K (2019b) Parallelizing greedy for submodular set function maximization in matroids and beyond. In: Proceedings of the 51st annual ACM SIGACT symposium on theory of computing, pp 78–89
– reference: Balkanski E, Singer Y (2020) A lower bound for parallel submodular minimization. In: Proceedings of the 52nd annual ACM SIGACT symposium on theory of computing, pp 130–139
– reference: Chekuri C, Quanrud K (2019a) Submodular function maximization in parallel via the multilinear relaxation. In: Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, pp 303–322
– reference: NemhauserGLWolseyLABest algorithms for approximating the maximum of a submodular set functionMath Oper Res19783317718850665610.1287/moor.3.3.177
– reference: Lin Y, Chen W, Lui JC (2017) Boosting information spread: an algorithmic approach. In: Proceedings of the international conference on data engineering, pp 883–894
– reference: KempeDKleinbergJTardosEMaximizing the spread of influence through a social networkTheory Comput2015111105147333984710.4086/toc.2015.v011a004
– reference: Balkanski E, Singer Y (2018) The adaptive complexity of maximizing a submodular function. In: Proceedings of the 50th annual ACM SIGACT symposium on theory of computing, pp 1138–1151
– reference: ChernoffHA measure of asymptotic efficiency for tests of a hypothesis based on the sum of observationsAnn Math Stat19522344935075751810.1214/aoms/1177729330
– reference: Pan X, Jegelka S, Gonzalez JE, Bradley JK, Jordan MI (2014) Parallel double greedy submodular maximization. In: Proceedings of the 27th international conference on neural information processing systems, vol 1, pp 118–126
– reference: TangSBeyond pointwise submodularity: non-monotone adaptive submodular maximization in linear timeTheor Comput Sci2021850249261418303510.1016/j.tcs.2020.11.007
– reference: Kuhnle A (2021) Nearly linear-time, parallelizable algorithms for non-monotone submodular maximization. In: Proceedings of the 35th AAAI conference on artificial intelligence
– reference: BuchbinderNFeldmanMNaorJSchwartzRA tight linear time (1/2)-approximation for unconstrained submodular maximizationSIAM J Comput201544513841402341614010.1137/130929205
– reference: Nong Q, Sun T, Gong S, Fang Q, Du D, Shao X (2019) Maximize a monotone function with a generic submodularity ratio. In: Proceedings of the international proceedings on algorithmic applications in management, pp 249–260
– ident: 719_CR30
  doi: 10.1007/978-3-030-27195-4_23
– ident: 719_CR4
  doi: 10.1137/1.9781611975482.19
– ident: 719_CR14
  doi: 10.1145/3313276.3316389
– volume: 11
  start-page: 105
  issue: 1
  year: 2015
  ident: 719_CR22
  publication-title: Theory Comput
  doi: 10.4086/toc.2015.v011a004
– ident: 719_CR24
  doi: 10.1609/aaai.v35i9.16998
– ident: 719_CR16
  doi: 10.1109/FOCS.2018.00019
– ident: 719_CR8
– ident: 719_CR25
– volume: 42
  start-page: 235
  issue: 2
  year: 2011
  ident: 719_CR21
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2010.08.008
– ident: 719_CR6
  doi: 10.1145/3357713.3384287
– volume: 44
  start-page: 1384
  issue: 5
  year: 2015
  ident: 719_CR9
  publication-title: SIAM J Comput
  doi: 10.1137/130929205
– ident: 719_CR17
  doi: 10.1137/1.9781611975482.17
– volume: 3
  start-page: 177
  issue: 3
  year: 1978
  ident: 719_CR29
  publication-title: Math Oper Res
  doi: 10.1287/moor.3.3.177
– ident: 719_CR23
– ident: 719_CR32
  doi: 10.1609/aaai.v32i1.11650
– volume: 850
  start-page: 249
  year: 2021
  ident: 719_CR33
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2020.11.007
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 719_CR28
  publication-title: Math Program
  doi: 10.1007/BF01588971
– ident: 719_CR15
– ident: 719_CR5
  doi: 10.1145/3188745.3188752
– ident: 719_CR11
  doi: 10.1145/3313276.3316406
– ident: 719_CR27
  doi: 10.1145/2746539.2746624
– volume: 40
  start-page: 1133
  issue: 4
  year: 2011
  ident: 719_CR18
  publication-title: SIAM J Comput
  doi: 10.1137/090779346
– ident: 719_CR34
– volume: 23
  start-page: 493
  issue: 4
  year: 1952
  ident: 719_CR12
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177729330
– ident: 719_CR26
  doi: 10.1109/ICDE.2017.137
– volume: 15
  start-page: 1306
  issue: 6
  year: 2019
  ident: 719_CR3
  publication-title: J Inf Process Syst
– volume: 75
  start-page: 833
  issue: 3
  year: 2019
  ident: 719_CR20
  publication-title: J Global Optim
  doi: 10.1007/s10898-019-00800-2
– ident: 719_CR7
– ident: 719_CR13
  doi: 10.1137/1.9781611975482.18
– volume-title: The probabilistic method
  year: 2000
  ident: 719_CR2
  doi: 10.1002/0471722154
– ident: 719_CR1
  doi: 10.1137/1.9781611975482.21
– ident: 719_CR10
  doi: 10.1137/1.9781611975482.20
– ident: 719_CR31
– ident: 719_CR35
  doi: 10.1007/978-3-030-26176-4_54
– volume: 42
  start-page: 427
  issue: 1
  year: 2010
  ident: 719_CR19
  publication-title: J Artif Intell Res
SSID ssj0009054
Score 2.2905188
Snippet Emerging applications in machine learning have imposed the problem of monotone non-submodular maximization subject to a cardinality constraint. Meanwhile,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1671
SubjectTerms Adaptive algorithms
Approximation
Combinatorics
Convex and Discrete Geometry
Machine learning
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Maximization
Operations Research/Decision Theory
Optimization
Theory of Computation
Title Approximation guarantees for parallelized maximization of monotone non-submodular function with a cardinality constraint
URI https://link.springer.com/article/10.1007/s10878-021-00719-z
https://www.proquest.com/docview/2689155218
Volume 43
WOSCitedRecordID wos000629293800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7FaZQ_edCHdZjebYxGLBy3ii95CHhMp1EaaKKW_3pk8mioq6DFkEpbZ2XzfZHe-YewU2tqKO44SpPQibNuxBMaNElZkmRDhBXSQFwpfO_2-GQzc27IoLK1Ou1dbkvmXeqHYzZAarMT0F3HRFbNltoJwZ2g53t0_1VK7lipa2SJ3xNxPlaUy37_jMxzVHPPLtmiONr3N_41zi22U7JJ3i3DYZksw3mHrC5qDeHUzF2pNd9m0S5ri02FRwMifMWDI1ZByJLOcdMFHIxgNZxDxFx_NyqpNnsQc4zchJW8-TsYiRVhNIjrSygkpcxv6xct9HlIMFnSfh8RGqSlFtscee5cPF1eibMYgQlylmfCl8W2loiCSvuNEWlvgYvZlkAFYgDmUKwMA13YgDmzqXy8V-I5tYocoQKyhs88aOB44YFwbFSFNRJSwQjs0ga_A9WOQ7UAHUrZ1k7WrOfHCUqmcxjbyao1l8rGHPvZyH3uzJjubP_Na6HT8at2qptor12zqSW1ILB85T5OdV1Nb3_75bYd_Mz9ia5JqKPIzvy3WyCZvcMxWw_dsmE5O8lj-AFkr8EE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt1ife_CmC-k2u9kciyiKtYgvvIU8JlKorZgq0l_vTB5WRQU9hkzCMjub79vszDcAe9gwTtr0tGSlF-m6niMpbrR0EsfGBC9oorxQuO11Ovbuzr8oi8KyKtu9OpLMv9Qfit0sq8Eq2v4SLvpyNAlTLiEWJ_JdXt2OpXYdXbSyJe5Iez9dlsp8_47PcDTmmF-ORXO0OV743zgXYb5kl6JVhMMSTGB_GeY-aA7S1fm7UGu2Aq8t1hR_7RYFjOKeAoZdjZkgMitYF7zXw153hIl4CMmsrNoUg1RQ_A5YyVv0B32ZEawOEk5pFYyUuQ3_4hWhiDkGC7ovYmaj3JRiuAo3x0fXhyeybMYgY1qlQxkqG7paJ1GiQs9LjHHQp92XJQbgIO2hfBUh-q6HaeRy_3qlMfRcm3pMAVKDzTWo0XhwHYSxOiGaSCjhxG5so1CjH6aoGpGJlGqYOjSqOQniUqmcx9YLxhrL7OOAfBzkPg5Gddh_f-ax0On41XqrmuqgXLNZoIxlsXziPHU4qKZ2fPvnt238zXwXZk6uz9tB-7Rztgmziusp8vzfLagNn55xG6bjl2E3e9rJ4_oNo-HzJQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IXrwLdbnHrzpYrrNbjZHUYuiFsEH3kIeEynUVkwU6a93JkltFRXEY8hkWXZmmW-y-30DsIt146QNT0tWepGu6zmS4kZLJ3FsTOkFTVQQhS-8Vsve3_tXIyz-4rb74Eiy5DSwSlM3P3hK0oMR4ptlZVhFpTDlSF_2x2HS5aZBXK9f3w1ldx1dtrUlHEl1oK5oM9-P8Tk1DfHmlyPSIvM05_8_5wWYq1CnOCzDZBHGsLsEsyNahPR0-SHgmi3D2yFrjb-1S2KjeKBAYhdgJgjkCtYL73Sw0-5jIh5DMqvYnKKXCorrHit8i26vKzNKt72Er7oKzqCFDf_6FaGIOTbLMkDEjFK5WUW-ArfNk5ujU1k1aZAx7d5chsqGrtZJlKjQ8xJjHPSpKrOEDByk2spXEaLvephGLve1VxpDz7Wpx9AgNdhYhQmaD66BMFYnBB8pezixG9so1OiHKap6ZCKl6qYG9YF_grhSMOe5dYKh9jKvcUBrHBRrHPRrsPfxzVOp3_Gr9ebA7UG1l7NAGcsi-oSFarA_cPPw9c-jrf_NfAemr46bwcVZ63wDZhTTLIprwZswkT-_4BZMxa95O3veLkL8HbCf_Ak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximation+guarantees+for+parallelized+maximization+of+monotone+non-submodular+function+with+a+cardinality+constraint&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Cui%2C+Min&rft.au=Xu+Dachuan&rft.au=Guo+Longkun&rft.au=Wu%2C+Dan&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=43&rft.issue=5&rft.spage=1671&rft.epage=1690&rft_id=info:doi/10.1007%2Fs10878-021-00719-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon