A meta-heuristic feature selection algorithm combining random sampling accelerator and ensemble using data perturbation
Meta-heuristic algorithms have been extensively utilized in feature selection tasks because they can obtain the global optimal solution. However, the meta-heuristic algorithm will take too much time in the face of a large number of samples. Although most of the studies compromise to approximate opti...
Uložené v:
| Vydané v: | Applied intelligence (Dordrecht, Netherlands) Ročník 53; číslo 24; s. 29781 - 29798 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.12.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0924-669X, 1573-7497 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!