A meta-heuristic feature selection algorithm combining random sampling accelerator and ensemble using data perturbation

Meta-heuristic algorithms have been extensively utilized in feature selection tasks because they can obtain the global optimal solution. However, the meta-heuristic algorithm will take too much time in the face of a large number of samples. Although most of the studies compromise to approximate opti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied intelligence (Dordrecht, Netherlands) Ročník 53; číslo 24; s. 29781 - 29798
Hlavní autori: Zhang, Shuaishuai, Liu, Keyu, Xu, Taihua, Yang, Xibei, Zhang, Ao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.12.2023
Springer Nature B.V
Predmet:
ISSN:0924-669X, 1573-7497
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Meta-heuristic algorithms have been extensively utilized in feature selection tasks because they can obtain the global optimal solution. However, the meta-heuristic algorithm will take too much time in the face of a large number of samples. Although most of the studies compromise to approximate optimal solutions for avoiding time-consuming problems, a new problem with reduced classification performance, especially classification stability, is then generated. Aiming to above problems, this paper proposes a new feature selection framework. First, this framework exploits a voting ensemble strategy to improve classification stability by reducing the impact of misclassified labels on the overall classification results. Second, the framework uses a data perturbation strategy to enhance classification accuracy. In particular, the data perturbation strategy is able to generate more neighborhood relationships in the dataset, which could reveal the distribution of various features of the samples. A voting ensemble of different feature distributions is capable of extracting more information from the dataset, then the initially misclassified samples are more likely to be returned to the correct classification. Third, the framework takes a random sampling accelerator into account to solve the problem of excessive time consumption by reducing the size of the search sample space. Finally, for the sake of verifying the effectiveness of the proposed framework, four meta-heuristic feature selection methods based on a neighborhood rough set are compared on 20 datasets. The experimental results indicate that our framework could improve classification performance and accelerate feature selection, particularly in confronting large sample sizes.
AbstractList Meta-heuristic algorithms have been extensively utilized in feature selection tasks because they can obtain the global optimal solution. However, the meta-heuristic algorithm will take too much time in the face of a large number of samples. Although most of the studies compromise to approximate optimal solutions for avoiding time-consuming problems, a new problem with reduced classification performance, especially classification stability, is then generated. Aiming to above problems, this paper proposes a new feature selection framework. First, this framework exploits a voting ensemble strategy to improve classification stability by reducing the impact of misclassified labels on the overall classification results. Second, the framework uses a data perturbation strategy to enhance classification accuracy. In particular, the data perturbation strategy is able to generate more neighborhood relationships in the dataset, which could reveal the distribution of various features of the samples. A voting ensemble of different feature distributions is capable of extracting more information from the dataset, then the initially misclassified samples are more likely to be returned to the correct classification. Third, the framework takes a random sampling accelerator into account to solve the problem of excessive time consumption by reducing the size of the search sample space. Finally, for the sake of verifying the effectiveness of the proposed framework, four meta-heuristic feature selection methods based on a neighborhood rough set are compared on 20 datasets. The experimental results indicate that our framework could improve classification performance and accelerate feature selection, particularly in confronting large sample sizes.
Author Xu, Taihua
Liu, Keyu
Zhang, Ao
Zhang, Shuaishuai
Yang, Xibei
Author_xml – sequence: 1
  givenname: Shuaishuai
  surname: Zhang
  fullname: Zhang, Shuaishuai
  organization: School of Computer, Jiangsu University of Science and Technology
– sequence: 2
  givenname: Keyu
  surname: Liu
  fullname: Liu, Keyu
  organization: School of Computing and Artificial Intelligence, Southwest Jiaotong University
– sequence: 3
  givenname: Taihua
  orcidid: 0000-0001-5241-6647
  surname: Xu
  fullname: Xu, Taihua
  email: xth19890410@163.com
  organization: School of Computer, Jiangsu University of Science and Technology, Key Laboratory of Oceanographic Big Data Mining & Application of Zhejiang Province, Zhejiang Ocean University
– sequence: 4
  givenname: Xibei
  surname: Yang
  fullname: Yang, Xibei
  organization: School of Computer, Jiangsu University of Science and Technology
– sequence: 5
  givenname: Ao
  surname: Zhang
  fullname: Zhang, Ao
  organization: School of Computer, Jiangsu University of Science and Technology
BookMark eNp9kE9r3DAQxUVJoZu0X6AnQc5uRn9sWccQ2iYQyCWF3sRYnt0o2NJGkin99rWzhUIPucwwzPu9Gd45O4spEmOfBXwRAOaqCNC9bUCqBlqx1XdsJ1qjGqOtOWM7sFI3XWd_fmDnpTwDgFIgduzXNZ-pYvNESw6lBs_3hHXJxAtN5GtIkeN0SDnUp5n7NA8hhnjgGeOYZl5wPk7bjN6v-ow1Zb6uOMVC8zARX8q2HrEiP1JenQfcTD-y93ucCn362y_Yj29fH29um_uH73c31_eNV8LWBmHQY2eMpJHkAOi1Frb1svf9MI7Gj1IZ24mWfIfK73HsYVADKElgLLZaXbDLk-8xp5eFSnXPaclxPemkBQNCK92vqv6k8jmVkmnvfKivf9aMYXIC3BazO8Xs1pjda8wOVlT-hx5zmDH_fhtSJ6is4nig_O-rN6g_PNuUvA
CitedBy_id crossref_primary_10_3390_math12111723
crossref_primary_10_32604_cmc_2024_053892
crossref_primary_10_1007_s10115_024_02299_w
crossref_primary_10_1007_s12190_024_02201_5
Cites_doi 10.1016/j.patrec.2016.03.002
10.1016/j.knosys.2017.10.033
10.1016/j.knosys.2020.106014
10.1109/TFUZZ.2022.3216990
10.1016/j.ijar.2019.12.001
10.3233/IFS-222910
10.1016/j.ijar.2018.11.010
10.1007/s12559-022-10022-6
10.1007/s13042-019-00959-w
10.1007/s00500-021-06424-7
10.1016/j.disopt.2017.12.001
10.1016/j.eswa.2006.10.043
10.1109/TETCI.2020.2998919
10.1109/TMI.2020.3046692
10.1016/S0020-0255(98)10006-3
10.1609/aaai.v35i13.17362
10.1007/s13042-022-01618-3
10.4018/IJISP.2020070106
10.1109/TKDE.2019.2959988
10.1109/TBME.2021.3113593
10.1016/j.ins.2019.01.033
10.1109/TNNLS.2022.3184120
10.1109/TCSI.2021.3118301
10.1016/j.ijar.2021.09.016
10.1109/ACCESS.2022.3162074
10.1109/TFUZZ.2021.3096212
10.1007/s00521-015-1923-y
10.1016/j.dam.2020.06.020
10.1016/j.ins.2019.01.041
10.1109/TFUZZ.2022.3217377
10.1016/j.asoc.2018.05.013
10.1016/j.ins.2022.12.074
10.1016/j.jocs.2023.101942
10.1109/TII.2020.3007419
10.1109/CVPR.2019.00723
10.3390/sym14091828
10.1016/j.ins.2019.07.051
10.1007/978-3-540-87563-5_6
10.1109/TKDE.2010.254
10.1016/j.ijar.2010.01.004
10.1109/TFUZZ.2020.3001670
10.1007/s13042-019-00996-5
10.1016/j.ins.2016.04.005
10.3390/math10040553
10.1016/S0020-0255(02)00197-4
10.1109/ACCESS.2019.2926799
10.1016/j.ins.2013.12.043
10.1109/ACCESS.2020.2970438
10.1016/j.ins.2008.05.024
10.1109/TFUZZ.2019.2955047
10.1109/TGRS.2021.3129841
10.1016/j.ijar.2021.06.005
10.1016/j.neucom.2015.06.090
10.1016/j.patcog.2016.05.012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-023-05123-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Computer Science Database (NC LIVE)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 29798
ExternalDocumentID 10_1007_s10489_023_05123_0
GrantInformation_xml – fundername: Innovative Research Group Project of the National Natural Science Foundation of China
  grantid: NO.62006099; NO.62076111
  funderid: http://dx.doi.org/10.13039/100014718
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-a0b4d6772ede2b0ac44195c28c8bdd7cd2379615ec6a3cfad80b3b032e079a543
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001097012500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-669X
IngestDate Wed Nov 05 14:48:07 EST 2025
Sat Nov 29 05:33:38 EST 2025
Tue Nov 18 22:00:55 EST 2025
Fri Feb 21 02:40:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Feature selection
Neighborhood rough set
Meta-heuristic
Random sampling
Data perturbation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a0b4d6772ede2b0ac44195c28c8bdd7cd2379615ec6a3cfad80b3b032e079a543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5241-6647
PQID 2907014348
PQPubID 326365
PageCount 18
ParticipantIDs proquest_journals_2907014348
crossref_citationtrail_10_1007_s10489_023_05123_0
crossref_primary_10_1007_s10489_023_05123_0
springer_journals_10_1007_s10489_023_05123_0
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Xu, Wang, Yang (CR28) 2020; 118
Tawhid, Ibrahim (CR27) 2020; 11
Dong, Wang, Chen (CR2) 2023; 467
Chen, Liu, Yang, Fujita (CR47) 2022; 140
Hu, Yu, Liu, Wu (CR33) 2008; 178
Yao, Zhang, Wang (CR59) 2008; 5150
Liu, Li, Yang, Yang, Liu (CR5) 2022; 131
Aksakalli, Malekipirbazari (CR62) 2016; 75
Ding, Triguero, Lin (CR11) 2021; 5
Chen, Lin, Mi, Li, Ding (CR4) 2022; 30
Wei, Wu, Liang, Cui, Sun (CR14) 2018; 140
Yan, Ba, Xu, Yu, Shi, Han (CR13) 2022; 10
Zou, Li, Jiang, Yang (CR38) 2019; 7
Campagner, Ciucci, Hüllermeier (CR25) 2021; 136
CR9
Yang, Liang, Yu (CR32) 2019; 105
CR48
CR46
Qian, Han, Yu, Liu (CR31) 2023; 44
Ismail, Sandell (CR6) 2022; 69
Etesami, Haemers (CR16) 2020; 285
Gong, Liu, Xu, Wang, Yang (CR43) 2022; 13
Hu, Zhang, Chen, Pedrycz, Yu (CR52) 2010; 51
Pawlak (CR26) 2002; 147
Yang, Qin, Sang, Xu (CR37) 2021; 111
Zhang, Chen, Chen, Chen (CR17) 2018; 28
Hu, Yu, Xie (CR53) 2008; 34
Wei, Cui, Liang, Wang (CR15) 2016; 360
Liu, Yang, Fujita, Liu, Yang, Qian (CR58) 2019; 505
Ghaemi, Feizi-Derakhshi (CR24) 2016; 60
CR57
CR56
CR55
Zhang, Zhan, Wu (CR34) 2021; 29
Kanna, Santhi (CR42) 2021; 226
Hu, Pedrycz, Yu, Lang (CR54) 2009; 40
Zhang, Li, Liang (CR30) 2020; 507
Ding, Nayak, Naik, Pelusi, Mishara (CR1) 2021; 17
Baisantry, Sao, Shukla (CR10) 2022; 60
Tang, Zhang (CR7) 2022; 69
Sahlol, Elaziz, Al-Qaness, Kim (CR40) 2020; 8
Feng, Gong (CR39) 2022; 10
Guha, Ghosh, Bera, Sarkar, Mirjalili (CR18) 2023; 67
Shreem, Turabieh, Azwari, Baothman (CR23) 2022; 26
Zhang, Mao, Li, Tian (CR41) 2014; 281
Elaziz, Ouadfel, El-Latif, Ali Ibrahim (CR19) 2022; 14
Zhang, Mei, Li, Yang, Qian (CR3) 2023; 31
Yang, Yao (CR44) 2018; 70
Li, Kamnitsas, Glocker (CR8) 2021; 40
Luan, Li, Liu (CR21) 2016; 174
Chen, Li, Fan, Luo (CR49) 2019; 483
Jia, Rao, Shang, Li (CR51) 2020; 11
Wang, Deb, Cui (CR22) 2019; 31
Li, Liu (CR45) 2012; 24
Chen, Wang, Yang, Mi, Liu (CR50) 2021; 229
Yao (CR35) 1998; 111
CR61
CR60
An, Guo, Wang, Guo, Dai (CR36) 2023; 624
Momeni, Valdés, Rodrigues, Sandi, Atienza (CR12) 2022; 69
Penmatsa, Kalidindi, Mallidi (CR20) 2020; 14
Fujita, Gaeta, Loia, Orciuoli (CR29) 2020; 28
YJ Tang (5123_CR7) 2022; 69
N Momeni (5123_CR12) 2022; 69
RKV Penmatsa (5123_CR20) 2020; 14
C Zhang (5123_CR30) 2020; 507
J Qian (5123_CR31) 2023; 44
ZC Gong (5123_CR43) 2022; 13
QH Hu (5123_CR54) 2009; 40
HM Chen (5123_CR49) 2019; 483
5123_CR61
GG Wang (5123_CR22) 2019; 31
YY Yao (5123_CR35) 1998; 111
5123_CR60
WP Ding (5123_CR11) 2021; 5
Z Pawlak (5123_CR26) 2002; 147
V Aksakalli (5123_CR62) 2016; 75
QH Hu (5123_CR53) 2008; 34
YD Zhang (5123_CR41) 2014; 281
DC Li (5123_CR45) 2012; 24
JD Feng (5123_CR39) 2022; 10
L Yang (5123_CR37) 2021; 111
WW Yan (5123_CR13) 2022; 10
A Campagner (5123_CR25) 2021; 136
W Wei (5123_CR14) 2018; 140
Y Chen (5123_CR50) 2021; 229
XY Jia (5123_CR51) 2020; 11
5123_CR9
MA Tawhid (5123_CR27) 2020; 11
TH Xu (5123_CR28) 2020; 118
QH Hu (5123_CR33) 2008; 178
X Zhang (5123_CR3) 2023; 31
M Baisantry (5123_CR10) 2022; 60
Z Chen (5123_CR47) 2022; 140
YY Yao (5123_CR59) 2008; 5150
ZJ Li (5123_CR8) 2021; 40
R Guha (5123_CR18) 2023; 67
MA Elaziz (5123_CR19) 2022; 14
5123_CR48
QH Hu (5123_CR52) 2010; 51
5123_CR46
XY Luan (5123_CR21) 2016; 174
XB Yang (5123_CR32) 2019; 105
H Fujita (5123_CR29) 2020; 28
O Etesami (5123_CR16) 2020; 285
PR Kanna (5123_CR42) 2021; 226
K Zhang (5123_CR34) 2021; 29
JK Chen (5123_CR4) 2022; 30
WP Ding (5123_CR1) 2021; 17
5123_CR55
XB Yang (5123_CR44) 2018; 70
5123_CR57
S An (5123_CR36) 2023; 624
5123_CR56
AT Sahlol (5123_CR40) 2020; 8
KY Liu (5123_CR5) 2022; 131
W Wei (5123_CR15) 2016; 360
A Zhang (5123_CR17) 2018; 28
A Ismail (5123_CR6) 2022; 69
M Ghaemi (5123_CR24) 2016; 60
LJ Dong (5123_CR2) 2023; 467
L Zou (5123_CR38) 2019; 7
KY Liu (5123_CR58) 2019; 505
SS Shreem (5123_CR23) 2022; 26
References_xml – volume: 229
  year: 2021
  ident: CR50
  article-title: Granular ball guided selector for attribute reduction
  publication-title: Knowl Based Syst
– volume: 5
  start-page: 29
  issue: 1
  year: 2021
  end-page: 41
  ident: CR11
  article-title: Coevolutionary fuzzy at tribute order reduction with complete attribute-value space tree
  publication-title: IEEE Trans Emerging Top Comput Intell
– volume: 111
  start-page: 239
  year: 1998
  end-page: 259
  ident: CR35
  article-title: Relational interpretations of neighborhood operators and rough set approximation operators
  publication-title: Inf Sci
– volume: 69
  start-page: 424
  issue: 2
  year: 2022
  end-page: 428
  ident: CR6
  article-title: A low-complexity endurance modulation for flash memory
  publication-title: IEEE Trans Circ Syst II: Express Briefs
– volume: 11
  start-page: 573
  issue: 3
  year: 2020
  end-page: 602
  ident: CR27
  article-title: Feature selection based on rough set approach, wrapper approach, and binary whale optimization algorithm
  publication-title: Int J Mach Learn Cybern
– volume: 360
  start-page: 181
  year: 2016
  end-page: 201
  ident: CR15
  article-title: Fuzzy rough approximations for set-valued data
  publication-title: Inf Sci
– volume: 31
  start-page: 1995
  issue: 7
  year: 2019
  end-page: 2014
  ident: CR22
  publication-title: Monarch butterfly optimization. Neural Comput Appl
– volume: 31
  start-page: 1981
  issue: 6
  year: 2023
  end-page: 1994
  ident: CR3
  article-title: Instance and feature selection using fuzzy rough sets: a bi-selection approach for data reduction
  publication-title: IEEE Trans Fuzzy Syst
– volume: 40
  start-page: 137
  issue: 1
  year: 2009
  end-page: 150
  ident: CR54
  article-title: Selecting Discrete and Continuous Features Based on Neighborhood Decision Error Minimization
  publication-title: IEEE Trans Syst Man Cybern B
– volume: 13
  start-page: 3645
  issue: 11
  year: 2022
  end-page: 3662
  ident: CR43
  article-title: Unsupervised attribute reduction: improving effectiveness and efficiency
  publication-title: Int J Mach Learn Cybern
– volume: 11
  start-page: 1047
  issue: 5
  year: 2020
  end-page: 1060
  ident: CR51
  article-title: Similarity-based attribute reduction in rough set theory: A clustering perspective
  publication-title: Int J Mach Learn Cybern
– ident: CR61
– volume: 281
  start-page: 586
  year: 2014
  end-page: 600
  ident: CR41
  article-title: Salient region detection for complex background images using integrated features
  publication-title: Inf Sci
– volume: 111
  year: 2021
  ident: CR37
  article-title: Dynamic fuzzy neighborhood rough set approach for interval-valued information systems with fuzzy decision
  publication-title: Appl Soft Comput
– volume: 70
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR44
  article-title: Ensemble selector for attribute reduction
  publication-title: Appl Soft Comput
– ident: CR46
– volume: 17
  start-page: 4298
  issue: 6
  year: 2021
  end-page: 4307
  ident: CR1
  article-title: Fuzzy and real-coded chemical reaction optimization for intrusion detection in industrial big data environment
  publication-title: IEEE Trans Ind Inf
– volume: 40
  start-page: 1065
  issue: 3
  year: 2021
  end-page: 1077
  ident: CR8
  article-title: Analyzing overfitting under class imbalance in neural networks for image segmentation
  publication-title: IEEE Trans Med Imaging
– volume: 34
  start-page: 866
  issue: 2
  year: 2008
  end-page: 876
  ident: CR53
  publication-title: Neighborhood classifiers. Expert Syst Appl
– volume: 131
  year: 2022
  ident: CR5
  article-title: Neighborhood rough set based ensemble feature selection with cross-class sample granulation
  publication-title: Appl Soft Comput
– volume: 30
  start-page: 2886
  issue: 8
  year: 2022
  end-page: 2901
  ident: CR4
  article-title: A spectral feature selection approach with kernelized fuzzy rough sets
  publication-title: IEEE Trans Fuzzy Syst
– volume: 136
  start-page: 150
  year: 2021
  end-page: 167
  ident: CR25
  article-title: Rough set-based feature selection for weakly labeled data
  publication-title: Int J Approx Reason
– volume: 140
  start-page: 75
  year: 2022
  end-page: 91
  ident: CR47
  article-title: Random sampling accelerator for attribute reduction
  publication-title: Int J Approx Reason
– ident: CR9
– volume: 28
  start-page: 54
  year: 2018
  end-page: 62
  ident: CR17
  article-title: On the NP-hardness of scheduling with time restrictions
  publication-title: Discret Optim
– ident: CR57
– ident: CR60
– volume: 69
  start-page: 694
  issue: 2
  year: 2022
  end-page: 706
  ident: CR7
  article-title: Low-complexity resource-shareable parallel generalized integrated interleaved encoder
  publication-title: IEEE Trans Circuits Syst I Regul Pap
– volume: 69
  start-page: 1072
  issue: 3
  year: 2022
  end-page: 1084
  ident: CR12
  article-title: CAFS: Cost-Aware Features Selection Method for Multimodal Stress Monitoring on Wearable Devices
  publication-title: IEEE Trans Biomed Eng
– volume: 14
  start-page: 95
  issue: 3
  year: 2020
  end-page: 114
  ident: CR20
  article-title: Feature reduction and optimization of malware detection system using ant colony optimization and rough sets
  publication-title: Int J Inf Secur Priv
– volume: 483
  start-page: 1
  year: 2019
  end-page: 20
  ident: CR49
  article-title: Feature selection for imbalanced data based on neighborhood rough sets
  publication-title: Inf Sci
– volume: 28
  start-page: 831
  issue: 5
  year: 2020
  end-page: 845
  ident: CR29
  article-title: Hypotheses analysis and assessment in counterterrorism activities: a method based on OWA and fuzzy probabilistic rough sets
  publication-title: IEEE Trans Fuzzy Syst
– volume: 285
  start-page: 526
  year: 2020
  end-page: 529
  ident: CR16
  article-title: On NP-hard graph properties characterized by the spectrum
  publication-title: Discret Appl Math
– volume: 14
  start-page: 2274
  issue: 6
  year: 2022
  end-page: 2295
  ident: CR19
  article-title: Feature Selection Based on Modified Bio-inspired Atomic Orbital Search Using Arithmetic Optimization and Opposite-Based Learning
  publication-title: Cognit Comput
– volume: 505
  start-page: 457
  year: 2019
  end-page: 472
  ident: CR58
  article-title: An efficient selector for multi-granularity attribute reduction
  publication-title: Inf Sci
– volume: 118
  start-page: 64
  year: 2020
  end-page: 78
  ident: CR28
  article-title: Finding strongly connected components of simple digraphs based on granulation strategy
  publication-title: Int J Approx Reason
– volume: 507
  start-page: 665
  year: 2020
  end-page: 683
  ident: CR30
  article-title: Multi-granularity three-way decisions with adjustable hesitant fuzzy linguistic multigranulation decision-theoretic rough sets over two universes
  publication-title: Inf Sci
– volume: 147
  start-page: 1
  issue: 1–4
  year: 2002
  end-page: 12
  ident: CR26
  article-title: Rough sets and intelligent data analysis
  publication-title: Inf Sci
– volume: 178
  start-page: 3577
  issue: 18
  year: 2008
  end-page: 3594
  ident: CR33
  article-title: Neighborhood rough set based heterogeneous feature subset selection
  publication-title: Inf Sci
– ident: CR56
– volume: 467
  year: 2023
  ident: CR2
  article-title: Incremental feature selection with fuzzy rough sets for dynamic data sets
  publication-title: Fuzzy Sets Syst
– volume: 67
  start-page: 1877
  year: 2023
  end-page: 7503
  ident: CR18
  article-title: Discrete equilibrium optimizer combined with simulated annealing for feature selection
  publication-title: J Comput Sci
– volume: 174
  start-page: 522
  year: 2016
  end-page: 529
  ident: CR21
  article-title: A novel attribute reduction algorithm based on rough set and improved artificial fish swarm algorithm
  publication-title: Neurocomputing
– ident: CR48
– volume: 7
  start-page: 90277
  year: 2019
  end-page: 90288
  ident: CR38
  article-title: An Improved Fish Swarm Algorithm for Neighborhood Rough Set Reduction and its Application
  publication-title: IEEE Access
– volume: 44
  start-page: 5617
  issue: 4
  year: 2023
  end-page: 5631
  ident: CR31
  article-title: Multi-granularity decision-theoretic rough sets based on the fuzzy T-equivalence relation with new strategies
  publication-title: J Intell Fuzzy Syst
– volume: 10
  start-page: 553
  issue: 4
  year: 2022
  ident: CR13
  article-title: Beam-Influenced Attribute Selector for Producing Stable Reduct
  publication-title: Mathematics
– volume: 105
  start-page: 112
  year: 2019
  end-page: 129
  ident: CR32
  article-title: Pseudo-label neighborhood rough set: Measures and attribute reductions
  publication-title: Int J Approx Reason
– volume: 51
  start-page: 453
  issue: 4
  year: 2010
  end-page: 471
  ident: CR52
  article-title: Gaussian kernel based fuzzy rough sets: Model uncertainty measures and applications
  publication-title: Int J Approx Reason
– volume: 226
  year: 2021
  ident: CR42
  article-title: Unified Deep Learning approach for Efficient Intrusion Detection System using Integrated Spatial-Temporal Features
  publication-title: Knowl Based Syst
– volume: 75
  start-page: 41
  year: 2016
  end-page: 47
  ident: CR62
  article-title: Feature selection via binary simultaneous perturbation stochastic approximation
  publication-title: Pattern Recognit Lett
– volume: 10
  start-page: 33301
  year: 2022
  end-page: 33312
  ident: CR39
  article-title: A Novel Feature Selection Method With Neighborhood Rough Set and Improved Particle Swarm Optimization
  publication-title: IEEE Access
– volume: 5150
  start-page: 100
  year: 2008
  end-page: 117
  ident: CR59
  article-title: On reduct construction algorithms
  publication-title: Trans. Comput. Sci. II
– volume: 60
  start-page: 121
  year: 2016
  end-page: 129
  ident: CR24
  article-title: Feature selection using Forest Optimization Algorithm
  publication-title: Pattern Recognit
– ident: CR55
– volume: 624
  start-page: 185
  year: 2023
  end-page: 199
  ident: CR36
  article-title: A soft neighborhood rough set model and its applications
  publication-title: Inf Sci
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: CR10
  article-title: Discriminative spectral spatial feature extraction-based band selection for hyper spectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 29
  start-page: 2491
  issue: 9
  year: 2021
  end-page: 2505
  ident: CR34
  article-title: On multi-criteria decision-making method based on a fuzzy rough set model with fuzzy -neighborhoods
  publication-title: IEEE Trans Fuzzy Syst
– volume: 140
  start-page: 142
  year: 2018
  end-page: 157
  ident: CR14
  article-title: Discernibility matrix based incremental attribute reduction for dynamic data
  publication-title: Knowl Based Syst
– volume: 24
  start-page: 452
  issue: 3
  year: 2012
  end-page: 464
  ident: CR45
  article-title: Extending attribute information for small data set classification
  publication-title: IEEE Trans Knowl Data Eng
– volume: 8
  start-page: 23011
  year: 2020
  end-page: 23021
  ident: CR40
  article-title: Handwritten Arabic Optical Character Recognition Approach Based on Hybrid Whale Optimization Algorithm With Neighborhood Rough Set
  publication-title: IEEE Access
– volume: 26
  start-page: 1811
  issue: 4
  year: 2022
  end-page: 1823
  ident: CR23
  article-title: Enhanced binary genetic algorithm as a feature selection to predict student performance
  publication-title: Soft Comput
– volume: 75
  start-page: 41
  year: 2016
  ident: 5123_CR62
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2016.03.002
– volume: 140
  start-page: 142
  year: 2018
  ident: 5123_CR14
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.10.033
– ident: 5123_CR46
– ident: 5123_CR57
  doi: 10.1016/j.knosys.2020.106014
– volume: 31
  start-page: 1981
  issue: 6
  year: 2023
  ident: 5123_CR3
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2022.3216990
– volume: 118
  start-page: 64
  year: 2020
  ident: 5123_CR28
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2019.12.001
– volume: 44
  start-page: 5617
  issue: 4
  year: 2023
  ident: 5123_CR31
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/IFS-222910
– volume: 105
  start-page: 112
  year: 2019
  ident: 5123_CR32
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2018.11.010
– volume: 14
  start-page: 2274
  issue: 6
  year: 2022
  ident: 5123_CR19
  publication-title: Cognit Comput
  doi: 10.1007/s12559-022-10022-6
– volume: 11
  start-page: 1047
  issue: 5
  year: 2020
  ident: 5123_CR51
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-00959-w
– volume: 26
  start-page: 1811
  issue: 4
  year: 2022
  ident: 5123_CR23
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-06424-7
– volume: 28
  start-page: 54
  year: 2018
  ident: 5123_CR17
  publication-title: Discret Optim
  doi: 10.1016/j.disopt.2017.12.001
– volume: 34
  start-page: 866
  issue: 2
  year: 2008
  ident: 5123_CR53
  publication-title: Neighborhood classifiers. Expert Syst Appl
  doi: 10.1016/j.eswa.2006.10.043
– volume: 5
  start-page: 29
  issue: 1
  year: 2021
  ident: 5123_CR11
  publication-title: IEEE Trans Emerging Top Comput Intell
  doi: 10.1109/TETCI.2020.2998919
– volume: 40
  start-page: 1065
  issue: 3
  year: 2021
  ident: 5123_CR8
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.3046692
– volume: 69
  start-page: 424
  issue: 2
  year: 2022
  ident: 5123_CR6
  publication-title: IEEE Trans Circ Syst II: Express Briefs
– volume: 111
  start-page: 239
  year: 1998
  ident: 5123_CR35
  publication-title: Inf Sci
  doi: 10.1016/S0020-0255(98)10006-3
– ident: 5123_CR60
  doi: 10.1609/aaai.v35i13.17362
– volume: 13
  start-page: 3645
  issue: 11
  year: 2022
  ident: 5123_CR43
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-022-01618-3
– volume: 14
  start-page: 95
  issue: 3
  year: 2020
  ident: 5123_CR20
  publication-title: Int J Inf Secur Priv
  doi: 10.4018/IJISP.2020070106
– ident: 5123_CR9
  doi: 10.1109/TKDE.2019.2959988
– volume: 69
  start-page: 1072
  issue: 3
  year: 2022
  ident: 5123_CR12
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2021.3113593
– volume: 507
  start-page: 665
  year: 2020
  ident: 5123_CR30
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.01.033
– ident: 5123_CR55
  doi: 10.1109/TNNLS.2022.3184120
– volume: 40
  start-page: 137
  issue: 1
  year: 2009
  ident: 5123_CR54
  publication-title: IEEE Trans Syst Man Cybern B
– volume: 69
  start-page: 694
  issue: 2
  year: 2022
  ident: 5123_CR7
  publication-title: IEEE Trans Circuits Syst I Regul Pap
  doi: 10.1109/TCSI.2021.3118301
– volume: 140
  start-page: 75
  year: 2022
  ident: 5123_CR47
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2021.09.016
– volume: 10
  start-page: 33301
  year: 2022
  ident: 5123_CR39
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3162074
– volume: 30
  start-page: 2886
  issue: 8
  year: 2022
  ident: 5123_CR4
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2021.3096212
– volume: 467
  year: 2023
  ident: 5123_CR2
  publication-title: Fuzzy Sets Syst
– volume: 31
  start-page: 1995
  issue: 7
  year: 2019
  ident: 5123_CR22
  publication-title: Monarch butterfly optimization. Neural Comput Appl
  doi: 10.1007/s00521-015-1923-y
– volume: 285
  start-page: 526
  year: 2020
  ident: 5123_CR16
  publication-title: Discret Appl Math
  doi: 10.1016/j.dam.2020.06.020
– volume: 483
  start-page: 1
  year: 2019
  ident: 5123_CR49
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.01.041
– ident: 5123_CR56
  doi: 10.1109/TFUZZ.2022.3217377
– volume: 70
  start-page: 1
  year: 2018
  ident: 5123_CR44
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.05.013
– volume: 624
  start-page: 185
  year: 2023
  ident: 5123_CR36
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.12.074
– volume: 111
  year: 2021
  ident: 5123_CR37
  publication-title: Appl Soft Comput
– volume: 67
  start-page: 1877
  year: 2023
  ident: 5123_CR18
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2023.101942
– volume: 17
  start-page: 4298
  issue: 6
  year: 2021
  ident: 5123_CR1
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2020.3007419
– ident: 5123_CR61
  doi: 10.1109/CVPR.2019.00723
– ident: 5123_CR48
  doi: 10.3390/sym14091828
– volume: 505
  start-page: 457
  year: 2019
  ident: 5123_CR58
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2019.07.051
– volume: 5150
  start-page: 100
  year: 2008
  ident: 5123_CR59
  publication-title: Trans. Comput. Sci. II
  doi: 10.1007/978-3-540-87563-5_6
– volume: 24
  start-page: 452
  issue: 3
  year: 2012
  ident: 5123_CR45
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2010.254
– volume: 51
  start-page: 453
  issue: 4
  year: 2010
  ident: 5123_CR52
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2010.01.004
– volume: 29
  start-page: 2491
  issue: 9
  year: 2021
  ident: 5123_CR34
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2020.3001670
– volume: 11
  start-page: 573
  issue: 3
  year: 2020
  ident: 5123_CR27
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-019-00996-5
– volume: 360
  start-page: 181
  year: 2016
  ident: 5123_CR15
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.04.005
– volume: 10
  start-page: 553
  issue: 4
  year: 2022
  ident: 5123_CR13
  publication-title: Mathematics
  doi: 10.3390/math10040553
– volume: 147
  start-page: 1
  issue: 1–4
  year: 2002
  ident: 5123_CR26
  publication-title: Inf Sci
  doi: 10.1016/S0020-0255(02)00197-4
– volume: 7
  start-page: 90277
  year: 2019
  ident: 5123_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926799
– volume: 281
  start-page: 586
  year: 2014
  ident: 5123_CR41
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2013.12.043
– volume: 8
  start-page: 23011
  year: 2020
  ident: 5123_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2970438
– volume: 178
  start-page: 3577
  issue: 18
  year: 2008
  ident: 5123_CR33
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2008.05.024
– volume: 28
  start-page: 831
  issue: 5
  year: 2020
  ident: 5123_CR29
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2019.2955047
– volume: 60
  start-page: 1
  year: 2022
  ident: 5123_CR10
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2021.3129841
– volume: 136
  start-page: 150
  year: 2021
  ident: 5123_CR25
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2021.06.005
– volume: 174
  start-page: 522
  year: 2016
  ident: 5123_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.090
– volume: 60
  start-page: 121
  year: 2016
  ident: 5123_CR24
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.05.012
– volume: 226
  year: 2021
  ident: 5123_CR42
  publication-title: Knowl Based Syst
– volume: 131
  year: 2022
  ident: 5123_CR5
  publication-title: Appl Soft Comput
– volume: 229
  year: 2021
  ident: 5123_CR50
  publication-title: Knowl Based Syst
SSID ssj0003301
Score 2.3691661
Snippet Meta-heuristic algorithms have been extensively utilized in feature selection tasks because they can obtain the global optimal solution. However, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29781
SubjectTerms Algorithms
Artificial Intelligence
Classification
Computer Science
Datasets
Feature selection
Heuristic
Heuristic methods
Machines
Manufacturing
Mechanical Engineering
Perturbation
Processes
Random sampling
Stability
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA86PXhxPnE6JQdvGmzT9HWSIYoHGYIKu5W8ugl7uXb67_slTVcU3MVLoTT9EvjleyT58v0QulTgUqkQEYHoLSEskApUiueE-xFE-4KzVNjq-k9xv58MBumz23ArXFplbROtoVYzafbIbyis4kwtOpbczj-IYY0yp6uOQmMTbZkqCb5N3XtZWWJYq1vGPOiVRFE6cJdm3NU5ZpKFqMle883zp2Nqos1fB6TW7zy0_zviPbTrIk7cq6bIPtrQ0wPUrtkcsFPuQ_TVwxNdcjLSy6p6M861rfqJC8uVAwBiPh5CD-VogmEIwnJLYHB2ajbBBTe56fDOpYT29vQewycM62Q9EWONTYr9EJuUVDzXC5As7Kw4Qm8P9693j8TRMhAJ-loS7gmmIojKtdJUeFxCRJWGkiYyEUrFUtEgTiFQ0jLigcy5SjwRCC-g2otTHrLgGLWms6k-QVjnSvgKLGwoEgZ-UoAM5jEuqKeoDKMO8mtMMulqlhvqjHHWVFs2OGaAY2ZxzLwOulr9M68qdqxt3a3By5z2FlmDXAdd1_A3n_-Wdrpe2hnaMWz1VTZMF7XKxVKfo235Wb4Xiws7d78Bta72cQ
  priority: 102
  providerName: ProQuest
Title A meta-heuristic feature selection algorithm combining random sampling accelerator and ensemble using data perturbation
URI https://link.springer.com/article/10.1007/s10489-023-05123-0
https://www.proquest.com/docview/2907014348
Volume 53
WOSCitedRecordID wos001097012500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals New Starts & Take-Overs Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB68HnzxFutR8uCbBtJs9npUUQS1FM_qy5KrKvSQ7qp_30m6a1VU0JeBkOxkyWSOkMl8ANsGXSpXKqIYvSVUBNqgSskOlY0Io30lRap8df3TuNlM2u20VT4Ky6ts9-pK0lvqD4_dhEvv4S7frOHoJEyju0scYMP5xfW7_cUTusfJw7loFKXt8qnM9zw-u6NxjPnlWtR7m6P5__3nAsyV0SXZG22HRZiw_SWYr5AbSKnIy_C6R3q2kPTBPo8qNZOO9RU-Se5xcVBYRHbvB8PH4qFHcF7lcSQIOjYz6JFcujx0bEutcby_qSfYRfBMbHuqa4lLp78nLv2UPNkhclZ-B6zA1dHh5cExLSEYqEbdLKhkSpgII3BrLFdMaoye0lDzRCfKmFgbHsQpBkVWRzLQHWkSpgLFAm5ZnMpQBKsw1R_07RoQ2zGqYdCahioR6BMV8hBMSMWZ4TqMatCoJJHpsj65g8noZuPKym5lM1zZzK9sxmqw8_7N06g6x6-jNysBZ6Wm5hlP0ehh0CiSGuxWAh13_8xt_W_DN2DWIdWPMmE2YaoYPtstmNEvxWM-rMNkfHNbh-n9w2brHFsnMUV6xg4cjS-QtsK7ut_nb3998qw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5BQIJLoTxEKLQ-lBNYOLazjwNCiBaBkkY9gJTb4lcAKS-ym6L-qf7Gjp1dIpDKjUMvK63sHcm73zy8npkP4KtFl8q1jihGbwmVwlhUKdWjqhFhtK-VTHXort-OO52k201_LsCfqhbGp1VWNjEYajsy_h_5McddnO9FJ5PT8SP1rFH-dLWi0JjBouV-P-GWLT-5-obf94Dzi-_X55e0ZBWgBuFWUMW0tBEGlc46rpkyGBCkTcMTk2hrY2O5iFP0885ESpiesgnTQjPBHYtT1ZQC5S7CkhRJ7PWqFdNnyy9EoFtmuEoaRWm3LNIpS_WkT07iPluu4a8vHeE8un11IBv83MXa__aG1uFDGVGTs5kKfIQFN9yAtYqtgpTGaxOezsjAFYreu-msOzXpudDVlOSBCwgBSlT_DldU3A8ILlkH7gyCztyOBiRXPvce75UxOD9kJxAcIm6Yu4HuO-JLCO6IT7klYzdByTqgfgtu3mX521AbjoZuB4jrWd2w6EGaOpEYB2iUIZlUmjPLTTOqQ6PCQGbKnuyeGqSfzbtJe9xkiJss4CZjdTh8fmY860jy5uy9CixZaZ3ybI6UOhxVcJsP_1va7tvSvsDK5fWPdta-6rQ-wSr3aA-ZP3tQKyZTtw_L5lfxkE8-B70hcPveMPwLHMVUUg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BRRUXltIilld9gFOx8DrO61AhBF0VgVZ7AGnFJfUrgLQvNqGr_jV-XcfehBWVyo0Dl0iRnZGcfPNw_M0MwL5Bl8qViihGbwkVgTaoUjKnshVhtK-kSJWvrn8ZdzpJr5d2F-CpzoVxtMraJnpDbUba_SM_4riLc7XoRHKUV7SI7ln7ePxAXQcpd9Jat9OYQeTC_pni9q34fn6G3_qA8_aPq9OftOowQDVCr6SSKWEiDDCtsVwxqTE4SEPNE50oY2JteBCn6POtjmSgc2kSpgLFAm5ZnMpQBCh3ET7EuMd0dMJuePPsBYLAt15muGIaRWmvStip0vaEIypxx5xruetLpziPdP85nPU-r914z29rDVarSJuczFTjEyzY4To06i4WpDJqn2F6Qga2lPTOPs6qVpPc-mqnpPA9ghC4RPZvcUXl3YDg8pXvqUHQyZvRgBTScfLxXmqN8z1rgeAQscPCDlTfEpdacEscFZeM7QQlK68NX-D6TZa_AUvD0dBuArG5US2DniVUicD4QKEMwYRUnBmuw6gJrRoPma5qtbuWIf1sXmXaYShDDGUeQxlrwrfnZ8azSiWvzt6pgZNVVqvI5qhpwmENvfnw_6VtvS7tK3xE9GWX552LbVjhDvieELQDS-Xk0e7Csv5d3heTPa9CBH69NQr_AhblXXY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+meta-heuristic+feature+selection+algorithm+combining+random+sampling+accelerator+and+ensemble+using+data+perturbation&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Zhang%2C+Shuaishuai&rft.au=Liu%2C+Keyu&rft.au=Xu%2C+Taihua&rft.au=Yang%2C+Xibei&rft.date=2023-12-01&rft.pub=Springer+US&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=53&rft.issue=24&rft.spage=29781&rft.epage=29798&rft_id=info:doi/10.1007%2Fs10489-023-05123-0&rft.externalDocID=10_1007_s10489_023_05123_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon