A 3D-convolutional-autoencoder embedded Siamese-attention-network for classification of hyperspectral images

The classification of hyperspectral images (HSI) into categories that correlate to various land cover sorts such as water bodies, agriculture and urban areas, has gained significant attention in research due to its wide range of applications in fields, such as remote sensing, computer vision, and mo...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 36; no. 15; pp. 8335 - 8354
Main Authors: Ranjan, Pallavi, Kumar, Rajeev, Girdhar, Ashish
Format: Journal Article
Language:English
Published: London Springer London 01.05.2024
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The classification of hyperspectral images (HSI) into categories that correlate to various land cover sorts such as water bodies, agriculture and urban areas, has gained significant attention in research due to its wide range of applications in fields, such as remote sensing, computer vision, and more. Supervised deep learning networks have demonstrated exceptional performance in HSI classification, capitalizing on their capacity for end-to-end optimization and leveraging their strong potential for nonlinear modeling. However, labelling HSIs, on the other hand, necessitates extensive domain knowledge and is a time-consuming and labour-intensive exercise. To address this issue, the proposed work introduces a novel semi-supervised network constructed with an autoencoder, Siamese action, and attention layers that achieves excellent classification accuracy with labelled limited samples. The proposed convolutional autoencoder is trained using the mass amount of unlabelled data to learn the refinement representation referred to as 3D-CAE. The added Siamese network improves the feature separability between different categories and attention layers improve classification by focusing on discriminative information and neglecting the unimportant bands. The efficacy of the proposed model’s performance was assessed by training and testing on both same-domain as well as cross-domain data and found to achieve 91.3 and 93.6 for Indian Pines and Salinas, respectively.
AbstractList The classification of hyperspectral images (HSI) into categories that correlate to various land cover sorts such as water bodies, agriculture and urban areas, has gained significant attention in research due to its wide range of applications in fields, such as remote sensing, computer vision, and more. Supervised deep learning networks have demonstrated exceptional performance in HSI classification, capitalizing on their capacity for end-to-end optimization and leveraging their strong potential for nonlinear modeling. However, labelling HSIs, on the other hand, necessitates extensive domain knowledge and is a time-consuming and labour-intensive exercise. To address this issue, the proposed work introduces a novel semi-supervised network constructed with an autoencoder, Siamese action, and attention layers that achieves excellent classification accuracy with labelled limited samples. The proposed convolutional autoencoder is trained using the mass amount of unlabelled data to learn the refinement representation referred to as 3D-CAE. The added Siamese network improves the feature separability between different categories and attention layers improve classification by focusing on discriminative information and neglecting the unimportant bands. The efficacy of the proposed model’s performance was assessed by training and testing on both same-domain as well as cross-domain data and found to achieve 91.3 and 93.6 for Indian Pines and Salinas, respectively.
Author Girdhar, Ashish
Kumar, Rajeev
Ranjan, Pallavi
Author_xml – sequence: 1
  givenname: Pallavi
  surname: Ranjan
  fullname: Ranjan, Pallavi
  organization: Department of Computer Science, Delhi Technological University
– sequence: 2
  givenname: Rajeev
  orcidid: 0000-0002-5000-7644
  surname: Kumar
  fullname: Kumar, Rajeev
  email: rajeevkumar@dtu.ac.in
  organization: Department of Computer Science, Delhi Technological University
– sequence: 3
  givenname: Ashish
  surname: Girdhar
  fullname: Girdhar, Ashish
  organization: Department of Computer Applications, Kurukshetra University
BookMark eNp9kEtLAzEUhYMoWB9_wNWA6-jNYx5ZlvqEggt1HTKZGx2dTmqSKv33plYQXHR1udzzXc45R2R_9CMScsbgggHUlxGg5IwClxRUyWu63iMTJoWgAspmn0xAyXyupDgkRzG-AYCsmnJChmkhrqj146cfVqn3oxmoWSWPo_UdhgIXLXYddsVjbxYYkZqUcNwI6Yjpy4f3wvlQ2MHE2Lvems2p8K54XS8xxCXaFMxQ9AvzgvGEHDgzRDz9ncfk-eb6aXZH5w-397PpnFrBVKIGoLWMu6oqeSmUNK1roWFVza2UQirVonDOyUrIminHbJ0XwXnnWKuwa8UxOd_-XQb_scKY9JtfhRwtagFCVUzUjcqqZquywccY0Gnbpx__2XI_aAZ6063edqtzt_qnW73OKP-HLkOOGNa7IbGFYhaPLxj-XO2gvgFvJZED
CitedBy_id crossref_primary_10_1007_s11760_025_04153_0
crossref_primary_10_1007_s12145_025_01739_7
crossref_primary_10_1007_s12145_025_01779_z
crossref_primary_10_3390_s24102987
crossref_primary_10_1007_s11760_025_04342_x
crossref_primary_10_1038_s40494_025_01716_9
crossref_primary_10_1016_j_inffus_2025_103285
crossref_primary_10_1007_s12145_024_01451_y
crossref_primary_10_1038_s41598_025_01758_w
crossref_primary_10_1007_s11760_025_04359_2
crossref_primary_10_1038_s41598_025_10475_3
Cites_doi 10.1109/LGRS.2019.2960945
10.1007/s11227-018-2300-2
10.1109/LGRS.2020.2979604
10.1109/TGRS.2017.2769673
10.1109/TGRS.2017.2755542
10.1080/01431161.2022.2130727
10.3390/app9071379
10.1007/s11042-023-15444-4
10.1109/TGRS.2019.2908756
10.1080/01431161.2022.2133579
10.1117/1.JRS.11.042609
10.1126/science.1127647
10.1109/JSTARS.2014.2329330
10.1016/j.eswa.2019.04.006
10.1109/TGRS.2017.2675902
10.1109/LGRS.2017.2780890
10.1145/3386252
10.1109/TGRS.2018.2794326
10.3390/s18093153
10.1109/TGRS.2016.2584107
10.1108/SR-07-2016-0124
10.1109/JSTARS.2022.3233125
10.1016/j.neucom.2018.02.105
10.1109/TGRS.2020.3018879
10.1109/ISCON57294.2023.10112174
10.7551/mitpress/7503.003.0024
10.1109/CVPR.2018.00813
10.1145/3497623.3497646
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-024-09527-y
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 8354
ExternalDocumentID 10_1007_s00521_024_09527_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-a00bc12f66525394abfb081672c443499be3fff4634719f1c7ff4322df1b9edb3
IEDL.DBID P5Z
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168585300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 08:48:33 EST 2025
Sat Nov 29 04:30:41 EST 2025
Tue Nov 18 20:45:27 EST 2025
Fri Feb 21 02:41:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Deep learning
Siamese
Hyperspectral images
Autoencoder
Classification
Attention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-a00bc12f66525394abfb081672c443499be3fff4634719f1c7ff4322df1b9edb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5000-7644
PQID 3039613789
PQPubID 2043988
PageCount 20
ParticipantIDs proquest_journals_3039613789
crossref_citationtrail_10_1007_s00521_024_09527_y
crossref_primary_10_1007_s00521_024_09527_y
springer_journals_10_1007_s00521_024_09527_y
PublicationCentury 2000
PublicationDate 20240500
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 5
  year: 2024
  text: 20240500
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2024
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Deng, Pu, Chen, Shi, Yuan, Pu (CR29) 2018; 18
Xue, Liu, Zhang (CR24) 2023; 61
Chen, Jiang, Li, Jia, Ghamisi (CR19) 2016; 54
Wang, Wang, Wang, Atkinson (CR34) 2021; 60
CR12
CR33
Zhong, Gong, Li, Schönlieb (CR8) 2017; 55
CR31
Garea, Heras, Argüello (CR5) 2019; 75
Sellami, Farah, Farah, Solaiman (CR2) 2019; 129
Xu, Zhang, Du, Zhang (CR20) 2018; 56
Li, Ming, Chen, Xu, Li, Du (CR22) 2022; 60
Ranjan, Girdhar (CR11) 2022; 43
Ranjan, Girdhar (CR1) 2022; 43
Song, Li, Fang, Lu (CR18) 2018; 56
Li, Wang, Liu, Yu, Lan (CR7) 2019; 9
Zhong, Li, Luo, Chapman (CR21) 2017; 56
Chen, Lin, Zhao, Wang, Gu (CR32) 2014; 7
Hinton, Salakhutdinov (CR30) 2006; 313
Ranjan, Girdhar (CR14) 2024; 83
Xue, Zhou, Du (CR23) 2022; 60
Mei, Ji, Geng, Zhang, Li, Du (CR17) 2019; 57
Xue, Zhu, Zhou, Zhang (CR25) 2022; 16
Qiu, Wu, Liu, Tang, Zhao, Wu, Zhu, Xin (CR10) 2017; 37
Liu, Shi, Zhang (CR16) 2020; 59
CR28
Liu, Yu, Zhang, Yu, Fu, Wei (CR9) 2017; 56
Huang, Chen (CR26) 2020; 18
Nalepa, Myller, Imai, Honda, Takeda, Antoniak (CR4) 2020; 17
Wang, Yao, Kwok, Ni (CR15) 2020; 53
Zhou, Hang, Liu, Yuan (CR6) 2019; 328
Jia, Jiang, Lin, Xu, Sun, Huang, Zhu, Jia (CR27) 2021; 60
Zhan, Hu, Wang, Yu (CR13) 2017; 15
Ball, Anderson, Chan (CR3) 2017; 11
P Zhong (9527_CR8) 2017; 55
Q Qiu (9527_CR10) 2017; 37
J Nalepa (9527_CR4) 2020; 17
JE Ball (9527_CR3) 2017; 11
K Li (9527_CR7) 2019; 9
W Song (9527_CR18) 2018; 56
F Deng (9527_CR29) 2018; 18
S Jia (9527_CR27) 2021; 60
GE Hinton (9527_CR30) 2006; 313
AS Garea (9527_CR5) 2019; 75
P Ranjan (9527_CR11) 2022; 43
Y Wang (9527_CR15) 2020; 53
Z Zhong (9527_CR21) 2017; 56
Z Li (9527_CR22) 2022; 60
9527_CR28
Y Zhan (9527_CR13) 2017; 15
Y Xu (9527_CR20) 2018; 56
S Liu (9527_CR16) 2020; 59
P Ranjan (9527_CR1) 2022; 43
9527_CR12
Y Chen (9527_CR19) 2016; 54
9527_CR33
F Zhou (9527_CR6) 2019; 328
B Liu (9527_CR9) 2017; 56
L Wang (9527_CR34) 2021; 60
9527_CR31
A Sellami (9527_CR2) 2019; 129
P Ranjan (9527_CR14) 2024; 83
S Mei (9527_CR17) 2019; 57
Z Xue (9527_CR23) 2022; 60
Z Xue (9527_CR24) 2023; 61
Y Chen (9527_CR32) 2014; 7
Z Xue (9527_CR25) 2022; 16
L Huang (9527_CR26) 2020; 18
References_xml – volume: 17
  start-page: 1948
  issue: 11
  year: 2020
  end-page: 1952
  ident: CR4
  article-title: Unsupervised segmentation of hyperspectral images using 3-d convolutional autoencoders
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2019.2960945
– volume: 75
  start-page: 1065
  year: 2019
  end-page: 1077
  ident: CR5
  article-title: Caffe CNN-based classification of hyperspectral images on GPU
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2300-2
– volume: 18
  start-page: 518
  issue: 3
  year: 2020
  end-page: 522
  ident: CR26
  article-title: Dual-path Siamese CNN for hyperspectral image classification with limited training samples
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2020.2979604
– volume: 56
  start-page: 1909
  issue: 4
  year: 2017
  end-page: 1921
  ident: CR9
  article-title: Supervised deep feature extraction for hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2769673
– volume: 56
  start-page: 5893
  issue: 10
  year: 2018
  end-page: 5909
  ident: CR20
  article-title: Spectral–spatial unified networks for hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 60
  start-page: 1
  year: 2022
  end-page: 18
  ident: CR22
  article-title: Deep cross-domain few-shot learning for hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 56
  start-page: 847
  issue: 2
  year: 2017
  end-page: 858
  ident: CR21
  article-title: Spectral–spatial residual network for hyperspectral image classification: a 3-d deep learning framework
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2755542
– volume: 60
  start-page: 1
  year: 2021
  end-page: 17
  ident: CR27
  article-title: A semisupervised Siamese network for hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
– ident: CR12
– volume: 43
  start-page: 5204
  issue: 14
  year: 2022
  end-page: 5230
  ident: CR11
  article-title: Xcep-dense: a novel lightweight extreme inception model for hyperspectral image classification
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2022.2130727
– volume: 60
  start-page: 1
  year: 2021
  end-page: 18
  ident: CR34
  article-title: SSA-SiamNet: spectral–spatial-wise attention-based Siamese network for hyperspectral image change detection
  publication-title: IEEE Trans Geosci Remote Sens
– ident: CR33
– volume: 9
  start-page: 1379
  issue: 7
  year: 2019
  ident: CR7
  article-title: A novel method of hyperspectral data classification based on transfer learning and deep belief network
  publication-title: Appl Sci
  doi: 10.3390/app9071379
– volume: 83
  start-page: 2501
  issue: 1
  year: 2024
  end-page: 2526
  ident: CR14
  article-title: Deep Siamese network with handcrafted feature extraction for hyperspectral image classification
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15444-4
– volume: 57
  start-page: 6808
  issue: 9
  year: 2019
  end-page: 6820
  ident: CR17
  article-title: Unsupervised spatial-spectral feature learning by 3d convolutional autoencoder for hyperspectral classification
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2019.2908756
– volume: 43
  start-page: 6221
  issue: 17
  year: 2022
  end-page: 6306
  ident: CR1
  article-title: A comprehensive systematic review of deep learning methods for hyperspectral images classification
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2022.2133579
– volume: 11
  start-page: 042609
  issue: 4
  year: 2017
  end-page: 042609
  ident: CR3
  article-title: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community
  publication-title: J Appl Remote Sens
  doi: 10.1117/1.JRS.11.042609
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: CR30
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 7
  start-page: 2094
  issue: 6
  year: 2014
  end-page: 2107
  ident: CR32
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2014.2329330
– volume: 60
  start-page: 1
  year: 2022
  end-page: 19
  ident: CR23
  article-title: S3net: spectral–spatial Siamese network for few-shot hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 129
  start-page: 246
  year: 2019
  end-page: 259
  ident: CR2
  article-title: Hyperspectral imagery classification based on semi-supervised 3-d deep neural network and adaptive band selection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.04.006
– volume: 55
  start-page: 3516
  issue: 6
  year: 2017
  end-page: 3530
  ident: CR8
  article-title: Learning to diversify deep belief networks for hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2675902
– volume: 15
  start-page: 212
  issue: 2
  year: 2017
  end-page: 216
  ident: CR13
  article-title: Semisupervised hyperspectral image classification based on generative adversarial networks
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2017.2780890
– ident: CR31
– volume: 53
  start-page: 1
  issue: 3
  year: 2020
  end-page: 34
  ident: CR15
  article-title: Generalizing from a few examples: a survey on few-shot learning
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3386252
– volume: 56
  start-page: 3173
  issue: 6
  year: 2018
  end-page: 3184
  ident: CR18
  article-title: Hyperspectral image classification with deep feature fusion network
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2018.2794326
– volume: 18
  start-page: 3153
  issue: 9
  year: 2018
  ident: CR29
  article-title: Hyperspectral image classification with capsule network using limited training samples
  publication-title: Sensors
  doi: 10.3390/s18093153
– volume: 54
  start-page: 6232
  issue: 10
  year: 2016
  end-page: 6251
  ident: CR19
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2016.2584107
– volume: 37
  start-page: 371
  issue: 3
  year: 2017
  end-page: 382
  ident: CR10
  article-title: Survey of supervised classification techniques for hyperspectral images
  publication-title: Sens Rev
  doi: 10.1108/SR-07-2016-0124
– volume: 16
  start-page: 1085
  year: 2022
  end-page: 1099
  ident: CR25
  article-title: Bag-of-features-driven spectral–spatial Siamese neural network for hyperspectral image classification
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2022.3233125
– ident: CR28
– volume: 328
  start-page: 39
  year: 2019
  end-page: 47
  ident: CR6
  article-title: Hyperspectral image classification using spectral–spatial LSTMS
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.105
– volume: 59
  start-page: 5085
  issue: 6
  year: 2020
  end-page: 5102
  ident: CR16
  article-title: Few-shot hyperspectral image classification with unknown classes using multitask deep learning
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2020.3018879
– volume: 61
  start-page: 1
  year: 2023
  end-page: 18
  ident: CR24
  article-title: DSR-GCN: Differentiated-scale restricted graph convolutional network for few-shot hyperspectral image classification
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 56
  start-page: 847
  issue: 2
  year: 2017
  ident: 9527_CR21
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2755542
– volume: 43
  start-page: 5204
  issue: 14
  year: 2022
  ident: 9527_CR11
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2022.2130727
– volume: 328
  start-page: 39
  year: 2019
  ident: 9527_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.105
– volume: 59
  start-page: 5085
  issue: 6
  year: 2020
  ident: 9527_CR16
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2020.3018879
– volume: 9
  start-page: 1379
  issue: 7
  year: 2019
  ident: 9527_CR7
  publication-title: Appl Sci
  doi: 10.3390/app9071379
– volume: 54
  start-page: 6232
  issue: 10
  year: 2016
  ident: 9527_CR19
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2016.2584107
– volume: 18
  start-page: 3153
  issue: 9
  year: 2018
  ident: 9527_CR29
  publication-title: Sensors
  doi: 10.3390/s18093153
– volume: 55
  start-page: 3516
  issue: 6
  year: 2017
  ident: 9527_CR8
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2675902
– ident: 9527_CR12
  doi: 10.1109/ISCON57294.2023.10112174
– volume: 16
  start-page: 1085
  year: 2022
  ident: 9527_CR25
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2022.3233125
– volume: 83
  start-page: 2501
  issue: 1
  year: 2024
  ident: 9527_CR14
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-023-15444-4
– volume: 56
  start-page: 3173
  issue: 6
  year: 2018
  ident: 9527_CR18
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2018.2794326
– ident: 9527_CR31
  doi: 10.7551/mitpress/7503.003.0024
– volume: 11
  start-page: 042609
  issue: 4
  year: 2017
  ident: 9527_CR3
  publication-title: J Appl Remote Sens
  doi: 10.1117/1.JRS.11.042609
– volume: 57
  start-page: 6808
  issue: 9
  year: 2019
  ident: 9527_CR17
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2019.2908756
– volume: 17
  start-page: 1948
  issue: 11
  year: 2020
  ident: 9527_CR4
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2019.2960945
– volume: 56
  start-page: 5893
  issue: 10
  year: 2018
  ident: 9527_CR20
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 15
  start-page: 212
  issue: 2
  year: 2017
  ident: 9527_CR13
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2017.2780890
– volume: 60
  start-page: 1
  year: 2021
  ident: 9527_CR34
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 43
  start-page: 6221
  issue: 17
  year: 2022
  ident: 9527_CR1
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2022.2133579
– volume: 75
  start-page: 1065
  year: 2019
  ident: 9527_CR5
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2300-2
– ident: 9527_CR33
  doi: 10.1109/CVPR.2018.00813
– ident: 9527_CR28
  doi: 10.1145/3497623.3497646
– volume: 37
  start-page: 371
  issue: 3
  year: 2017
  ident: 9527_CR10
  publication-title: Sens Rev
  doi: 10.1108/SR-07-2016-0124
– volume: 18
  start-page: 518
  issue: 3
  year: 2020
  ident: 9527_CR26
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2020.2979604
– volume: 60
  start-page: 1
  year: 2022
  ident: 9527_CR23
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 7
  start-page: 2094
  issue: 6
  year: 2014
  ident: 9527_CR32
  publication-title: IEEE J Sel Top Appl Earth Obs Remote Sens
  doi: 10.1109/JSTARS.2014.2329330
– volume: 129
  start-page: 246
  year: 2019
  ident: 9527_CR2
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.04.006
– volume: 60
  start-page: 1
  year: 2022
  ident: 9527_CR22
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 61
  start-page: 1
  year: 2023
  ident: 9527_CR24
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 9527_CR30
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 56
  start-page: 1909
  issue: 4
  year: 2017
  ident: 9527_CR9
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2017.2769673
– volume: 60
  start-page: 1
  year: 2021
  ident: 9527_CR27
  publication-title: IEEE Trans Geosci Remote Sens
– volume: 53
  start-page: 1
  issue: 3
  year: 2020
  ident: 9527_CR15
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3386252
SSID ssj0004685
Score 2.419711
Snippet The classification of hyperspectral images (HSI) into categories that correlate to various land cover sorts such as water bodies, agriculture and urban areas,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8335
SubjectTerms Artificial Intelligence
Artificial neural networks
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer vision
Data Mining and Knowledge Discovery
Hyperspectral imaging
Image classification
Image Processing and Computer Vision
Land cover
Machine learning
Original Article
Probability and Statistics in Computer Science
Remote sensing
SummonAdditionalLinks – databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA86PXhxPnE6JQdvGmibdG2OQx0eZIhT2a00LxxsnaydsP_eL2m7qaigx9I0hO_5-5rvgdC54cwEkS9JKHxGGAVVjLlShIWGaalDcFquz-xd1O_HwyG_r4rC8jrbvb6SdJZ6Wexm_2BC6BswArAgiMhiHW2Au4utOj4Mnj9UQ7pBnBC32JweRqtSme_3-OyOVhjzy7Wo8za95v_OuYO2K3SJu6U47KI1ne2hZj25AVeKvI_GXUyvic04ryQvHZN0XkxtV0sFC_VEaLBICg9GNotWE9uF0-VFkqzMG8cAdrG00NvmGjn24qnBLxDWltWbMzjHaALWKj9AT72bx6tbUs1dIBIUsiCp5wnpB6bTCYOQcpYKI-x8jiiQjFEIkYSmxhjWoeDZuPFlBA9gGJTxBddK0EPUyKaZPkIY8CcFhgNGAqiQRlJIxTzlad_4zFCtWsivyZ_Iqim5nY0xTpbtlB05EyBn4siZLFroYvnNa9mS49fV7ZqrSaWeeQJ-mwOOiWLeQpc1F1evf97t-G_LT9BW4ATBJki2UaOYzfUp2pRvxSifnTmxfQezyejh
  priority: 102
  providerName: Springer Nature
Title A 3D-convolutional-autoencoder embedded Siamese-attention-network for classification of hyperspectral images
URI https://link.springer.com/article/10.1007/s00521-024-09527-y
https://www.proquest.com/docview/3039613789
Volume 36
WOSCitedRecordID wos001168585300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH5o68GLdcVqLXPwpoNNZtI0J6kbHqQUN8RLyGxYaBttq9B_75vpxKpgL14CSSZh4HvLNzNvATg0CTdhHEgaiYBTzlAVW4lSlEeGa6kjdFquzuxN3Om0np6Srt9wG_uwysImOkOtcmn3yE_Q1CboeuJWcvr6Rm3XKHu66ltoLEPZVkmwitmNnr_lRbqWnLiCsdE9nPmkGZc6Z_dD8WnIKZKMMKbTn45pzjZ_HZA6v3NV-e-M12HNM07SnonIBizp4SZUim4OxCv3FvTbhF1QG4XupTHr0-x9kttKlwoH6oHQaKUUuevZyFpNbWVOFytJh7NYcoIEmEhLx238kYOc5Ia84FJ3ltE5wnn0BmjBxtvwcHV5f35NfS8GKlFJJzRrNIQMQtNsRmHEEp4JI2zPjjiUnDNcNgnNjDG8ydDbJSaQMd6gsVAmEIlWgu1AaZgP9S4Q5KQMhQB5E9KHLJZCKt5QDR2YgBumVRWCAohU-kLltl9GP_0qsezASxG81IGXTqtw9PXN66xMx8LRtQKx1KvsOJ3DVYXjAvP567__trf4b_uwGjoxs0GSNShNRu_6AFbkx6Q3HtWhfHbZ6d7WneDi9fbu8RNSgfT_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8NAFH64gV7cxbrOQU862MxMmuYgIi4o1iKoIF5iZsNCbbWtSv-Uv9E3k8SqoDcPHpNMhizf22a-9x7Aho2FZVGgaCgDQQVHUazGWlMRWmGUCdFo-Tqztaher97cxBdD8FbkwjhaZaETvaLWbeXWyHdQ1cZoeqJqvPf4RF3XKLe7WrTQyGBxZvqvGLJ1d08P8f9uMnZ8dHVwQvOuAlQh3Ho0LZelCpitVEIW8lik0krXfSJiSgiOAYA03ForKhz1dmwDFeEBwl7bQMZGS47zDsOoEBgsofxchLef8jB9C1CMmBybSPA8Scen6rn1VzzLBEWnhkW0_9UQDrzbbxuy3s4dT_23LzQNk7lHTfYzEZiBIdOahamiWwXJldccNPcJP6SOZZ9LW9qk6XOv7Sp5ahxoHqRBLazJZcMxhw11lUc9F5S2Mq48QQefKBduOH6VhzRpW3KPoXyWsdrB52g8oIbuzsP1n7zzAoy02i2zCAR9bo4gR78Q3aM0UlJpUdZlE9hAWG50CYLixycqL8Tu-oE0k48S0h4sCYIl8WBJ-iXY-rjnMStD8uvolQIhSa6SuskAHiXYLjA2uPzzbEu_z7YO4ydX57Wkdlo_W4YJ5iHuCKErMNLrPJtVGFMvvUa3s-aFhcDdX2PvHcWSTvU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IV6sT6xW3YM3XWyym6Y5iloUpRR84C1kX1ho09KmQv-9s5ukVVFBPIZslmVnZueb7DczACcm4sYPPUkD4XHKGZpiM1KK8sBwLXWATsvVmb0P2-3my0vU-ZDF79ju5ZVkntNgqzSl2flQmfNZ4pv9m4lhsM8pQgQ_pNNFWOa2aZCN1x-eP2RGuqacGMNYfg9nRdrM93N8dk1zvPnlitR5nlbl_2vegPUCdZKLXE02YUGnW1ApOzqQwsC3oXdB2BW1TPRCI5MeTSbZwFa7VDhQ94XGk0qRh65l12pqq3M6viRNcz45QRBMpIXkloPkxE4GhrxiuJtndY5wHd0-nmLjHXhqXT9e3tCiHwOVaKgZTep1IT3fNBqBH7CIJ8II27cj9CXnDEMnoZkxhjcYerzIeDLEBzwwlPFEpJVgu7CUDlK9BwRxKUNFQOyEECIJpZCK11Vde8bjhmlVBa8URSyLYuW2Z0YvnpVZdtsZ43bGbjvjaRVOZ98M81Idv46ulRKOC7Mdx-jPI8Q3YTOqwlkp0fnrn2fb_9vwY1jtXLXi-9v23QGs-U4nLIeyBkvZaKIPYUW-Zd3x6Mhp8zsHc_Sp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D-convolutional-autoencoder+embedded+Siamese-attention-network+for+classification+of+hyperspectral+images&rft.jtitle=Neural+computing+%26+applications&rft.au=Ranjan%2C+Pallavi&rft.au=Kumar%2C+Rajeev&rft.au=Girdhar%2C+Ashish&rft.date=2024-05-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=36&rft.issue=15&rft.spage=8335&rft.epage=8354&rft_id=info:doi/10.1007%2Fs00521-024-09527-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_024_09527_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon