A Pareto front estimation-based constrained multi-objective evolutionary algorithm
The balance of convergence, diversity, and feasibility plays a pivotal role in constrained multi-objective optimization problems. To address this issue, in this paper a novel method named PeCMOEA is proposed, in which the pivotal solutions, which are designed for estimating the constrained Pareto fr...
Saved in:
| Published in: | Applied intelligence (Dordrecht, Netherlands) Vol. 53; no. 9; pp. 10380 - 10416 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.05.2023
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0924-669X, 1573-7497 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The balance of convergence, diversity, and feasibility plays a pivotal role in constrained multi-objective optimization problems. To address this issue, in this paper a novel method named PeCMOEA is proposed, in which the pivotal solutions, which are designed for estimating the constrained Pareto front, are identified through an achievement scalarizing function. In addition, two different adaptive fitness functions are formulated to evaluate convergence- and diversity-oriented populations, respectively. Finally, the promising solutions from the two populations are reserved by their fitness values in the environmental selection while a self-adaptive penalty function is designed to repair infeasible solutions and ensure their feasibility. The performance of PeCMOEA is compared with five state-of-the-art constrained multi-objective evolutionary algorithms on five test suites. The experimental results illustrate that PeCMOEA exhibits competitive performance when utilised for this family of problems. |
|---|---|
| AbstractList | The balance of convergence, diversity, and feasibility plays a pivotal role in constrained multi-objective optimization problems. To address this issue, in this paper a novel method named PeCMOEA is proposed, in which the pivotal solutions, which are designed for estimating the constrained Pareto front, are identified through an achievement scalarizing function. In addition, two different adaptive fitness functions are formulated to evaluate convergence- and diversity-oriented populations, respectively. Finally, the promising solutions from the two populations are reserved by their fitness values in the environmental selection while a self-adaptive penalty function is designed to repair infeasible solutions and ensure their feasibility. The performance of PeCMOEA is compared with five state-of-the-art constrained multi-objective evolutionary algorithms on five test suites. The experimental results illustrate that PeCMOEA exhibits competitive performance when utilised for this family of problems. |
| Author | Cao, Jie Zhang, Jianlin Yan, Zesen Chen, Zuohan |
| Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0003-0481-5170 surname: Cao fullname: Cao, Jie organization: Lanzhou University of Technology, Gansu Engineering Research Center of Manufacturing Information, Lanzhou University of Technology – sequence: 2 givenname: Zesen orcidid: 0000-0003-3821-6387 surname: Yan fullname: Yan, Zesen organization: Lanzhou University of Technology – sequence: 3 givenname: Zuohan orcidid: 0000-0002-9666-2425 surname: Chen fullname: Chen, Zuohan email: chenzh@lut.edu.cn organization: Lanzhou University of Technology, Gansu Engineering Research Center of Manufacturing Information, Lanzhou University of Technology – sequence: 4 givenname: Jianlin orcidid: 0000-0001-7754-7889 surname: Zhang fullname: Zhang, Jianlin organization: Lanzhou University of Technology, Gansu Engineering Research Center of Manufacturing Information, Lanzhou University of Technology |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsB19HcJpMsS_EGBUUU3IVMJlOnTJOaZAp9e9NWEFx0lUP4v3P5JmDkvLMAXGN0ixGq7iJGTEiICIGISolgdQbGuKworJisRmCMJGGQc_l5ASYxrhBClCI8Bm-z4lUHm3zRBu9SYWPq1jp13sFaR9sUxruYgu5crtdDnzro65U1qdvawm59P-yzOuwK3S996NLX-hKct7qP9ur3nYKPh_v3-RNcvDw-z2cLaCiWCWoiuOSEsVZKY2vUcCmJKakksm0IxQiXtq4bXjVa5G9BGm5Kbq2pGaoFsXQKbo59N8F_D3lxtfJDcHmkIgKXgpWM05wSx5QJPsZgW2W6dDhwf1WvMFJ7g-poUGWD6mBQVRkl_9BNyHLC7jREj1DMYbe04W-rE9QPn-SGxQ |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2025_113051 crossref_primary_10_3390_biomimetics8020136 crossref_primary_10_1016_j_asoc_2024_112428 crossref_primary_10_3390_su15108219 crossref_primary_10_3390_fire8010027 crossref_primary_10_1016_j_energy_2025_135055 crossref_primary_10_1088_1361_6560_ad2c9f crossref_primary_10_1016_j_asoc_2024_111460 crossref_primary_10_1016_j_swevo_2025_102006 crossref_primary_10_3390_drones8070316 |
| Cites_doi | 10.1109/TEVC.2013.2281534 10.1109/TEVC.2020.3004012 10.1109/MCI.2017.2742868 10.1016/S0045-7825(99)00389-8 10.1016/j.swevo.2018.08.017 10.1109/TCYB.2018.2885974 10.1109/TSMC.2019.2954491 10.1109/TCYB.2018.2856208 10.1016/j.asoc.2019.02.041 10.1109/4235.797969 10.1109/TEVC.2020.3011829 10.1016/j.eswa.2014.06.032 10.1109/TEVC.2013.2281535 10.1016/j.swevo.2019.100617 10.1109/TCYB.2020.3031642 10.1162/evco_a_00259 10.1016/j.ins.2021.03.008 10.1016/j.swevo.2020.100759 10.1109/TEVC.2016.2592479 10.1109/TEVC.2019.2922419 10.1109/4235.873238 10.1109/TEVC.2018.2855411 10.1109/TEVC.2021.3066301 10.1109/TEVC.2019.2896967 10.1109/TEVC.2015.2420112 10.1109/TEVC.2007.892759 10.1109/TEVC.2017.2749619 10.1109/TEVC.2019.2909636 10.1016/j.asoc.2020.106104 10.1109/TEVC.2020.2981949 10.1016/j.ins.2015.10.010 10.1016/j.envsoft.2017.02.009 10.1109/TPWRS.2017.2785266 10.1162/evco.2007.15.4.493 10.1109/4235.585893 10.1109/TEVC.2003.810761 10.1109/4235.996017 10.1177/003754979406200405 10.1016/j.ejor.2018.08.018 10.1109/TEVC.2021.3089155 10.3233/ICA-170542 10.1016/j.swevo.2021.100932 10.1016/j.swevo.2021.100932 10.1109/CEC.2012.6252868 10.1007/s00500-019-03794-x 10.1109/CEC.2016.7743898 10.1109/CEC.2006.1688283 10.1109/CEC.2006.1688283 10.1109/TCYB.2020.3021138 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-022-03990-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7497 |
| EndPage | 10416 |
| ExternalDocumentID | 10_1007_s10489_022_03990_7 |
| GrantInformation_xml | – fundername: National Key Research and Development Plan of China grantid: 2020YFB1713600 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-a28696244f99ceb0d6992c53929fd231015ebbd67da8c5382d6c56eecb40b82e3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841697900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0924-669X |
| IngestDate | Wed Nov 05 14:45:31 EST 2025 Tue Nov 18 22:00:32 EST 2025 Sat Nov 29 05:33:32 EST 2025 Fri Feb 21 02:44:43 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Constrained multi-objective optimization Multiple-populations Constrained multi-objective evolutionary algorithms Pareto front curvature |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a28696244f99ceb0d6992c53929fd231015ebbd67da8c5382d6c56eecb40b82e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3821-6387 0000-0002-9666-2425 0000-0003-0481-5170 0000-0001-7754-7889 |
| PQID | 2815845463 |
| PQPubID | 326365 |
| PageCount | 37 |
| ParticipantIDs | proquest_journals_2815845463 crossref_citationtrail_10_1007_s10489_022_03990_7 crossref_primary_10_1007_s10489_022_03990_7 springer_journals_10_1007_s10489_022_03990_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20230500 2023-05-00 20230501 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 5 year: 2023 text: 20230500 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Boston |
| PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Xiang, Zhou, Yang, Huang (CR27) 2020; 24 Hernández-Díaz, Santana-Quintero, Coello, Molina (CR25) 2007; 15 Zeng, Chen, Li, Chen, Wu, Dai, Zheng (CR34) 2016; 330 Deb (CR14) 2000; 186 Xiang, Yang, Zhou, Huang (CR3) 2020; 24 Li, Chen, Fu, Yao (CR31) 2019; 23 Jain, Deb (CR7) 2014; 18 Zhang, Li (CR38) 2007; 11 Yang, Liu, Tan, Wang (CR19) 2019; 80 Pan, Xu, Li, He, Cheng (CR33) 2021; 60 Yuan, Xu, Wang, Yao (CR36) 2016; 20 Xu, Zeng, Zeng, Yen (CR28) 2019; 49 Mala-Jetmarova, Sultanova, Savic (CR1) 2017; 93 Yang, Liu, Tan (CR20) 2020; 89 Jain, Deb (CR44) 2014; 18 Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (CR42) 2020; 28 Liu, Wang, Wang (CR16) 2021; 51 Tian, Cheng, Zhang, Jin (CR46) 2017; 12 CR9 CR49 Pan, Xu, Li, He, Cheng (CR6) 2021; 60 CR43 Morovati, Pourkarimi (CR22) 2019; 273 Homaifar, Qi, Lai (CR10) 1994; 62 CR18 CR17 Deb, Jain (CR35) 2014; 18 Bosman, Thierens (CR47) 2003; 7 Paterakis, Gibescu, Bakirtzis, Catalão (CR2) 2018; 33 CR11 Jiao, Zeng, Li, Yang, Ong (CR5) 2021; 51 Tian, Cheng, Zhang, Cheng, Jin (CR8) 2018; 22 Li, Yen, Sahoo, Chang, Gu (CR32) 2021; 563 Ming, Trivedi, Wang, Srinivasan, Zhang (CR39) 2021; 25 Zitzler, Thiele (CR48) 1999; 3 Fan, Li, Cai, Li, Wei, Zhang, Deb, Goodman (CR12) 2019; 44 Tian, Zhang, Xiao, Zhang, Jin (CR45) 2021; 25 Deb, Pratap, Agarwal, Meyarivan (CR4) 2002; 6 CR29 Ma, Wang (CR41) 2019; 23 de Melo, Iacca (CR13) 2014; 41 Zhou, Xiang, He (CR40) 2021; 25 CR26 Runarsson, Yao (CR15) 2000; 4 Wolpert, Macready (CR21) 1997; 1 Jiang, Yang (CR37) 2017; 21 Zhu, Zhang, Lin (CR30) 2020; 24 Uribe, Lara, Schütze (CR24) 2020; 52 Hernandez, Schutze, Wang, Deutz, Emmerich (CR23) 2020; 50 E Zitzler (3990_CR48) 1999; 3 Z-Z Liu (3990_CR16) 2021; 51 DH Wolpert (3990_CR21) 1997; 1 PAN Bosman (3990_CR47) 2003; 7 NG Paterakis (3990_CR2) 2018; 33 Z Ma (3990_CR41) 2019; 23 H Xu (3990_CR28) 2019; 49 3990_CR18 Y Zhou (3990_CR40) 2021; 25 Q Zhu (3990_CR30) 2020; 24 K Deb (3990_CR4) 2002; 6 K Deb (3990_CR14) 2000; 186 3990_CR11 3990_CR17 Y Yang (3990_CR20) 2020; 89 H Jain (3990_CR44) 2014; 18 Y Tian (3990_CR8) 2018; 22 H Jain (3990_CR7) 2014; 18 VAS Hernandez (3990_CR23) 2020; 50 Q Zhang (3990_CR38) 2007; 11 Y Yuan (3990_CR36) 2016; 20 Y Xiang (3990_CR3) 2020; 24 Z Fan (3990_CR12) 2019; 44 VV de Melo (3990_CR13) 2014; 41 Y Xiang (3990_CR27) 2020; 24 3990_CR29 Y Tian (3990_CR45) 2021; 25 L Pan (3990_CR6) 2021; 60 G-Q Zeng (3990_CR34) 2016; 330 3990_CR26 V Morovati (3990_CR22) 2019; 273 R Jiao (3990_CR5) 2021; 51 L Li (3990_CR32) 2021; 563 Y Yang (3990_CR19) 2019; 80 TP Runarsson (3990_CR15) 2000; 4 Y Tian (3990_CR46) 2017; 12 S Jiang (3990_CR37) 2017; 21 AG Hernández-Díaz (3990_CR25) 2007; 15 3990_CR9 L Uribe (3990_CR24) 2020; 52 L Pan (3990_CR33) 2021; 60 K Li (3990_CR31) 2019; 23 Z Fan (3990_CR42) 2020; 28 M Ming (3990_CR39) 2021; 25 A Homaifar (3990_CR10) 1994; 62 H Mala-Jetmarova (3990_CR1) 2017; 93 3990_CR43 3990_CR49 K Deb (3990_CR35) 2014; 18 |
| References_xml | – ident: CR49 – volume: 18 start-page: 602 issue: 4 year: 2014 end-page: 622 ident: CR44 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281534 – volume: 25 start-page: 102 issue: 1 year: 2021 end-page: 116 ident: CR45 article-title: A coevolutionary framework for constrained multiobjective optimization problems publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2020.3004012 – volume: 12 start-page: 73 issue: 4 year: 2017 end-page: 87 ident: CR46 article-title: Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2017.2742868 – ident: CR29 – volume: 186 start-page: 311 issue: 2 year: 2000 end-page: 338 ident: CR14 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(99)00389-8 – volume: 44 start-page: 665 year: 2019 end-page: 679 ident: CR12 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.08.017 – volume: 50 start-page: 2186 issue: 5 year: 2020 end-page: 2196 ident: CR23 article-title: The set-based hypervolume newton method for bi-objective optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2885974 – volume: 51 start-page: 5414 issue: 9 year: 2021 end-page: 5426 ident: CR16 article-title: Indicator-based constrained multiobjective evolutionary algorithms publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2019.2954491 – volume: 49 start-page: 3968 issue: 11 year: 2019 end-page: 3979 ident: CR28 article-title: An evolutionary algorithm based on minkowski distance for many-objective optimization publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2856208 – volume: 80 start-page: 42 year: 2019 end-page: 56 ident: CR19 article-title: A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.02.041 – volume: 3 start-page: 257 issue: 4 year: 1999 end-page: 271 ident: CR48 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797969 – volume: 18 start-page: 602 issue: 4 year: 2014 end-page: 622 ident: CR7 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part ii: handling constraints and extending to an adaptive approach publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281534 – volume: 25 start-page: 172 issue: 1 year: 2021 end-page: 186 ident: CR40 article-title: Constrained multiobjective optimization: test problem construction and performance evaluations publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2020.3011829 – ident: CR11 – ident: CR9 – volume: 41 start-page: 7077 issue: 16 year: 2014 end-page: 7094 ident: CR13 article-title: A modified covariance matrix adaptation evolution strategy with adaptive penalty function and restart for constrained optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.06.032 – volume: 18 start-page: 577 issue: 4 year: 2014 end-page: 601 ident: CR35 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281535 – volume: 52 start-page: 100617 year: 2020 ident: CR24 article-title: On the efficient computation and use of multi-objective descent directions within constrained moeas publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.100617 – volume: 51 start-page: 4834 issue: 10 year: 2021 end-page: 4847 ident: CR5 article-title: Handling constrained many-objective optimization problems via problem transformation publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.3031642 – volume: 28 start-page: 339 issue: 3 year: 2020 end-page: 378 ident: CR42 article-title: Difficulty adjustable and scalable constrained multiobjective test problem toolkit publication-title: Evol Comput doi: 10.1162/evco_a_00259 – ident: CR26 – volume: 563 start-page: 375 year: 2021 end-page: 400 ident: CR32 article-title: On the estimation of pareto front and dimensional similarity in many-objective evolutionary algorithm publication-title: Inf Sci doi: 10.1016/j.ins.2021.03.008 – volume: 60 start-page: 100759 year: 2021 ident: CR33 article-title: Adaptive simulated binary crossover for rotated multi-objective optimization publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100759 – volume: 21 start-page: 329 issue: 3 year: 2017 end-page: 346 ident: CR37 article-title: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2016.2592479 – volume: 24 start-page: 245 issue: 2 year: 2020 end-page: 259 ident: CR3 article-title: Enhancing decomposition-based algorithms by estimation of distribution for constrained optimal software product selection publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2922419 – volume: 4 start-page: 284 issue: 3 year: 2000 end-page: 294 ident: CR15 article-title: Stochastic ranking for constrained evolutionary optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.873238 – volume: 23 start-page: 303 issue: 2 year: 2019 end-page: 315 ident: CR31 article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2855411 – ident: CR18 – volume: 25 start-page: 739 issue: 4 year: 2021 end-page: 753 ident: CR39 article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2021.3066301 – ident: CR43 – volume: 23 start-page: 972 issue: 6 year: 2019 end-page: 986 ident: CR41 article-title: Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2896967 – volume: 20 start-page: 16 issue: 1 year: 2016 end-page: 37 ident: CR36 article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2015.2420112 – volume: 11 start-page: 712 issue: 6 year: 2007 end-page: 731 ident: CR38 article-title: Moea/d: A multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 22 start-page: 609 issue: 4 year: 2018 end-page: 622 ident: CR8 article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2017.2749619 – volume: 24 start-page: 99 issue: 1 year: 2020 end-page: 113 ident: CR27 article-title: A many-objective evolutionary algorithm with pareto-adaptive reference points publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2909636 – volume: 89 start-page: 106104 year: 2020 ident: CR20 article-title: A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106104 – volume: 24 start-page: 938 issue: 5 year: 2020 end-page: 947 ident: CR30 article-title: A constrained multiobjective evolutionary algorithm with detect-and-escape strategy publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2020.2981949 – volume: 330 start-page: 49 year: 2016 end-page: 73 ident: CR34 article-title: An improved multi-objective population-based extremal optimization algorithm with polynomial mutation publication-title: Inf Sci doi: 10.1016/j.ins.2015.10.010 – ident: CR17 – volume: 93 start-page: 209 year: 2017 end-page: 254 ident: CR1 article-title: Lost in optimisation of water distribution systems? a literature review of system operation publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2017.02.009 – volume: 33 start-page: 3940 issue: 4 year: 2018 end-page: 3954 ident: CR2 article-title: A multi-objective optimization approach to risk-constrained energy and reserve procurement using demand response publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2785266 – volume: 15 start-page: 493 issue: 4 year: 2007 end-page: 517 ident: CR25 article-title: Pareto-adaptive ε-dominance publication-title: Evol Comput doi: 10.1162/evco.2007.15.4.493 – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 ident: CR21 article-title: No free lunch theorems for optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 7 start-page: 174 issue: 2 year: 2003 end-page: 188 ident: CR47 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2003.810761 – volume: 6 start-page: 182 issue: 2 year: 2002 end-page: 197 ident: CR4 article-title: A fast and elitist multiobjective genetic algorithm: Nsga-ii publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 60 start-page: 100759 year: 2021 ident: CR6 article-title: Adaptive simulated binary crossover for rotated multi-objective optimization publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100759 – volume: 62 start-page: 242 year: 1994 end-page: 253 ident: CR10 article-title: Constrained optimization via genetic algorithms publication-title: Trans Soc Model Simul Int SIMULATION doi: 10.1177/003754979406200405 – volume: 273 start-page: 44 issue: 1 year: 2019 end-page: 57 ident: CR22 article-title: Extension of zoutendijk method for solving constrained multiobjective optimization problems publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2018.08.018 – volume: 20 start-page: 16 issue: 1 year: 2016 ident: 3990_CR36 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2015.2420112 – ident: 3990_CR9 doi: 10.1109/TEVC.2021.3089155 – volume: 7 start-page: 174 issue: 2 year: 2003 ident: 3990_CR47 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2003.810761 – volume: 51 start-page: 4834 issue: 10 year: 2021 ident: 3990_CR5 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2020.3031642 – volume: 44 start-page: 665 year: 2019 ident: 3990_CR12 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.08.017 – ident: 3990_CR26 doi: 10.3233/ICA-170542 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 3990_CR38 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892759 – volume: 25 start-page: 172 issue: 1 year: 2021 ident: 3990_CR40 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2020.3011829 – volume: 49 start-page: 3968 issue: 11 year: 2019 ident: 3990_CR28 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2856208 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 3990_CR4 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – volume: 21 start-page: 329 issue: 3 year: 2017 ident: 3990_CR37 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2016.2592479 – ident: 3990_CR11 doi: 10.1016/j.swevo.2021.100932 10.1016/j.swevo.2021.100932 – ident: 3990_CR18 doi: 10.1109/CEC.2012.6252868 – volume: 15 start-page: 493 issue: 4 year: 2007 ident: 3990_CR25 publication-title: Evol Comput doi: 10.1162/evco.2007.15.4.493 – volume: 4 start-page: 284 issue: 3 year: 2000 ident: 3990_CR15 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.873238 – volume: 60 start-page: 100759 year: 2021 ident: 3990_CR33 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100759 – ident: 3990_CR43 doi: 10.1007/s00500-019-03794-x – volume: 24 start-page: 245 issue: 2 year: 2020 ident: 3990_CR3 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2922419 – ident: 3990_CR49 doi: 10.1109/CEC.2016.7743898 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 3990_CR21 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 25 start-page: 739 issue: 4 year: 2021 ident: 3990_CR39 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2021.3066301 – volume: 18 start-page: 602 issue: 4 year: 2014 ident: 3990_CR44 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281534 – volume: 51 start-page: 5414 issue: 9 year: 2021 ident: 3990_CR16 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2019.2954491 – volume: 22 start-page: 609 issue: 4 year: 2018 ident: 3990_CR8 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2017.2749619 – ident: 3990_CR17 doi: 10.1109/CEC.2006.1688283 10.1109/CEC.2006.1688283 – volume: 23 start-page: 972 issue: 6 year: 2019 ident: 3990_CR41 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2896967 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 3990_CR35 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281535 – volume: 563 start-page: 375 year: 2021 ident: 3990_CR32 publication-title: Inf Sci doi: 10.1016/j.ins.2021.03.008 – volume: 28 start-page: 339 issue: 3 year: 2020 ident: 3990_CR42 publication-title: Evol Comput doi: 10.1162/evco_a_00259 – volume: 33 start-page: 3940 issue: 4 year: 2018 ident: 3990_CR2 publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2785266 – volume: 89 start-page: 106104 year: 2020 ident: 3990_CR20 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106104 – volume: 12 start-page: 73 issue: 4 year: 2017 ident: 3990_CR46 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2017.2742868 – volume: 330 start-page: 49 year: 2016 ident: 3990_CR34 publication-title: Inf Sci doi: 10.1016/j.ins.2015.10.010 – volume: 25 start-page: 102 issue: 1 year: 2021 ident: 3990_CR45 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2020.3004012 – ident: 3990_CR29 doi: 10.1109/TCYB.2020.3021138 – volume: 3 start-page: 257 issue: 4 year: 1999 ident: 3990_CR48 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797969 – volume: 93 start-page: 209 year: 2017 ident: 3990_CR1 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2017.02.009 – volume: 18 start-page: 602 issue: 4 year: 2014 ident: 3990_CR7 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2013.2281534 – volume: 62 start-page: 242 year: 1994 ident: 3990_CR10 publication-title: Trans Soc Model Simul Int SIMULATION doi: 10.1177/003754979406200405 – volume: 50 start-page: 2186 issue: 5 year: 2020 ident: 3990_CR23 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2018.2885974 – volume: 52 start-page: 100617 year: 2020 ident: 3990_CR24 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.100617 – volume: 23 start-page: 303 issue: 2 year: 2019 ident: 3990_CR31 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2018.2855411 – volume: 80 start-page: 42 year: 2019 ident: 3990_CR19 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.02.041 – volume: 41 start-page: 7077 issue: 16 year: 2014 ident: 3990_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.06.032 – volume: 24 start-page: 99 issue: 1 year: 2020 ident: 3990_CR27 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2019.2909636 – volume: 273 start-page: 44 issue: 1 year: 2019 ident: 3990_CR22 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2018.08.018 – volume: 186 start-page: 311 issue: 2 year: 2000 ident: 3990_CR14 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(99)00389-8 – volume: 60 start-page: 100759 year: 2021 ident: 3990_CR6 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100759 – volume: 24 start-page: 938 issue: 5 year: 2020 ident: 3990_CR30 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2020.2981949 |
| SSID | ssj0003301 |
| Score | 2.408192 |
| Snippet | The balance of convergence, diversity, and feasibility plays a pivotal role in constrained multi-objective optimization problems. To address this issue, in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 10380 |
| SubjectTerms | Artificial Intelligence Computer Science Convergence Estimation Evolutionary algorithms Feasibility Fitness Genetic algorithms Machines Manufacturing Mechanical Engineering Methods Multiple objective analysis Optimization Pareto optimization Penalty function Populations Processes |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60evBifWK1yh686UI2zb6ORSwepJSqpbeQfUQrtZE0Fvz37iYbq6KC3kKyWZLZnflm2JlvADjVRBPMjERpIhWKWEcgzrFBOCKsY_15LEu6ptE16_f5eCwGvihsXme710eSpaX-UOwWufQeGzwFFlUDxFbBmoU77tRxeDN6t782Qi_75NnIAlEqxr5U5vs5PsPR0sf8cixaok2v-b_v3AKb3ruE3Wo7bIMVM9sBzbpzA_SKvAuGXThw7W0zmDoCA-ioNqoaRuRgTUPl3EbXPcJelzmHKJOPlW2EZuG3a5K_wmR6n-WT4uFpD9z1Lm8vrpDvroCUVbsCJSGnglp0T4VQRgaaChEq4vylVDuvDxMjpaZMJ9ze5qGmilBjlIwCyUPT2QeNWTYzBwCyMGXEopwNtkikQkdhpzrGYGOINSdYtQCuhRwrTz3u_mEaL0mTndBiK7S4FFrMWuDs_Z3ninjj19Hteu1ir4TzOOTYuleO778Fzuu1Wj7-ebbDvw0_AhuuCX2VBtkGjSJ_McdgXS2KyTw_KTfnG67w3RU priority: 102 providerName: Springer Nature |
| Title | A Pareto front estimation-based constrained multi-objective evolutionary algorithm |
| URI | https://link.springer.com/article/10.1007/s10489-022-03990-7 https://www.proquest.com/docview/2815845463 |
| Volume | 53 |
| WOSCitedRecordID | wos000841697900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9tAFH5iO_QCZVNDIZpDb2WEZ-Lx2CcECFQJiKKwpb1YnsVtESSQpEj9933PHhOBBJdenixvGvu9ecss3wfwxSmnhPaGl4WxPNadjKep8FzESncwnxemgmu6PtPdbjoYZL0w4DYJyyobn1g5ajeyNEa-J1OBsZLA2_cfHjmxRtHsaqDQmIdFIaUgOz_V_NkTY61eMeZhjcGTJBuETTNh61xMi4WwFIswRkdcvwxMs2zz1QRpFXdOVv63xR9hOWSc7KA2kVWY88M1WGnYHFjo3OvQP2A9orwdsZJADRjBb9T7GjmFOscspZLEKIHH1TpEPjK3tb9k_imYcDH-y4q7n9iO6a_7Dbg6Ob48-sYD4wK32BWnvJBpkiUY8csss95ELskyaRXlUKWjTFAob4xLtCtSPJ1Kl1iVeG9NHJlU-s4mLAxHQ_8JmJalVhj5sABTsZUEa2c73gvvFboYYVsgmt-d2wBHTt9wl8-AlElFOaoor1SU6xZ8fX7moQbjePfu7UYveeiYk3ymlBbsNpqdXX77bVvvv-0zfCAi-nop5DYsTMd__A4s2afp78m4DfP65nsbFg-Pu71-uzJSlOfREUl9gbKnfqDsX1z_A33L7VI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xqEQvQFuqBmi7h_YEK7xrr9c-VAjRIhBphBCg3Fzvw30oTSAJQflT_Y3M-EEEEtw49Gb5sdLa38x86535BuCTU04J7Q0vcmN5pMOUJ4nwXERKh8jnhSnlmi7autNJut30ZA7-NbUwlFbZ-MTSUbuBpX_kOzIRGCtJvH338opT1yjaXW1aaFSwOPbTG1yyjb4cfcXv-1nKg29n-4e87irALcJtzHOZxGmMUa1IU-tN4OI0lVYRTygcsR2hvDEu1i5P8HQiXWxV7L01UWAS6UMcdx4WowjNgVIFg_07zx-GZbvlANc0PI7Tbl2kU5fqRZSchEu_ADlBwPX9QDhjtw82ZMs4d7Dyv72hVViuGTXbq0zgFcz5_mtYabpVsNp5vYHTPXZCLX0HrCDRBkbyIlXdJqdQ7pglqkwdM_C4zLPkA_OnigfMT2oTzYdTlvd-4rzHv_6uwfmzzOwtLPQHff8OmJaFVhjZcYGpIitJts-G3gvvFbpQYVsgms-b2VpunebQy2ZC0QSJDCGRlZDIdAu27p65rMRGnrx7s8FBVjueUTYDQQu2GyTNLj8-2vrTo32EpcOz7-2sfdQ53oCXEqlelfa5CQvj4bV_Dy_sZPx7NPxQmgSDH8-NsFuDW0PB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD5BJMYXVwXiKso86JNM6Ew7nfbBGCJuIJDNxoDZ8FI6l3oJ7MLuitm_5q_znHbKBhN448G3ppdJpv3mfN_pnAvAW6ecEtobXpXG8kTHOc8y4blIlI5RzwtTl2v6eqj7_Ww4zAdL8KfNhaGwytYm1obajS39I9-WmUCupOLt21UIixjs9j5eXHLqIEU7rW07jQYiB37-G9236Yf9XfzW76TsfT76tMdDhwFuEXozXsoszVNkuCrPrTeRS_NcWkWaoXKkfITyxrhUuzLD05l0qVWp99Ykkcmkj3HcB_BQo49Jjt9AnVyzQBzXrZcj9G94mubDkLAT0vYSClRCNzBCfRBxfZMUF0r3n83ZmvN6nf_5bT2FJ0Fps51maTyDJT96Dp22iwULRm0VvuywAbX6HbOKijkwKjvS5HNyonjHLElo6qSBx3X8JR-bnw1PMH8Vlm45mbPy7BvOe_b9fA2O72Vm67A8Go_8C2BaVloh46PjqRIrqZyfjb0X3is0rcJ2QbSfurChDDvN4axYFJAmeBQIj6KGR6G78P76mYumCMmdd2-0mCiCQZoWC0B0YatF1eLy7aO9vHu0TXiEwCoO9_sHr-CxRAXYRINuwPJs8su_hhV7NfsxnbypVweD0_sG2F8fMkzS |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Pareto+front+estimation-based+constrained+multi-objective+evolutionary+algorithm&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Cao%2C+Jie&rft.au=Yan%2C+Zesen&rft.au=Chen%2C+Zuohan&rft.au=Zhang%2C+Jianlin&rft.date=2023-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=9&rft.spage=10380&rft.epage=10416&rft_id=info:doi/10.1007%2Fs10489-022-03990-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |