Visual perception enhancement fall detection algorithm based on vision transformer

Fall detection is a crucial research topic in public healthcare. With advances in intelligent surveillance and deep learning, vision-based fall detection has gained significant attention. While numerous deep learning algorithms prevail in video fall detection due to excellent feature processing capa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Signal, image and video processing Ročník 19; číslo 1; s. 18
Hlavní autori: Cai, Xi, Wang, Xiangcheng, Bao, Kexin, Chen, Yinuo, Jiao, Yin, Han, Guang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.01.2025
Springer Nature B.V
Predmet:
ISSN:1863-1703, 1863-1711
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Fall detection is a crucial research topic in public healthcare. With advances in intelligent surveillance and deep learning, vision-based fall detection has gained significant attention. While numerous deep learning algorithms prevail in video fall detection due to excellent feature processing capabilities, they all exhibit limitations in handling long-term spatiotemporal dependencies. Recently, Vision Transformer has shown considerable potential in integrating global information and understanding long-term spatiotemporal dependencies, thus providing novel solutions. In view of this, we propose a visual perception enhancement fall detection algorithm based on Vision Transformer. We utilize Vision Transformer-Base as the baseline model for analyzing global motion information in videos. On this basis, to address the model’s difficulty in capturing subtle motion changes across video frames, we design an inter-frame motion information enhancement module. Concurrently, we propose a locality perception enhancement self-attention mechanism to overcome the model’s weak focus on local key features within the frame. Experimental results show that our method achieves notable performance on the Le2i and UR datasets, surpassing several advanced methods.
AbstractList Fall detection is a crucial research topic in public healthcare. With advances in intelligent surveillance and deep learning, vision-based fall detection has gained significant attention. While numerous deep learning algorithms prevail in video fall detection due to excellent feature processing capabilities, they all exhibit limitations in handling long-term spatiotemporal dependencies. Recently, Vision Transformer has shown considerable potential in integrating global information and understanding long-term spatiotemporal dependencies, thus providing novel solutions. In view of this, we propose a visual perception enhancement fall detection algorithm based on Vision Transformer. We utilize Vision Transformer-Base as the baseline model for analyzing global motion information in videos. On this basis, to address the model’s difficulty in capturing subtle motion changes across video frames, we design an inter-frame motion information enhancement module. Concurrently, we propose a locality perception enhancement self-attention mechanism to overcome the model’s weak focus on local key features within the frame. Experimental results show that our method achieves notable performance on the Le2i and UR datasets, surpassing several advanced methods.
ArticleNumber 18
Author Chen, Yinuo
Han, Guang
Wang, Xiangcheng
Jiao, Yin
Bao, Kexin
Cai, Xi
Author_xml – sequence: 1
  givenname: Xi
  orcidid: 0000-0001-9563-6703
  surname: Cai
  fullname: Cai, Xi
  organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao
– sequence: 2
  givenname: Xiangcheng
  surname: Wang
  fullname: Wang, Xiangcheng
  organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao
– sequence: 3
  givenname: Kexin
  surname: Bao
  fullname: Bao, Kexin
  organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao
– sequence: 4
  givenname: Yinuo
  surname: Chen
  fullname: Chen, Yinuo
  organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao
– sequence: 5
  givenname: Yin
  surname: Jiao
  fullname: Jiao, Yin
  organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao
– sequence: 6
  givenname: Guang
  orcidid: 0000-0001-9806-3285
  surname: Han
  fullname: Han, Guang
  email: coldlight919@163.com
  organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao
BookMark eNp9kN9LwzAQgINMcM79Az4VfK7mkjZNH2X4CwaCqK8hTa9bR5vWpHP435utouDD8nIhd99d7jsnE9tZJOQS6DVQmt14gEzQmLIkplykLN6dkClIwWPIACa_d8rPyNz7DQ2Hs0wKOSUv77Xf6ibq0Rnsh7qzEdq1tgZbtENU6aaJShzQHFK6WXWuHtZtVGiPZRSePmu_zwxOW191rkV3QU4D5nH-E2fk7f7udfEYL58fnha3y9hwyIdYAxNIs9IwiQYklRoTKEuqGUIijc5TrHKWiAwLqTODBU81k1RTAbkoEsZn5Grs27vuY4t-UJtu62wYqThLRS4EcAhVbKwyrvPeYaV6V7fafSmgaq9PjfpU0KcO-tQuQPIfZOpB7xWEPevmOMpH1Ic5doXu71dHqG_X7ofy
CitedBy_id crossref_primary_10_1007_s11760_025_04358_3
Cites_doi 10.1109/JBHI.2018.2808281
10.1016/j.cmpb.2014.09.005
10.1109/ACCESS.2020.3021795
10.3390/s23115212
10.3390/healthcare10010172
10.1109/WACV56688.2023.00397
10.1109/CVPR.2018.00745
10.1109/ACCESS.2021.3054469
10.1016/j.patrec.2018.08.031
10.1007/978-3-030-01234-2_1
10.1016/j.compbiomed.2022.105626
10.1109/EMBC44109.2020.9175844
10.1007/978-3-031-19778-9_18
10.1145/3136755.3136802
10.1007/978-3-031-27066-6_20
10.1109/ICCV.2017.74
10.1093/ageing/afac205
10.1007/s12652-021-03250-5
10.3390/electronics10080898
10.1109/ICASSP39728.2021.9414568
10.3390/diagnostics12123060
10.1145/3474085.3475272
10.1109/ICPR48806.2021.9413331
10.1016/j.jvcir.2021.103407
10.1117/1.JEI.22.4.041106
10.3390/ijerph20136284
10.1109/ICCV48922.2021.00988
10.18653/v1/D19-1224
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11760-024-03652-w
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
ExternalDocumentID 10_1007_s11760_024_03652_w
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
JQ2
ID FETCH-LOGICAL-c319t-a126e07dc28ec1808ae41dd0a2e148ca95ef92467eb8a7ceb35a280a06196b423
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375649500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-1703
IngestDate Sat Oct 11 06:55:53 EDT 2025
Sat Nov 29 05:31:04 EST 2025
Tue Nov 18 21:22:48 EST 2025
Fri Feb 21 02:36:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Computer vision
Vision transformer
Attention mechanism
Fall detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a126e07dc28ec1808ae41dd0a2e148ca95ef92467eb8a7ceb35a280a06196b423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9563-6703
0000-0001-9806-3285
PQID 3256966131
PQPubID 2044169
ParticipantIDs proquest_journals_3256966131
crossref_primary_10_1007_s11760_024_03652_w
crossref_citationtrail_10_1007_s11760_024_03652_w
springer_journals_10_1007_s11760_024_03652_w
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References M Montero-Odasso (3652_CR1) 2022; 51
B Kwolek (3652_CR28) 2014; 117
I Charfi (3652_CR27) 2013; 22
3652_CR13
Q Feng (3652_CR7) 2020; 130
3652_CR14
3652_CR15
3652_CR16
A Núñez-Marcos (3652_CR18) 2017; 2017
I Lage (3652_CR12) 2023; 20
3652_CR30
3652_CR31
3652_CR10
3652_CR32
3652_CR11
T Alanazi (3652_CR5) 2022; 12
DR Beddiar (3652_CR33) 2022; 82
E Alam (3652_CR3) 2022; 146
S Zou (3652_CR4) 2021; 10
3652_CR9
3652_CR24
3652_CR25
3652_CR26
Y Chen (3652_CR6) 2020; 8
X Cai (3652_CR17) 2021; 9
SJ Berlin (3652_CR8) 2022; 13
3652_CR29
3652_CR20
NT Newaz (3652_CR2) 2023; 23
3652_CR21
3652_CR22
3652_CR23
N Lu (3652_CR19) 2018; 23
References_xml – volume: 23
  start-page: 314
  issue: 1
  year: 2018
  ident: 3652_CR19
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2808281
– volume: 117
  start-page: 489
  issue: 3
  year: 2014
  ident: 3652_CR28
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2014.09.005
– volume: 8
  start-page: 161337
  year: 2020
  ident: 3652_CR6
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3021795
– volume: 23
  start-page: 5212
  issue: 11
  year: 2023
  ident: 3652_CR2
  publication-title: Sensors.
  doi: 10.3390/s23115212
– ident: 3652_CR11
  doi: 10.3390/healthcare10010172
– ident: 3652_CR21
  doi: 10.1109/WACV56688.2023.00397
– ident: 3652_CR23
– ident: 3652_CR13
  doi: 10.1109/CVPR.2018.00745
– volume: 9
  start-page: 18318
  year: 2021
  ident: 3652_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3054469
– volume: 130
  start-page: 242
  year: 2020
  ident: 3652_CR7
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.08.031
– ident: 3652_CR14
  doi: 10.1007/978-3-030-01234-2_1
– volume: 146
  start-page: 105626
  year: 2022
  ident: 3652_CR3
  publication-title: Comput. Bio. Med.
  doi: 10.1016/j.compbiomed.2022.105626
– volume: 2017
  start-page: 9474806
  issue: 1
  year: 2017
  ident: 3652_CR18
  publication-title: Wireless Commun. Mobile Comput.
– ident: 3652_CR9
  doi: 10.1109/EMBC44109.2020.9175844
– ident: 3652_CR25
  doi: 10.1007/978-3-031-19778-9_18
– ident: 3652_CR16
  doi: 10.1145/3136755.3136802
– ident: 3652_CR26
  doi: 10.1007/978-3-031-27066-6_20
– ident: 3652_CR31
  doi: 10.1109/ICCV.2017.74
– volume: 51
  start-page: 205
  issue: 9
  year: 2022
  ident: 3652_CR1
  publication-title: Age Age.
  doi: 10.1093/ageing/afac205
– volume: 13
  start-page: 5751
  issue: 12
  year: 2022
  ident: 3652_CR8
  publication-title: J. Ambient Int. Human. Comput.
  doi: 10.1007/s12652-021-03250-5
– volume: 10
  start-page: 898
  issue: 8
  year: 2021
  ident: 3652_CR4
  publication-title: Electronics
  doi: 10.3390/electronics10080898
– ident: 3652_CR20
– ident: 3652_CR10
– ident: 3652_CR15
  doi: 10.1109/ICASSP39728.2021.9414568
– volume: 12
  start-page: 3060
  issue: 12
  year: 2022
  ident: 3652_CR5
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12123060
– ident: 3652_CR24
  doi: 10.1145/3474085.3475272
– ident: 3652_CR32
  doi: 10.1109/ICPR48806.2021.9413331
– volume: 82
  start-page: 103407
  year: 2022
  ident: 3652_CR33
  publication-title: J. Visual Commun. Image Represent.
  doi: 10.1016/j.jvcir.2021.103407
– volume: 22
  start-page: 041106
  issue: 4
  year: 2013
  ident: 3652_CR27
  publication-title: J. Electron. Imag.
  doi: 10.1117/1.JEI.22.4.041106
– volume: 20
  start-page: 6284
  issue: 13
  year: 2023
  ident: 3652_CR12
  publication-title: Int. J. Environ. Res. Public Health.
  doi: 10.3390/ijerph20136284
– ident: 3652_CR30
– ident: 3652_CR22
  doi: 10.1109/ICCV48922.2021.00988
– ident: 3652_CR29
  doi: 10.18653/v1/D19-1224
SSID ssj0000327868
Score 2.334826
Snippet Fall detection is a crucial research topic in public healthcare. With advances in intelligent surveillance and deep learning, vision-based fall detection has...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18
SubjectTerms Accuracy
Algorithms
Computer Imaging
Computer Science
Deep learning
Design
Efficiency
Fall detection
Image Processing and Computer Vision
Machine learning
Multimedia Information Systems
Neural networks
Original Paper
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Time series
Vision
Visual perception
Visual perception driven algorithms
Title Visual perception enhancement fall detection algorithm based on vision transformer
URI https://link.springer.com/article/10.1007/s11760-024-03652-w
https://www.proquest.com/docview/3256966131
Volume 19
WOSCitedRecordID wos001375649500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT8Iw9EXRgx5EUSOKpgdv2qTtYO2Oxkg8GGNQCbelW4uQ4CBjyN_37YupURO97LB-bHkffR99HwDnQxN4MlCaIhPiQ4WMBmkiMNKywSGu3LxryZ28v1eDgfdQJIXNy2j38koyO6mrZDcuXUZRplA8dTuCLtdhA8WdShs29B77K88Kc4RUeQ4cfolypOkiW-b7bT5LpErN_HIzmgmcbv1_v7oLO4WCSa5yitiDNRs1oF42byAFLzdg-0Mlwn3o9cfzBS6breJciI1GKUWk3kMy1JMJMTbJ4rYioicv03icjF5JKgQNwVd5jjpJSj3Yxgfw3L15ur6lRbsFGiIfJlRz4VomTSiUDbliSts2N4ZpYdFmCrXXsUO01lxpEbcyRCu8o4ViGjUCzw1QLTuEWjSN7BEQwZRUxkgurIsLRKB5oJlxXD1kqh04TeAlyP2wqEWetsSY-FUV5RSEPoLQz0DoL5twsVozyytx_Dq7VWLSL7hy7juo36F5xx3ehMsSc9Xwz7sd_236CWyJtE1w5qlpQS2JF_YUNsO3ZDyPzzJqfQeowORM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JSsNA9KFVUA_WFes6B286MDNpM5OjiFKxFqm19BYmmakWapQ22t_3ZWtUVNBLDpkl4S3zlnkLwPHABJ4MlKbIhPhQIaNBkgiMtGxwiCs361rSku226ve92zwpbFJEuxdXkulJXSa7cekyijKF4qnbEHQ6Dwt1lFhJxfzOXW_mWWGOkCrLgcMvUY40nWfLfL_NZ4lUqplfbkZTgXNZ_d-vrsFqrmCSs4wi1mHORhtQLZo3kJyXN2DlQyXCTej0hpNXXPYyi3MhNnpMKCLxHpKBHo2IsXEatxURPXp4Hg_jxyeSCEFD8FWWo07iQg-24y24v7zonjdp3m6BhsiHMdVcuJZJEwplQ66Y0rbOjWFaWLSZQu017ACtNVdaxK0M0QpvaKGYRo3AcwNUy7ahEj1HdgeIYEoqYyQX1sUFItA80Mw4rh4wVQ-cGvAC5H6Y1yJPWmKM_LKKcgJCH0HopyD0pzU4ma15ySpx_Dp7v8Ckn3PlxHdQv0Pzjju8BqcF5srhn3fb_dv0I1hqdm9afuuqfb0HyyJpGZx6bfahEo9f7QEshm_xcDI-TCn3HWTS5zA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CcGB8RSDATlwg4gk3ZrsiIAJBJoQj2m3Km1SmDTKtBX4-zh9bIAACXHpoXk0cuzaTvzZAPuxCZsyVJqiEOJDRYyGDgiMvGywiSs_r1pyJdtt1e02rz-g-LNo9_JKMsc0uCxNSXo0MPHRBPjGpc8o6heKf-CGoG_TMFt3gfTOX7_tjE9ZmCekyvFw-FXKkb8L5Mz303zWThOT88staaZ8WpX_L3sZlgrDkxznnLICUzZZhUpZ1IEUMr4Kix8yFK7BTac3esFhg3H8C7HJo-MUd6pIYt3vE2PTLJ4rIbr_8DzspY9PxClHQ_BVjl0naWkf2-E63LfO7k7OaVGGgUYonynVXPiWSRMJZSOumNK2zo1hWlj0pSLdbNgYvThfWtxzGaF33tBCMY2WQtMP0VzbgJnkObGbQARTUhkjubA-DhCh5qFmxvN1zFQ99KrAS_IHUZGj3JXK6AeT7MqOhAGSMMhIGLxV4WA8ZpBn6Pi1d63c1aCQ1lHgod2Hbh_3eBUOy12cNP8829bfuu_B_PVpK7i6aF9uw4JwlYSzw5wazKTDF7sDc9Fr2hsNdzMmfgd1IvAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+perception+enhancement+fall+detection+algorithm+based+on+vision+transformer&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Cai%2C+Xi&rft.au=Wang%2C+Xiangcheng&rft.au=Bao%2C+Kexin&rft.au=Chen%2C+Yinuo&rft.date=2025-01-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1007%2Fs11760-024-03652-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_024_03652_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon