Numerical solutions of the EW and MEW equations using a fourth-order improvised B-spline collocation method

A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width (MEW) equation. The discretization of the spatial domain is done using the ICSCM and the Crank-Nicolson scheme is used for the discretizatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 98; číslo 4; s. 1799 - 1825
Hlavní autoři: Fan, Guangyu, Wu, Beibei
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.04.2025
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width (MEW) equation. The discretization of the spatial domain is done using the ICSCM and the Crank-Nicolson scheme is used for the discretization of the temporal domain. The nonlinear terms are processed using quasi-linearization techniques and the stability analysis of this method is performed using Fourier series analysis. The validity and accuracy of this method are verified through several numerical experiments using a single solitary wave, two solitary waves, Maxwellian initial condition, and an undular bore. Since there is an exact solution for the single wave, the error norms L 2 and L ∞ are first calculated and compared with some previous studies published in journal articles. In addition, the three conserved quantities Q , M , and E of the problems raised during the simulation are also calculated and recorded in the table. Lastly, the comparisons of these error norms and conserved quantities show that the numerical results obtained with the proposed method are more accurate and agree well with the values of the conserved quantities obtained in some literatures using the same parameters. The main advantage of ICSCM is its ability to effectively capture solitary wave propagation and describe solitary wave collisions. It can perform solution calculations at any point in the domain, easily use larger time steps to calculate solutions at higher time levels, and produce more accurate calculation results.
AbstractList A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width (MEW) equation. The discretization of the spatial domain is done using the ICSCM and the Crank-Nicolson scheme is used for the discretization of the temporal domain. The nonlinear terms are processed using quasi-linearization techniques and the stability analysis of this method is performed using Fourier series analysis. The validity and accuracy of this method are verified through several numerical experiments using a single solitary wave, two solitary waves, Maxwellian initial condition, and an undular bore. Since there is an exact solution for the single wave, the error norms L 2 and L ∞ are first calculated and compared with some previous studies published in journal articles. In addition, the three conserved quantities Q , M , and E of the problems raised during the simulation are also calculated and recorded in the table. Lastly, the comparisons of these error norms and conserved quantities show that the numerical results obtained with the proposed method are more accurate and agree well with the values of the conserved quantities obtained in some literatures using the same parameters. The main advantage of ICSCM is its ability to effectively capture solitary wave propagation and describe solitary wave collisions. It can perform solution calculations at any point in the domain, easily use larger time steps to calculate solutions at higher time levels, and produce more accurate calculation results.
A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width (MEW) equation. The discretization of the spatial domain is done using the ICSCM and the Crank-Nicolson scheme is used for the discretization of the temporal domain. The nonlinear terms are processed using quasi-linearization techniques and the stability analysis of this method is performed using Fourier series analysis. The validity and accuracy of this method are verified through several numerical experiments using a single solitary wave, two solitary waves, Maxwellian initial condition, and an undular bore. Since there is an exact solution for the single wave, the error norms L2 and L∞ are first calculated and compared with some previous studies published in journal articles. In addition, the three conserved quantities Q, M, and E of the problems raised during the simulation are also calculated and recorded in the table. Lastly, the comparisons of these error norms and conserved quantities show that the numerical results obtained with the proposed method are more accurate and agree well with the values of the conserved quantities obtained in some literatures using the same parameters. The main advantage of ICSCM is its ability to effectively capture solitary wave propagation and describe solitary wave collisions. It can perform solution calculations at any point in the domain, easily use larger time steps to calculate solutions at higher time levels, and produce more accurate calculation results.
Author Wu, Beibei
Fan, Guangyu
Author_xml – sequence: 1
  givenname: Guangyu
  surname: Fan
  fullname: Fan, Guangyu
  organization: School of Mathematics and Physics, Shanghai University of Electric Power
– sequence: 2
  givenname: Beibei
  surname: Wu
  fullname: Wu, Beibei
  email: beibei.wu@shiep.edu.cn
  organization: School of Mathematics and Physics, Shanghai University of Electric Power
BookMark eNp9kEtLAzEUhYNUsFX_gKuA62geM5NkqeILqm4UlyFm7rSp00mbzAj-e2NHEFy4ugfu-e49nBmadKEDhE4YPWOUyvPEGJUlobwglKlSkHIPTVkpOdG8KidZUyYJE1odoFlKK0ozxuUUvT8Oa4je2Ran0A69D13CocH9EvD1K7ZdjR_yhO1gx92QfLfAFjdhiP2ShFhDxH69ieHDJ6jxJUmb1neAXWjb4HYUXkO_DPUR2m9sm-D4Zx6il5vr56s7Mn-6vb-6mBMnmO6JpVaBUhq4tNpqAMfepGbKlo0uwTohbaWEUE4VWdlaFJIXTV1p66iuaSEO0el4N4faDpB6s8phu_zSCCaVriiveHap0eViSClCY5zvd3H7aH1rGDXf1ZqxWpOrNbtqTZlR_gfdRL-28fN_SIxQyuZuAfE31T_UF9bxjqU
CitedBy_id crossref_primary_10_1016_j_wavemoti_2025_103508
crossref_primary_10_3934_math_2025502
Cites_doi 10.1016/j.chaos.2007.06.104
10.1016/S0045-7825(99)00312-6
10.1137/0711049
10.19139/soic.v4i1.167
10.1016/j.cnsns.2004.07.001
10.1002/num.22470
10.1016/j.amc.2004.08.013
10.1080/00207160600740958
10.1016/0009-2509(66)85007-8
10.1017/S0022112066001678
10.1016/0375-9601(76)90714-3
10.1155/2012/587208
10.4236/am.2016.710102
10.1098/rsta.1972.0032
10.1006/jcph.1994.1113
10.1016/j.amc.2011.08.013
10.1002/(SICI)1099-0887(199707)13
10.1142/S0129183119500876
10.1016/S0010-4655(99)00471-3
10.36045/bbms/1337864268
10.1016/0167-2789(84)90014-9
10.4236/jamp.2016.46110
10.1016/j.amc.2005.07.034
10.4236/am.2011.26098
10.1016/j.amc.2003.08.105
10.1016/0021-9991(92)90054-3
10.1134/S0965542515030070
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s11075-024-01853-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 1825
ExternalDocumentID 10_1007_s11075_024_01853_5
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PHGZT
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZY4
~EX
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-a0a8e889e27a9a9eec1b7918a5f95eac37a68338c847a6ad34724fd69ac09d043
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001242214400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1017-1398
IngestDate Wed Nov 05 09:32:05 EST 2025
Tue Nov 18 22:42:18 EST 2025
Sat Nov 29 08:08:54 EST 2025
Thu Mar 20 02:10:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Stability
EW and MEW equations
Gauss elimination method
Cubic B-spline method
Crank-Nicolson scheme
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a0a8e889e27a9a9eec1b7918a5f95eac37a68338c847a6ad34724fd69ac09d043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3178960262
PQPubID 2043837
PageCount 27
ParticipantIDs proquest_journals_3178960262
crossref_citationtrail_10_1007_s11075_024_01853_5
crossref_primary_10_1007_s11075_024_01853_5
springer_journals_10_1007_s11075_024_01853_5
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References M Karta (1853_CR34) 2022; 10
T Geyikli (1853_CR24) 2012; 19
KO Abdulloev (1853_CR4) 1976; 56
T Mohyud-Din (1853_CR18) 2010; 8
S Zaki (1853_CR16) 2000; 126
1853_CR27
1853_CR25
1853_CR2
1853_CR26
SBG Karakoç (1853_CR28) 2016; 4
1853_CR23
T Roshan (1853_CR35) 2011; 218
1853_CR21
B Saka (1853_CR33) 2006; 175
A Esen (1853_CR12) 2006; 83
DH Peregrine (1853_CR3) 1966; 25
NM Yağmurlu (1853_CR8) 2020; 36
DH Peregrine (1853_CR14) 1966; 25
P Morrison (1853_CR1) 1984; 11
YMA Essa (1853_CR19) 2016; 7
1853_CR31
I Dag (1853_CR7) 2015; 25
L Gardner (1853_CR10) 1997; 13
J Lu (1853_CR17) 2009; 39
TR Lucas (1853_CR30) 1974; 11
S Dhawan (1853_CR9) 2019; 30
A-M Wazwaz (1853_CR15) 2006; 11
T Geyikli (1853_CR22) 2015; 55
HN Hassan (1853_CR20) 2016; 4
L Gardner (1853_CR5) 1994; 113
A Dogan (1853_CR32) 2005; 160
A Esen (1853_CR13) 2005; 168
L Gardner (1853_CR6) 1992; 101
PM Prenter (1853_CR29) 1975
S Zaki (1853_CR11) 2000; 189
References_xml – volume-title: Splines and Variational Methods
  year: 1975
  ident: 1853_CR29
– volume: 39
  start-page: 2102
  issue: 5
  year: 2009
  ident: 1853_CR17
  publication-title: Chaos Solit. Fractals
  doi: 10.1016/j.chaos.2007.06.104
– volume: 189
  start-page: 587
  issue: 2
  year: 2000
  ident: 1853_CR11
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00312-6
– volume: 11
  start-page: 569
  issue: 3
  year: 1974
  ident: 1853_CR30
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0711049
– volume: 4
  start-page: 30
  issue: 1
  year: 2016
  ident: 1853_CR28
  publication-title: Stat. Optim. Inf. Comput.
  doi: 10.19139/soic.v4i1.167
– volume: 11
  start-page: 148
  issue: 2
  year: 2006
  ident: 1853_CR15
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2004.07.001
– ident: 1853_CR26
– volume: 36
  start-page: 1170
  issue: 5
  year: 2020
  ident: 1853_CR8
  publication-title: Numer. Meth. Partial Diff. Eqns.
  doi: 10.1002/num.22470
– volume: 168
  start-page: 270
  issue: 1
  year: 2005
  ident: 1853_CR13
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2004.08.013
– volume: 25
  start-page: 525
  issue: 4
  year: 2015
  ident: 1853_CR7
  publication-title: Adv. Stud. Contemp. Math.
– volume: 83
  start-page: 319
  issue: 3
  year: 2006
  ident: 1853_CR12
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160600740958
– ident: 1853_CR31
  doi: 10.1016/0009-2509(66)85007-8
– volume: 25
  start-page: 321
  issue: 2
  year: 1966
  ident: 1853_CR3
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112066001678
– volume: 56
  start-page: 427
  issue: 6
  year: 1976
  ident: 1853_CR4
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(76)90714-3
– ident: 1853_CR21
  doi: 10.1155/2012/587208
– volume: 10
  start-page: 220
  issue: 2
  year: 2022
  ident: 1853_CR34
  publication-title: Konur. J. Math.
– volume: 8
  start-page: 792
  issue: 7
  year: 2010
  ident: 1853_CR18
  publication-title: World Appl. Sci. J.
– volume: 7
  start-page: 1140
  year: 2016
  ident: 1853_CR19
  publication-title: Appl. Math.
  doi: 10.4236/am.2016.710102
– ident: 1853_CR2
  doi: 10.1098/rsta.1972.0032
– volume: 113
  start-page: 5
  issue: 1
  year: 1994
  ident: 1853_CR5
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1113
– volume: 218
  start-page: 2730
  issue: 6
  year: 2011
  ident: 1853_CR35
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2011.08.013
– volume: 13
  start-page: 583
  issue: 7
  year: 1997
  ident: 1853_CR10
  publication-title: Commun. Numer. Methods Eng.
  doi: 10.1002/(SICI)1099-0887(199707)13
– volume: 30
  start-page: 1950087
  issue: 11
  year: 2019
  ident: 1853_CR9
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183119500876
– volume: 126
  start-page: 219
  issue: 3
  year: 2000
  ident: 1853_CR16
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/S0010-4655(99)00471-3
– volume: 19
  start-page: 215
  issue: 2
  year: 2012
  ident: 1853_CR24
  publication-title: Bull. Belgian Math. Soc.-Simon Stevin
  doi: 10.36045/bbms/1337864268
– volume: 11
  start-page: 324
  issue: 3
  year: 1984
  ident: 1853_CR1
  publication-title: Physica D
  doi: 10.1016/0167-2789(84)90014-9
– ident: 1853_CR25
– volume: 4
  start-page: 1054
  issue: 6
  year: 2016
  ident: 1853_CR20
  publication-title: J. Appl. Math. Phys.
  doi: 10.4236/jamp.2016.46110
– volume: 175
  start-page: 730
  issue: 1
  year: 2006
  ident: 1853_CR33
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.07.034
– volume: 25
  start-page: 321
  issue: 2
  year: 1966
  ident: 1853_CR14
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112066001678
– ident: 1853_CR23
  doi: 10.4236/am.2011.26098
– volume: 160
  start-page: 65
  issue: 1
  year: 2005
  ident: 1853_CR32
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2003.08.105
– ident: 1853_CR27
– volume: 101
  start-page: 218
  issue: 1
  year: 1992
  ident: 1853_CR6
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90054-3
– volume: 55
  start-page: 410
  year: 2015
  ident: 1853_CR22
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542515030070
SSID ssj0010027
Score 2.3926842
Snippet A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1799
SubjectTerms Algebra
Algorithms
Approximation
B spline functions
Boundary conditions
Collocation methods
Computer Science
Crank-Nicholson method
Discretization
Exact solutions
Fourier series
Mathematical analysis
Methods
Norms
Numeric Computing
Numerical Analysis
Original Paper
Partial differential equations
Solitary waves
Stability analysis
Theory of Computation
Wave propagation
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH6CwgADhQKiUJAHNrBI0hz2hAC1YqAVEle3yHEcqKh6JeX38-y4rUCiC1OGJHaUd_mdH8B5lHp-mHoh9dH9oL6foMyxkFMZOFkmhEwcA9P5-hB1u6zX44824Jbbssq5TjSKOh1JHSO_QjvHuMZL8q7HE6pRo3R21UJorMOGnpLgmtK9p0UWQftcJtuJmhhPOsw2zZStc-j36N5kXYOBJosGPw3T8rT5K0Fq7E67-t8v3oUde-IkNyWL7MGaGtagak-fxMp2XoPtzmKCa74Pn91ZmcsZkAV3klFG8BHSeiNimJIOXtWkHBWeE11A_04EyXC_4oOakZ6kX4Ysctzolua6-VcRzXmjMlBISvzqA3hpt57v7qkFZqASJbagwhFMMcaVFwkuuFLSTSLuMhFkPEBN3oxEyND3lWj6RCjSph95fpaGXEiHp47fPITKcDRUR0CUClSWsCxBv8UPXJZI_GlB5CZCClyE18GdUyWWdmq5Bs8YxMt5y5qSMVIyNpSMgzpcLN4ZlzM7Vj7dmJMvtvKbx0va1eFyzgDL23-vdrx6tRPY8jSAsCn9aUClmM7UKWzKr6KfT88M934D6Pb0nw
  priority: 102
  providerName: ProQuest
Title Numerical solutions of the EW and MEW equations using a fourth-order improvised B-spline collocation method
URI https://link.springer.com/article/10.1007/s11075-024-01853-5
https://www.proquest.com/docview/3178960262
Volume 98
WOSCitedRecordID wos001242214400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: K7-
  dateStart: 20241201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: M7S
  dateStart: 20241201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: BENPR
  dateStart: 20241201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiPKYcuEGktmub5AhoExKsQjzGblWapjAxbbBu_H6cPlaBAAlOldI0jRI7tuPHB3DMYsf1Y8enLpof1HUj5DnuC6o8K0mkVJGVwXT2r1kQ8MFA3BRJYWkZ7V66JLOTukp2Q0vFZBObqAkUMtRbhhUUd9wANtze9Re-A2NpZT5OPH9Rv-FFqsz3Y3wWR5WO-cUtmkmbbv1_89yEjUK7JGc5OWzBkh43oF5omqTg4xSbSjCHsq0B671FAdd0G16Cee7KGZEFcZJJQrAL6TwSOY5JD5_6La8UnhITP_9EJElwCrNnmlX0JMP8xiLFf5_T1OT-amIIb5LfE5IcvnoHHrqd-4tLWuAyUIUMO6PSklxzLrTDpJBCa2VHTNhceonw8CBvM-lzNH0VSj7py7jtMsdNYl9IZYnYctu7UBtPxnoPiNaeTiKeRGi2uJ7NI8W48JgdSSVxENEEu9yeUBVFyw12xiisyi2b5Q5xucNsuUOvCSeLb17zkh2_9j4sdz0s2DcNUaniwoBzOU04LXe5ev3zaPt_634Aa47BE84igQ6hNpvO9RGsqvfZMJ22YOW8E9zctmD5itGWiUq9a2Wk_gGDrfQ3
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUgl66LZQ1KU8fCgnsEiyTmwfqqoFVqB9iAOvW3Acp6xY7QJZQPyp_saO42RXIMGNA6cckowl-5sZj8czH8APngYsSoOIMgw_KGMJ6pyIJNWhl2VK6cQraDpPO7zXE-fn8mgG_lW1MPZaZWUTC0OdjrQ9I99BPyek5UsKfl3fUMsaZbOrFYWGg0XbPD5gyJb_PNzD9d0Mgtb-8e4BLVkFqEa4janylDBCSBNwJZU0RvsJl75QYSZDNENNriKBgZtGu60ilTYZD1iWRlJpT6Yea6LcWZhjTcGtXrU5nWQtbIxXZFfR8uPOSpRFOq5UD-MsWwtt73ygi6ThU0c43d0-S8gWfq5Vf28z9Bk-lTtq8tupwBeYMcNFqJe7a1LarnwRPnYnHWrzJbjq3blc1YBMtI-MMoKfkP0zooYp6eLT3LhW6DmxBQJ_iSIZjje-pEXLUtJ3RzI5DvSH5ra42RCrWSN3EEocP_dXOHmTCViG2nA0NN-AGBOaLBFZgnEZC32RaFykkPuJ0gqFyAb4FQpiXXZlt-Qgg3jaT9oiJ0bkxAVy4rABW5N_rl1Pkle_Xq3gEpf2KY-nWGnAdgW46euXpa28Lm0D5g-Ou524c9hrf4eFwJIlF9ecVqE2vr0za_BB34_7-e16oTkELt4aiP8Bkk9R7Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQH3ojxzIEbRLRd2iZHXhMImJB43qo0TWACdbAWfj9OHxsgQEKcKqVpGiV2bMf2Z4CtMPFYkHgBZWh-UMZi5DkeCKp8xxgpVewUZTpvzsJOh9_diYsPWfxFtHvtkixzGixKU5rvPidmd5j4hlaLzSy2ERQocKg_CmPMBtJbe_3yZuBHsFZX4e_Esxh1HV6lzXw_xmfRNNQ3v7hIC8nTnvn_nGdhutI6yV5JJnMwotN5mKk0UFLxd4ZNdZGHum0eps4HwK7ZAjx2XksXzxMZEC3pGYJdyNEtkWlCzvGpX0oE8YzYuPp7IonBKeQPtED6JN3yJiPDf-_TzOYEa2IJslfeH5KyrPUiXLePrg6OaVWvgSpk5JxKR3LNudBeKIUUWis3DoXLpW-Ejwd8K5QBR5NYoUSUgUxaLPSYSQIhlSMSh7WWoJH2Ur0MRGtfm5ibGM0Z5rs8ViEXfujGUkkcRDTBrbcqUhWYua2p8RQNYZjtcke43FGx3JHfhO3BN88llMevvddqCogqts4iVLa4sEW7vCbs1Ds-fP3zaCt_674JExeH7ejspHO6CpOeLTlcBAutQSPvv-p1GFdveTfrbxTU_g5bTfyd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solutions+of+the+EW+and+MEW+equations+using+a+fourth-order+improvised+B-spline+collocation+method&rft.jtitle=Numerical+algorithms&rft.au=Fan%2C+Guangyu&rft.au=Wu%2C+Beibei&rft.date=2025-04-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=98&rft.issue=4&rft.spage=1799&rft.epage=1825&rft_id=info:doi/10.1007%2Fs11075-024-01853-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11075_024_01853_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon