Numerical solutions of the EW and MEW equations using a fourth-order improvised B-spline collocation method
A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width (MEW) equation. The discretization of the spatial domain is done using the ICSCM and the Crank-Nicolson scheme is used for the discretizatio...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 98; číslo 4; s. 1799 - 1825 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.04.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width (MEW) equation. The discretization of the spatial domain is done using the ICSCM and the Crank-Nicolson scheme is used for the discretization of the temporal domain. The nonlinear terms are processed using quasi-linearization techniques and the stability analysis of this method is performed using Fourier series analysis. The validity and accuracy of this method are verified through several numerical experiments using a single solitary wave, two solitary waves, Maxwellian initial condition, and an undular bore. Since there is an exact solution for the single wave, the error norms
L
2
and
L
∞
are first calculated and compared with some previous studies published in journal articles. In addition, the three conserved quantities
Q
,
M
, and
E
of the problems raised during the simulation are also calculated and recorded in the table. Lastly, the comparisons of these error norms and conserved quantities show that the numerical results obtained with the proposed method are more accurate and agree well with the values of the conserved quantities obtained in some literatures using the same parameters. The main advantage of ICSCM is its ability to effectively capture solitary wave propagation and describe solitary wave collisions. It can perform solution calculations at any point in the domain, easily use larger time steps to calculate solutions at higher time levels, and produce more accurate calculation results. |
|---|---|
| AbstractList | A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width (MEW) equation. The discretization of the spatial domain is done using the ICSCM and the Crank-Nicolson scheme is used for the discretization of the temporal domain. The nonlinear terms are processed using quasi-linearization techniques and the stability analysis of this method is performed using Fourier series analysis. The validity and accuracy of this method are verified through several numerical experiments using a single solitary wave, two solitary waves, Maxwellian initial condition, and an undular bore. Since there is an exact solution for the single wave, the error norms
L
2
and
L
∞
are first calculated and compared with some previous studies published in journal articles. In addition, the three conserved quantities
Q
,
M
, and
E
of the problems raised during the simulation are also calculated and recorded in the table. Lastly, the comparisons of these error norms and conserved quantities show that the numerical results obtained with the proposed method are more accurate and agree well with the values of the conserved quantities obtained in some literatures using the same parameters. The main advantage of ICSCM is its ability to effectively capture solitary wave propagation and describe solitary wave collisions. It can perform solution calculations at any point in the domain, easily use larger time steps to calculate solutions at higher time levels, and produce more accurate calculation results. A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width (MEW) equation. The discretization of the spatial domain is done using the ICSCM and the Crank-Nicolson scheme is used for the discretization of the temporal domain. The nonlinear terms are processed using quasi-linearization techniques and the stability analysis of this method is performed using Fourier series analysis. The validity and accuracy of this method are verified through several numerical experiments using a single solitary wave, two solitary waves, Maxwellian initial condition, and an undular bore. Since there is an exact solution for the single wave, the error norms L2 and L∞ are first calculated and compared with some previous studies published in journal articles. In addition, the three conserved quantities Q, M, and E of the problems raised during the simulation are also calculated and recorded in the table. Lastly, the comparisons of these error norms and conserved quantities show that the numerical results obtained with the proposed method are more accurate and agree well with the values of the conserved quantities obtained in some literatures using the same parameters. The main advantage of ICSCM is its ability to effectively capture solitary wave propagation and describe solitary wave collisions. It can perform solution calculations at any point in the domain, easily use larger time steps to calculate solutions at higher time levels, and produce more accurate calculation results. |
| Author | Wu, Beibei Fan, Guangyu |
| Author_xml | – sequence: 1 givenname: Guangyu surname: Fan fullname: Fan, Guangyu organization: School of Mathematics and Physics, Shanghai University of Electric Power – sequence: 2 givenname: Beibei surname: Wu fullname: Wu, Beibei email: beibei.wu@shiep.edu.cn organization: School of Mathematics and Physics, Shanghai University of Electric Power |
| BookMark | eNp9kEtLAzEUhYNUsFX_gKuA62geM5NkqeILqm4UlyFm7rSp00mbzAj-e2NHEFy4ugfu-e49nBmadKEDhE4YPWOUyvPEGJUlobwglKlSkHIPTVkpOdG8KidZUyYJE1odoFlKK0ozxuUUvT8Oa4je2Ran0A69D13CocH9EvD1K7ZdjR_yhO1gx92QfLfAFjdhiP2ShFhDxH69ieHDJ6jxJUmb1neAXWjb4HYUXkO_DPUR2m9sm-D4Zx6il5vr56s7Mn-6vb-6mBMnmO6JpVaBUhq4tNpqAMfepGbKlo0uwTohbaWEUE4VWdlaFJIXTV1p66iuaSEO0el4N4faDpB6s8phu_zSCCaVriiveHap0eViSClCY5zvd3H7aH1rGDXf1ZqxWpOrNbtqTZlR_gfdRL-28fN_SIxQyuZuAfE31T_UF9bxjqU |
| CitedBy_id | crossref_primary_10_1016_j_wavemoti_2025_103508 crossref_primary_10_3934_math_2025502 |
| Cites_doi | 10.1016/j.chaos.2007.06.104 10.1016/S0045-7825(99)00312-6 10.1137/0711049 10.19139/soic.v4i1.167 10.1016/j.cnsns.2004.07.001 10.1002/num.22470 10.1016/j.amc.2004.08.013 10.1080/00207160600740958 10.1016/0009-2509(66)85007-8 10.1017/S0022112066001678 10.1016/0375-9601(76)90714-3 10.1155/2012/587208 10.4236/am.2016.710102 10.1098/rsta.1972.0032 10.1006/jcph.1994.1113 10.1016/j.amc.2011.08.013 10.1002/(SICI)1099-0887(199707)13 10.1142/S0129183119500876 10.1016/S0010-4655(99)00471-3 10.36045/bbms/1337864268 10.1016/0167-2789(84)90014-9 10.4236/jamp.2016.46110 10.1016/j.amc.2005.07.034 10.4236/am.2011.26098 10.1016/j.amc.2003.08.105 10.1016/0021-9991(92)90054-3 10.1134/S0965542515030070 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Apr 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Apr 2025 |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s11075-024-01853-5 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Computer Science |
| EISSN | 1572-9265 |
| EndPage | 1825 |
| ExternalDocumentID | 10_1007_s11075_024_01853_5 |
| GroupedDBID | -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PHGZT PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VOH W23 W48 WK8 YLTOR Z45 ZMTXR ZY4 ~EX AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c319t-a0a8e889e27a9a9eec1b7918a5f95eac37a68338c847a6ad34724fd69ac09d043 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001242214400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1017-1398 |
| IngestDate | Wed Nov 05 09:32:05 EST 2025 Tue Nov 18 22:42:18 EST 2025 Sat Nov 29 08:08:54 EST 2025 Thu Mar 20 02:10:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Stability EW and MEW equations Gauss elimination method Cubic B-spline method Crank-Nicolson scheme |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-a0a8e889e27a9a9eec1b7918a5f95eac37a68338c847a6ad34724fd69ac09d043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3178960262 |
| PQPubID | 2043837 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_3178960262 crossref_citationtrail_10_1007_s11075_024_01853_5 crossref_primary_10_1007_s11075_024_01853_5 springer_journals_10_1007_s11075_024_01853_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Numerical algorithms |
| PublicationTitleAbbrev | Numer Algor |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | M Karta (1853_CR34) 2022; 10 T Geyikli (1853_CR24) 2012; 19 KO Abdulloev (1853_CR4) 1976; 56 T Mohyud-Din (1853_CR18) 2010; 8 S Zaki (1853_CR16) 2000; 126 1853_CR27 1853_CR25 1853_CR2 1853_CR26 SBG Karakoç (1853_CR28) 2016; 4 1853_CR23 T Roshan (1853_CR35) 2011; 218 1853_CR21 B Saka (1853_CR33) 2006; 175 A Esen (1853_CR12) 2006; 83 DH Peregrine (1853_CR3) 1966; 25 NM Yağmurlu (1853_CR8) 2020; 36 DH Peregrine (1853_CR14) 1966; 25 P Morrison (1853_CR1) 1984; 11 YMA Essa (1853_CR19) 2016; 7 1853_CR31 I Dag (1853_CR7) 2015; 25 L Gardner (1853_CR10) 1997; 13 J Lu (1853_CR17) 2009; 39 TR Lucas (1853_CR30) 1974; 11 S Dhawan (1853_CR9) 2019; 30 A-M Wazwaz (1853_CR15) 2006; 11 T Geyikli (1853_CR22) 2015; 55 HN Hassan (1853_CR20) 2016; 4 L Gardner (1853_CR5) 1994; 113 A Dogan (1853_CR32) 2005; 160 A Esen (1853_CR13) 2005; 168 L Gardner (1853_CR6) 1992; 101 PM Prenter (1853_CR29) 1975 S Zaki (1853_CR11) 2000; 189 |
| References_xml | – volume-title: Splines and Variational Methods year: 1975 ident: 1853_CR29 – volume: 39 start-page: 2102 issue: 5 year: 2009 ident: 1853_CR17 publication-title: Chaos Solit. Fractals doi: 10.1016/j.chaos.2007.06.104 – volume: 189 start-page: 587 issue: 2 year: 2000 ident: 1853_CR11 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00312-6 – volume: 11 start-page: 569 issue: 3 year: 1974 ident: 1853_CR30 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0711049 – volume: 4 start-page: 30 issue: 1 year: 2016 ident: 1853_CR28 publication-title: Stat. Optim. Inf. Comput. doi: 10.19139/soic.v4i1.167 – volume: 11 start-page: 148 issue: 2 year: 2006 ident: 1853_CR15 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2004.07.001 – ident: 1853_CR26 – volume: 36 start-page: 1170 issue: 5 year: 2020 ident: 1853_CR8 publication-title: Numer. Meth. Partial Diff. Eqns. doi: 10.1002/num.22470 – volume: 168 start-page: 270 issue: 1 year: 2005 ident: 1853_CR13 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2004.08.013 – volume: 25 start-page: 525 issue: 4 year: 2015 ident: 1853_CR7 publication-title: Adv. Stud. Contemp. Math. – volume: 83 start-page: 319 issue: 3 year: 2006 ident: 1853_CR12 publication-title: Int. J. Comput. Math. doi: 10.1080/00207160600740958 – ident: 1853_CR31 doi: 10.1016/0009-2509(66)85007-8 – volume: 25 start-page: 321 issue: 2 year: 1966 ident: 1853_CR3 publication-title: J. Fluid Mech. doi: 10.1017/S0022112066001678 – volume: 56 start-page: 427 issue: 6 year: 1976 ident: 1853_CR4 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(76)90714-3 – ident: 1853_CR21 doi: 10.1155/2012/587208 – volume: 10 start-page: 220 issue: 2 year: 2022 ident: 1853_CR34 publication-title: Konur. J. Math. – volume: 8 start-page: 792 issue: 7 year: 2010 ident: 1853_CR18 publication-title: World Appl. Sci. J. – volume: 7 start-page: 1140 year: 2016 ident: 1853_CR19 publication-title: Appl. Math. doi: 10.4236/am.2016.710102 – ident: 1853_CR2 doi: 10.1098/rsta.1972.0032 – volume: 113 start-page: 5 issue: 1 year: 1994 ident: 1853_CR5 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1113 – volume: 218 start-page: 2730 issue: 6 year: 2011 ident: 1853_CR35 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2011.08.013 – volume: 13 start-page: 583 issue: 7 year: 1997 ident: 1853_CR10 publication-title: Commun. Numer. Methods Eng. doi: 10.1002/(SICI)1099-0887(199707)13 – volume: 30 start-page: 1950087 issue: 11 year: 2019 ident: 1853_CR9 publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183119500876 – volume: 126 start-page: 219 issue: 3 year: 2000 ident: 1853_CR16 publication-title: Comput. Phys. Commun. doi: 10.1016/S0010-4655(99)00471-3 – volume: 19 start-page: 215 issue: 2 year: 2012 ident: 1853_CR24 publication-title: Bull. Belgian Math. Soc.-Simon Stevin doi: 10.36045/bbms/1337864268 – volume: 11 start-page: 324 issue: 3 year: 1984 ident: 1853_CR1 publication-title: Physica D doi: 10.1016/0167-2789(84)90014-9 – ident: 1853_CR25 – volume: 4 start-page: 1054 issue: 6 year: 2016 ident: 1853_CR20 publication-title: J. Appl. Math. Phys. doi: 10.4236/jamp.2016.46110 – volume: 175 start-page: 730 issue: 1 year: 2006 ident: 1853_CR33 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.07.034 – volume: 25 start-page: 321 issue: 2 year: 1966 ident: 1853_CR14 publication-title: J. Fluid Mech. doi: 10.1017/S0022112066001678 – ident: 1853_CR23 doi: 10.4236/am.2011.26098 – volume: 160 start-page: 65 issue: 1 year: 2005 ident: 1853_CR32 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2003.08.105 – ident: 1853_CR27 – volume: 101 start-page: 218 issue: 1 year: 1992 ident: 1853_CR6 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90054-3 – volume: 55 start-page: 410 year: 2015 ident: 1853_CR22 publication-title: Comput. Math. Math. Phys. doi: 10.1134/S0965542515030070 |
| SSID | ssj0010027 |
| Score | 2.3926842 |
| Snippet | A fourth-order improvised cubic B-spline collocation method (ICSCM) is proposed to numerically solve the equal width (EW) equation and the modified equal width... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1799 |
| SubjectTerms | Algebra Algorithms Approximation B spline functions Boundary conditions Collocation methods Computer Science Crank-Nicholson method Discretization Exact solutions Fourier series Mathematical analysis Methods Norms Numeric Computing Numerical Analysis Original Paper Partial differential equations Solitary waves Stability analysis Theory of Computation Wave propagation |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH6CwgADhQKiUJAHNrBI0hz2hAC1YqAVEle3yHEcqKh6JeX38-y4rUCiC1OGJHaUd_mdH8B5lHp-mHoh9dH9oL6foMyxkFMZOFkmhEwcA9P5-hB1u6zX44824Jbbssq5TjSKOh1JHSO_QjvHuMZL8q7HE6pRo3R21UJorMOGnpLgmtK9p0UWQftcJtuJmhhPOsw2zZStc-j36N5kXYOBJosGPw3T8rT5K0Fq7E67-t8v3oUde-IkNyWL7MGaGtagak-fxMp2XoPtzmKCa74Pn91ZmcsZkAV3klFG8BHSeiNimJIOXtWkHBWeE11A_04EyXC_4oOakZ6kX4Ysctzolua6-VcRzXmjMlBISvzqA3hpt57v7qkFZqASJbagwhFMMcaVFwkuuFLSTSLuMhFkPEBN3oxEyND3lWj6RCjSph95fpaGXEiHp47fPITKcDRUR0CUClSWsCxBv8UPXJZI_GlB5CZCClyE18GdUyWWdmq5Bs8YxMt5y5qSMVIyNpSMgzpcLN4ZlzM7Vj7dmJMvtvKbx0va1eFyzgDL23-vdrx6tRPY8jSAsCn9aUClmM7UKWzKr6KfT88M934D6Pb0nw priority: 102 providerName: ProQuest |
| Title | Numerical solutions of the EW and MEW equations using a fourth-order improvised B-spline collocation method |
| URI | https://link.springer.com/article/10.1007/s11075-024-01853-5 https://www.proquest.com/docview/3178960262 |
| Volume | 98 |
| WOSCitedRecordID | wos001242214400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: K7- dateStart: 20241201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: M7S dateStart: 20241201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: BENPR dateStart: 20241201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1572-9265 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010027 issn: 1017-1398 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiPKYcuEGktmub5AhoExKsQjzGblWapjAxbbBu_H6cPlaBAAlOldI0jRI7tuPHB3DMYsf1Y8enLpof1HUj5DnuC6o8K0mkVJGVwXT2r1kQ8MFA3BRJYWkZ7V66JLOTukp2Q0vFZBObqAkUMtRbhhUUd9wANtze9Re-A2NpZT5OPH9Rv-FFqsz3Y3wWR5WO-cUtmkmbbv1_89yEjUK7JGc5OWzBkh43oF5omqTg4xSbSjCHsq0B671FAdd0G16Cee7KGZEFcZJJQrAL6TwSOY5JD5_6La8UnhITP_9EJElwCrNnmlX0JMP8xiLFf5_T1OT-amIIb5LfE5IcvnoHHrqd-4tLWuAyUIUMO6PSklxzLrTDpJBCa2VHTNhceonw8CBvM-lzNH0VSj7py7jtMsdNYl9IZYnYctu7UBtPxnoPiNaeTiKeRGi2uJ7NI8W48JgdSSVxENEEu9yeUBVFyw12xiisyi2b5Q5xucNsuUOvCSeLb17zkh2_9j4sdz0s2DcNUaniwoBzOU04LXe5ev3zaPt_634Aa47BE84igQ6hNpvO9RGsqvfZMJ22YOW8E9zctmD5itGWiUq9a2Wk_gGDrfQ3 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUgl66LZQ1KU8fCgnsEiyTmwfqqoFVqB9iAOvW3Acp6xY7QJZQPyp_saO42RXIMGNA6cckowl-5sZj8czH8APngYsSoOIMgw_KGMJ6pyIJNWhl2VK6cQraDpPO7zXE-fn8mgG_lW1MPZaZWUTC0OdjrQ9I99BPyek5UsKfl3fUMsaZbOrFYWGg0XbPD5gyJb_PNzD9d0Mgtb-8e4BLVkFqEa4janylDBCSBNwJZU0RvsJl75QYSZDNENNriKBgZtGu60ilTYZD1iWRlJpT6Yea6LcWZhjTcGtXrU5nWQtbIxXZFfR8uPOSpRFOq5UD-MsWwtt73ygi6ThU0c43d0-S8gWfq5Vf28z9Bk-lTtq8tupwBeYMcNFqJe7a1LarnwRPnYnHWrzJbjq3blc1YBMtI-MMoKfkP0zooYp6eLT3LhW6DmxBQJ_iSIZjje-pEXLUtJ3RzI5DvSH5ra42RCrWSN3EEocP_dXOHmTCViG2nA0NN-AGBOaLBFZgnEZC32RaFykkPuJ0gqFyAb4FQpiXXZlt-Qgg3jaT9oiJ0bkxAVy4rABW5N_rl1Pkle_Xq3gEpf2KY-nWGnAdgW46euXpa28Lm0D5g-Ou524c9hrf4eFwJIlF9ecVqE2vr0za_BB34_7-e16oTkELt4aiP8Bkk9R7Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQH3ojxzIEbRLRd2iZHXhMImJB43qo0TWACdbAWfj9OHxsgQEKcKqVpGiV2bMf2Z4CtMPFYkHgBZWh-UMZi5DkeCKp8xxgpVewUZTpvzsJOh9_diYsPWfxFtHvtkixzGixKU5rvPidmd5j4hlaLzSy2ERQocKg_CmPMBtJbe_3yZuBHsFZX4e_Esxh1HV6lzXw_xmfRNNQ3v7hIC8nTnvn_nGdhutI6yV5JJnMwotN5mKk0UFLxd4ZNdZGHum0eps4HwK7ZAjx2XksXzxMZEC3pGYJdyNEtkWlCzvGpX0oE8YzYuPp7IonBKeQPtED6JN3yJiPDf-_TzOYEa2IJslfeH5KyrPUiXLePrg6OaVWvgSpk5JxKR3LNudBeKIUUWis3DoXLpW-Ejwd8K5QBR5NYoUSUgUxaLPSYSQIhlSMSh7WWoJH2Ur0MRGtfm5ibGM0Z5rs8ViEXfujGUkkcRDTBrbcqUhWYua2p8RQNYZjtcke43FGx3JHfhO3BN88llMevvddqCogqts4iVLa4sEW7vCbs1Ds-fP3zaCt_674JExeH7ejspHO6CpOeLTlcBAutQSPvv-p1GFdveTfrbxTU_g5bTfyd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solutions+of+the+EW+and+MEW+equations+using+a+fourth-order+improvised+B-spline+collocation+method&rft.jtitle=Numerical+algorithms&rft.au=Fan%2C+Guangyu&rft.au=Wu%2C+Beibei&rft.date=2025-04-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=98&rft.issue=4&rft.spage=1799&rft.epage=1825&rft_id=info:doi/10.1007%2Fs11075-024-01853-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11075_024_01853_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon |