Visual perception enhancement fall detection algorithm based on vision transformer
Fall detection is a crucial research topic in public healthcare. With advances in intelligent surveillance and deep learning, vision-based fall detection has gained significant attention. While numerous deep learning algorithms prevail in video fall detection due to excellent feature processing capa...
Uložené v:
| Vydané v: | Signal, image and video processing Ročník 19; číslo 1; s. 18 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.01.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1863-1703, 1863-1711 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Fall detection is a crucial research topic in public healthcare. With advances in intelligent surveillance and deep learning, vision-based fall detection has gained significant attention. While numerous deep learning algorithms prevail in video fall detection due to excellent feature processing capabilities, they all exhibit limitations in handling long-term spatiotemporal dependencies. Recently, Vision Transformer has shown considerable potential in integrating global information and understanding long-term spatiotemporal dependencies, thus providing novel solutions. In view of this, we propose a visual perception enhancement fall detection algorithm based on Vision Transformer. We utilize Vision Transformer-Base as the baseline model for analyzing global motion information in videos. On this basis, to address the model’s difficulty in capturing subtle motion changes across video frames, we design an inter-frame motion information enhancement module. Concurrently, we propose a locality perception enhancement self-attention mechanism to overcome the model’s weak focus on local key features within the frame. Experimental results show that our method achieves notable performance on the Le2i and UR datasets, surpassing several advanced methods. |
|---|---|
| AbstractList | Fall detection is a crucial research topic in public healthcare. With advances in intelligent surveillance and deep learning, vision-based fall detection has gained significant attention. While numerous deep learning algorithms prevail in video fall detection due to excellent feature processing capabilities, they all exhibit limitations in handling long-term spatiotemporal dependencies. Recently, Vision Transformer has shown considerable potential in integrating global information and understanding long-term spatiotemporal dependencies, thus providing novel solutions. In view of this, we propose a visual perception enhancement fall detection algorithm based on Vision Transformer. We utilize Vision Transformer-Base as the baseline model for analyzing global motion information in videos. On this basis, to address the model’s difficulty in capturing subtle motion changes across video frames, we design an inter-frame motion information enhancement module. Concurrently, we propose a locality perception enhancement self-attention mechanism to overcome the model’s weak focus on local key features within the frame. Experimental results show that our method achieves notable performance on the Le2i and UR datasets, surpassing several advanced methods. |
| ArticleNumber | 18 |
| Author | Chen, Yinuo Han, Guang Wang, Xiangcheng Jiao, Yin Bao, Kexin Cai, Xi |
| Author_xml | – sequence: 1 givenname: Xi orcidid: 0000-0001-9563-6703 surname: Cai fullname: Cai, Xi organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao – sequence: 2 givenname: Xiangcheng surname: Wang fullname: Wang, Xiangcheng organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao – sequence: 3 givenname: Kexin surname: Bao fullname: Bao, Kexin organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao – sequence: 4 givenname: Yinuo surname: Chen fullname: Chen, Yinuo organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao – sequence: 5 givenname: Yin surname: Jiao fullname: Jiao, Yin organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao – sequence: 6 givenname: Guang orcidid: 0000-0001-9806-3285 surname: Han fullname: Han, Guang email: coldlight919@163.com organization: Hebei Key Laboratory of Marine Perception Network and Data Processing, School of Computer and Communication Engineering, Northeastern University at Qinhuangdao |
| BookMark | eNp9kN9LwzAQgINMcM79Az4VfK7mkjZNH2X4CwaCqK8hTa9bR5vWpHP435utouDD8nIhd99d7jsnE9tZJOQS6DVQmt14gEzQmLIkplykLN6dkClIwWPIACa_d8rPyNz7DQ2Hs0wKOSUv77Xf6ibq0Rnsh7qzEdq1tgZbtENU6aaJShzQHFK6WXWuHtZtVGiPZRSePmu_zwxOW191rkV3QU4D5nH-E2fk7f7udfEYL58fnha3y9hwyIdYAxNIs9IwiQYklRoTKEuqGUIijc5TrHKWiAwLqTODBU81k1RTAbkoEsZn5Grs27vuY4t-UJtu62wYqThLRS4EcAhVbKwyrvPeYaV6V7fafSmgaq9PjfpU0KcO-tQuQPIfZOpB7xWEPevmOMpH1Ic5doXu71dHqG_X7ofy |
| CitedBy_id | crossref_primary_10_1007_s11760_025_04358_3 |
| Cites_doi | 10.1109/JBHI.2018.2808281 10.1016/j.cmpb.2014.09.005 10.1109/ACCESS.2020.3021795 10.3390/s23115212 10.3390/healthcare10010172 10.1109/WACV56688.2023.00397 10.1109/CVPR.2018.00745 10.1109/ACCESS.2021.3054469 10.1016/j.patrec.2018.08.031 10.1007/978-3-030-01234-2_1 10.1016/j.compbiomed.2022.105626 10.1109/EMBC44109.2020.9175844 10.1007/978-3-031-19778-9_18 10.1145/3136755.3136802 10.1007/978-3-031-27066-6_20 10.1109/ICCV.2017.74 10.1093/ageing/afac205 10.1007/s12652-021-03250-5 10.3390/electronics10080898 10.1109/ICASSP39728.2021.9414568 10.3390/diagnostics12123060 10.1145/3474085.3475272 10.1109/ICPR48806.2021.9413331 10.1016/j.jvcir.2021.103407 10.1117/1.JEI.22.4.041106 10.3390/ijerph20136284 10.1109/ICCV48922.2021.00988 10.18653/v1/D19-1224 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11760-024-03652-w |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1863-1711 |
| ExternalDocumentID | 10_1007_s11760_024_03652_w |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB JQ2 |
| ID | FETCH-LOGICAL-c319t-a126e07dc28ec1808ae41dd0a2e148ca95ef92467eb8a7ceb35a280a06196b423 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375649500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-1703 |
| IngestDate | Sat Oct 11 06:55:53 EDT 2025 Sat Nov 29 05:31:04 EST 2025 Tue Nov 18 21:22:48 EST 2025 Fri Feb 21 02:36:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Computer vision Vision transformer Attention mechanism Fall detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a126e07dc28ec1808ae41dd0a2e148ca95ef92467eb8a7ceb35a280a06196b423 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9563-6703 0000-0001-9806-3285 |
| PQID | 3256966131 |
| PQPubID | 2044169 |
| ParticipantIDs | proquest_journals_3256966131 crossref_primary_10_1007_s11760_024_03652_w crossref_citationtrail_10_1007_s11760_024_03652_w springer_journals_10_1007_s11760_024_03652_w |
| PublicationCentury | 2000 |
| PublicationDate | 20250100 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Signal, image and video processing |
| PublicationTitleAbbrev | SIViP |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | M Montero-Odasso (3652_CR1) 2022; 51 B Kwolek (3652_CR28) 2014; 117 I Charfi (3652_CR27) 2013; 22 3652_CR13 Q Feng (3652_CR7) 2020; 130 3652_CR14 3652_CR15 3652_CR16 A Núñez-Marcos (3652_CR18) 2017; 2017 I Lage (3652_CR12) 2023; 20 3652_CR30 3652_CR31 3652_CR10 3652_CR32 3652_CR11 T Alanazi (3652_CR5) 2022; 12 DR Beddiar (3652_CR33) 2022; 82 E Alam (3652_CR3) 2022; 146 S Zou (3652_CR4) 2021; 10 3652_CR9 3652_CR24 3652_CR25 3652_CR26 Y Chen (3652_CR6) 2020; 8 X Cai (3652_CR17) 2021; 9 SJ Berlin (3652_CR8) 2022; 13 3652_CR29 3652_CR20 NT Newaz (3652_CR2) 2023; 23 3652_CR21 3652_CR22 3652_CR23 N Lu (3652_CR19) 2018; 23 |
| References_xml | – volume: 23 start-page: 314 issue: 1 year: 2018 ident: 3652_CR19 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2808281 – volume: 117 start-page: 489 issue: 3 year: 2014 ident: 3652_CR28 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2014.09.005 – volume: 8 start-page: 161337 year: 2020 ident: 3652_CR6 publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.3021795 – volume: 23 start-page: 5212 issue: 11 year: 2023 ident: 3652_CR2 publication-title: Sensors. doi: 10.3390/s23115212 – ident: 3652_CR11 doi: 10.3390/healthcare10010172 – ident: 3652_CR21 doi: 10.1109/WACV56688.2023.00397 – ident: 3652_CR23 – ident: 3652_CR13 doi: 10.1109/CVPR.2018.00745 – volume: 9 start-page: 18318 year: 2021 ident: 3652_CR17 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3054469 – volume: 130 start-page: 242 year: 2020 ident: 3652_CR7 publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2018.08.031 – ident: 3652_CR14 doi: 10.1007/978-3-030-01234-2_1 – volume: 146 start-page: 105626 year: 2022 ident: 3652_CR3 publication-title: Comput. Bio. Med. doi: 10.1016/j.compbiomed.2022.105626 – volume: 2017 start-page: 9474806 issue: 1 year: 2017 ident: 3652_CR18 publication-title: Wireless Commun. Mobile Comput. – ident: 3652_CR9 doi: 10.1109/EMBC44109.2020.9175844 – ident: 3652_CR25 doi: 10.1007/978-3-031-19778-9_18 – ident: 3652_CR16 doi: 10.1145/3136755.3136802 – ident: 3652_CR26 doi: 10.1007/978-3-031-27066-6_20 – ident: 3652_CR31 doi: 10.1109/ICCV.2017.74 – volume: 51 start-page: 205 issue: 9 year: 2022 ident: 3652_CR1 publication-title: Age Age. doi: 10.1093/ageing/afac205 – volume: 13 start-page: 5751 issue: 12 year: 2022 ident: 3652_CR8 publication-title: J. Ambient Int. Human. Comput. doi: 10.1007/s12652-021-03250-5 – volume: 10 start-page: 898 issue: 8 year: 2021 ident: 3652_CR4 publication-title: Electronics doi: 10.3390/electronics10080898 – ident: 3652_CR20 – ident: 3652_CR10 – ident: 3652_CR15 doi: 10.1109/ICASSP39728.2021.9414568 – volume: 12 start-page: 3060 issue: 12 year: 2022 ident: 3652_CR5 publication-title: Diagnostics doi: 10.3390/diagnostics12123060 – ident: 3652_CR24 doi: 10.1145/3474085.3475272 – ident: 3652_CR32 doi: 10.1109/ICPR48806.2021.9413331 – volume: 82 start-page: 103407 year: 2022 ident: 3652_CR33 publication-title: J. Visual Commun. Image Represent. doi: 10.1016/j.jvcir.2021.103407 – volume: 22 start-page: 041106 issue: 4 year: 2013 ident: 3652_CR27 publication-title: J. Electron. Imag. doi: 10.1117/1.JEI.22.4.041106 – volume: 20 start-page: 6284 issue: 13 year: 2023 ident: 3652_CR12 publication-title: Int. J. Environ. Res. Public Health. doi: 10.3390/ijerph20136284 – ident: 3652_CR30 – ident: 3652_CR22 doi: 10.1109/ICCV48922.2021.00988 – ident: 3652_CR29 doi: 10.18653/v1/D19-1224 |
| SSID | ssj0000327868 |
| Score | 2.334826 |
| Snippet | Fall detection is a crucial research topic in public healthcare. With advances in intelligent surveillance and deep learning, vision-based fall detection has... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 18 |
| SubjectTerms | Accuracy Algorithms Computer Imaging Computer Science Deep learning Design Efficiency Fall detection Image Processing and Computer Vision Machine learning Multimedia Information Systems Neural networks Original Paper Pattern Recognition and Graphics Signal,Image and Speech Processing Time series Vision Visual perception Visual perception driven algorithms |
| Title | Visual perception enhancement fall detection algorithm based on vision transformer |
| URI | https://link.springer.com/article/10.1007/s11760-024-03652-w https://www.proquest.com/docview/3256966131 |
| Volume | 19 |
| WOSCitedRecordID | wos001375649500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT8Iw9EXRgx5EUSOKpgdv2qTtYO2Oxkg8GGNQCbelW4uQ4CBjyN_37YupURO97LB-bHkffR99HwDnQxN4MlCaIhPiQ4WMBmkiMNKywSGu3LxryZ28v1eDgfdQJIXNy2j38koyO6mrZDcuXUZRplA8dTuCLtdhA8WdShs29B77K88Kc4RUeQ4cfolypOkiW-b7bT5LpErN_HIzmgmcbv1_v7oLO4WCSa5yitiDNRs1oF42byAFLzdg-0Mlwn3o9cfzBS6breJciI1GKUWk3kMy1JMJMTbJ4rYioicv03icjF5JKgQNwVd5jjpJSj3Yxgfw3L15ur6lRbsFGiIfJlRz4VomTSiUDbliSts2N4ZpYdFmCrXXsUO01lxpEbcyRCu8o4ViGjUCzw1QLTuEWjSN7BEQwZRUxkgurIsLRKB5oJlxXD1kqh04TeAlyP2wqEWetsSY-FUV5RSEPoLQz0DoL5twsVozyytx_Dq7VWLSL7hy7juo36F5xx3ehMsSc9Xwz7sd_236CWyJtE1w5qlpQS2JF_YUNsO3ZDyPzzJqfQeowORM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JSsNA9KFVUA_WFes6B286MDNpM5OjiFKxFqm19BYmmakWapQ22t_3ZWtUVNBLDpkl4S3zlnkLwPHABJ4MlKbIhPhQIaNBkgiMtGxwiCs361rSku226ve92zwpbFJEuxdXkulJXSa7cekyijKF4qnbEHQ6Dwt1lFhJxfzOXW_mWWGOkCrLgcMvUY40nWfLfL_NZ4lUqplfbkZTgXNZ_d-vrsFqrmCSs4wi1mHORhtQLZo3kJyXN2DlQyXCTej0hpNXXPYyi3MhNnpMKCLxHpKBHo2IsXEatxURPXp4Hg_jxyeSCEFD8FWWo07iQg-24y24v7zonjdp3m6BhsiHMdVcuJZJEwplQ66Y0rbOjWFaWLSZQu017ACtNVdaxK0M0QpvaKGYRo3AcwNUy7ahEj1HdgeIYEoqYyQX1sUFItA80Mw4rh4wVQ-cGvAC5H6Y1yJPWmKM_LKKcgJCH0HopyD0pzU4ma15ySpx_Dp7v8Ckn3PlxHdQv0Pzjju8BqcF5srhn3fb_dv0I1hqdm9afuuqfb0HyyJpGZx6bfahEo9f7QEshm_xcDI-TCn3HWTS5zA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CcGB8RSDATlwg4gk3ZrsiIAJBJoQj2m3Km1SmDTKtBX4-zh9bIAACXHpoXk0cuzaTvzZAPuxCZsyVJqiEOJDRYyGDgiMvGywiSs_r1pyJdtt1e02rz-g-LNo9_JKMsc0uCxNSXo0MPHRBPjGpc8o6heKf-CGoG_TMFt3gfTOX7_tjE9ZmCekyvFw-FXKkb8L5Mz303zWThOT88staaZ8WpX_L3sZlgrDkxznnLICUzZZhUpZ1IEUMr4Kix8yFK7BTac3esFhg3H8C7HJo-MUd6pIYt3vE2PTLJ4rIbr_8DzspY9PxClHQ_BVjl0naWkf2-E63LfO7k7OaVGGgUYonynVXPiWSRMJZSOumNK2zo1hWlj0pSLdbNgYvThfWtxzGaF33tBCMY2WQtMP0VzbgJnkObGbQARTUhkjubA-DhCh5qFmxvN1zFQ99KrAS_IHUZGj3JXK6AeT7MqOhAGSMMhIGLxV4WA8ZpBn6Pi1d63c1aCQ1lHgod2Hbh_3eBUOy12cNP8829bfuu_B_PVpK7i6aF9uw4JwlYSzw5wazKTDF7sDc9Fr2hsNdzMmfgd1IvAU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+perception+enhancement+fall+detection+algorithm+based+on+vision+transformer&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Cai%2C+Xi&rft.au=Wang%2C+Xiangcheng&rft.au=Bao%2C+Kexin&rft.au=Chen%2C+Yinuo&rft.date=2025-01-01&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1007%2Fs11760-024-03652-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11760_024_03652_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |