MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems

This paper proposes a new multi-objective algorithm, called Multi-Objective Marine-Predator Algorithm (MOMPA), dependent on elitist non-dominated sorting and crowding distance mechanism. The proposed algorithm is based on the recently proposed Marine-Predator Algorithm, and it was inspired by biolog...

Full description

Saved in:
Bibliographic Details
Published in:Evolutionary intelligence Vol. 16; no. 1; pp. 169 - 195
Main Authors: Jangir, Pradeep, Buch, Hitarth, Mirjalili, Seyedali, Manoharan, Premkumar
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2023
Springer Nature B.V
Subjects:
ISSN:1864-5909, 1864-5917
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a new multi-objective algorithm, called Multi-Objective Marine-Predator Algorithm (MOMPA), dependent on elitist non-dominated sorting and crowding distance mechanism. The proposed algorithm is based on the recently proposed Marine-Predator Algorithm, and it was inspired by biological interaction between predator and prey. The proposed MOMPA can address multiple and conflicting objectives when solving optimization problems. The MOMPA is formulated using elitist non-dominated sorting and crowding distance mechanisms. The proposed method is tested on various multi-objective case studies, including 32 unconstrained, constraint, and engineering design problems with different linear, nonlinear, continuous, and discrete characteristics-based Pareto front problems. The results of the proposed MOMPA are compared with several well-regarded Multi-Objective Water-Cycle Algorithm, Multi-Objective Symbiotic-Organism Search, Multi-Objective Moth-Flame Optimizer algorithms qualitatively and quantitatively using several performance indicators. The experimental results demonstrate the merits of the proposed method.
AbstractList This paper proposes a new multi-objective algorithm, called Multi-Objective Marine-Predator Algorithm (MOMPA), dependent on elitist non-dominated sorting and crowding distance mechanism. The proposed algorithm is based on the recently proposed Marine-Predator Algorithm, and it was inspired by biological interaction between predator and prey. The proposed MOMPA can address multiple and conflicting objectives when solving optimization problems. The MOMPA is formulated using elitist non-dominated sorting and crowding distance mechanisms. The proposed method is tested on various multi-objective case studies, including 32 unconstrained, constraint, and engineering design problems with different linear, nonlinear, continuous, and discrete characteristics-based Pareto front problems. The results of the proposed MOMPA are compared with several well-regarded Multi-Objective Water-Cycle Algorithm, Multi-Objective Symbiotic-Organism Search, Multi-Objective Moth-Flame Optimizer algorithms qualitatively and quantitatively using several performance indicators. The experimental results demonstrate the merits of the proposed method.
Author Jangir, Pradeep
Manoharan, Premkumar
Buch, Hitarth
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Pradeep
  orcidid: 0000-0001-6944-4775
  surname: Jangir
  fullname: Jangir, Pradeep
  email: sbp_140310707009@gtu.edu.in, pkjmtech@gmail.com
  organization: Rajasthan Rajya Vidyut Prasaran Nigam Ltd
– sequence: 2
  givenname: Hitarth
  surname: Buch
  fullname: Buch, Hitarth
  organization: Government Engineering College
– sequence: 3
  givenname: Seyedali
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  organization: Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Yonsei Frontier Lab, Yonsei University
– sequence: 4
  givenname: Premkumar
  surname: Manoharan
  fullname: Manoharan, Premkumar
  organization: Department of Electrical and Electronics Engineering, Dayananda Sagar College of Engineering
BookMark eNp9kE1LwzAYgINMcJv-AU8Fz9V8tGnqbQy_YGMe9BzS9s3MaJuZZAP3642bKOywUxJ4nrwvzwgNetsDQtcE3xKMiztPKOZ5iilJMeZZme7O0JAInqV5SYrB3x2XF2jk_SpCFBfZEFXzxfx1cp_MN20wqa1WUAezhaRTzvSQrB00KliXqHZpnQkfXaLjy9t2a_pl0h1Zdh1MZ3YqGNtH11YtdP4SnWvVerj6Pcfo_fHhbfqczhZPL9PJLK0ZKUNa6rzmRVM0FQMQoEnBmSAEBC0pr6GqdM01FcAqJoA3PAKAKaZKlbTWWrExujn8Gwd_bsAHubIb18eRktE8zwTLcR4pcaBqZ713oGVtwn7h4JRpJcHyp6g8FJWxqNwXlbuo0iN17UwM9XVaYgfJR7hfgvvf6oT1DYkjjhg
CitedBy_id crossref_primary_10_1016_j_matcom_2024_12_008
crossref_primary_10_3390_app122211829
crossref_primary_10_1016_j_epsr_2024_110925
crossref_primary_10_1016_j_energy_2024_130771
crossref_primary_10_1080_23080477_2025_2501323
crossref_primary_10_3390_w17111612
crossref_primary_10_1109_ACCESS_2025_3529839
crossref_primary_10_1007_s10462_022_10235_z
crossref_primary_10_1007_s11831_023_09912_1
crossref_primary_10_1155_er_9531493
crossref_primary_10_3390_biomimetics8080615
crossref_primary_10_1016_j_asej_2025_103590
crossref_primary_10_1007_s40747_024_01418_y
crossref_primary_10_1007_s40745_024_00521_8
crossref_primary_10_1177_14727978251364470
crossref_primary_10_1007_s11831_023_09897_x
crossref_primary_10_1016_j_cma_2024_116840
crossref_primary_10_3390_w16233475
crossref_primary_10_1371_journal_pone_0301630
crossref_primary_10_1016_j_asoc_2023_110525
crossref_primary_10_1016_j_eswa_2023_122732
crossref_primary_10_1038_s41598_025_96901_y
crossref_primary_10_1016_j_energy_2024_133120
crossref_primary_10_1016_j_eswa_2023_122452
crossref_primary_10_1093_jcde_qwad077
crossref_primary_10_1038_s41598_024_52083_7
crossref_primary_10_1109_ACCESS_2022_3215131
crossref_primary_10_1007_s10489_022_03875_9
crossref_primary_10_1038_s41598_025_96263_5
crossref_primary_10_1016_j_egyr_2025_05_056
crossref_primary_10_1016_j_aei_2025_103512
crossref_primary_10_1038_s41598_024_69487_0
crossref_primary_10_1177_14780771251335107
crossref_primary_10_1007_s11831_024_10168_6
crossref_primary_10_1016_j_eswa_2023_119970
crossref_primary_10_1016_j_istruc_2025_109628
crossref_primary_10_1016_j_engappai_2025_111412
crossref_primary_10_1016_j_conbuildmat_2024_135011
crossref_primary_10_1142_S0219649225500157
crossref_primary_10_1016_j_egyr_2024_09_020
crossref_primary_10_1016_j_engappai_2024_107881
crossref_primary_10_1016_j_asoc_2023_111106
crossref_primary_10_1016_j_knosys_2024_111412
crossref_primary_10_1016_j_eswa_2024_126185
crossref_primary_10_1016_j_matcom_2024_01_012
crossref_primary_10_1007_s00500_023_08812_7
crossref_primary_10_1007_s00158_023_03499_8
crossref_primary_10_3390_app13053223
crossref_primary_10_1016_j_procs_2023_11_114
crossref_primary_10_1007_s12065_024_00910_1
crossref_primary_10_1016_j_autcon_2024_105809
crossref_primary_10_1016_j_jksuci_2023_101734
crossref_primary_10_1080_0305215X_2024_2351197
crossref_primary_10_1186_s42162_025_00528_2
crossref_primary_10_1007_s11042_023_16633_x
crossref_primary_10_1080_10589759_2024_2349243
crossref_primary_10_1016_j_eswa_2023_123044
crossref_primary_10_1016_j_eswa_2025_129542
crossref_primary_10_1109_ACCESS_2022_3209996
Cites_doi 10.1007/s00500-013-1187-3
10.1109/ICACCI.2016.7732428
10.1109/ACCESS.2020.3047936
10.1016/j.advengsoft.2017.07.002
10.5267/j.dsl.2019.8.001
10.1080/0305215X.2011.604316
10.1162/evco.1994.2.3.221
10.1016/j.asoc.2016.04.030
10.1109/ACCESS.2021.3085529
10.1016/j.ins.2015.10.010
10.1109/4235.996017
10.1109/TEVC.2004.826067
10.1023/A:1015516501242
10.1007/s10489-016-0825-8
10.1016/j.engappai.2017.04.018
10.1007/s12293-011-0072-9
10.1007/s00158-005-0527-z
10.1007/s12293-017-0237-2
10.1016/j.engappai.2018.04.018
10.1016/j.swevo.2011.08.001
10.1109/CEC.2002.1004388
10.1109/TEVC.2008.925798
10.1162/106365600568202
10.1007/s10489-017-1019-8
10.1016/j.eswa.2020.113377
10.1080/03052150108940926
10.1109/MCI.2017.2742868
10.1016/j.asoc.2014.10.042
10.1080/03052150210915
10.1007/b106458
10.1016/j.engappai.2012.11.006
10.1007/s11390-008-9114-2
10.1016/j.cma.2021.114029
10.1109/ACCESS.2021.3087739
10.1109/4235.585893
10.1016/j.knosys.2017.07.018
10.1080/03052150903505877
10.1109/TEVC.2015.2504730
10.1016/j.knosys.2021.106856
10.1007/978-3-540-31880-4_39
10.1109/TCYB.2013.2282503
10.1109/ACCESS.2021.3066323
10.1007/s00521-015-1920-1
10.1007/978-3-540-72964-8_12
10.1016/j.eswa.2015.10.039
10.1007/BF01743536
10.3233/JAE-2007-913
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s12065-021-00649-z
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1864-5917
EndPage 195
ExternalDocumentID 10_1007_s12065_021_00649_z
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
06D
0R~
0VY
1N0
203
29G
29~
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
67Z
6NX
875
8TC
8UJ
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RLLFE
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7XB
8FE
8FG
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-9f5c67d7db3ee8ef1763811e82926cebbfc6f28e3b38e6d6f17e0202aa92cffa3
IEDL.DBID RSV
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685361200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5909
IngestDate Tue Sep 30 03:41:01 EDT 2025
Sat Nov 29 06:12:14 EST 2025
Tue Nov 18 22:43:18 EST 2025
Fri Feb 21 02:44:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Crowding distance
Multi-objective optimization
Real-world engineering problems
Metaheuristics
Non-dominated sorting mechanism
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9f5c67d7db3ee8ef1763811e82926cebbfc6f28e3b38e6d6f17e0202aa92cffa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6944-4775
PQID 3255483505
PQPubID 2043920
PageCount 27
ParticipantIDs proquest_journals_3255483505
crossref_citationtrail_10_1007_s12065_021_00649_z
crossref_primary_10_1007_s12065_021_00649_z
springer_journals_10_1007_s12065_021_00649_z
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Evolutionary intelligence
PublicationTitleAbbrev Evol. Intel
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MirjaliliSJangirPSaremiSMulti-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problemsAppl Intell201746799510.1007/s10489-016-0825-8
MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Comput Appl2016271053107310.1007/s00521-015-1920-1
Coello Coello, C. A., & Lechuga, M. S. MOPSO: a proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600). 2:1051–1056.
ZengGQChenJLiLMChenMRWuLDaiYXZhengCWAn improved multi-objective population-based extremal optimization algorithm with polynomial mutationInf Sci2016330497310.1016/j.ins.2015.10.010
DebKDattaRHybrid evolutionary multi-objective optimization and analysis of machining operationsEng Optim20124468570610.1080/0305215X.2011.604316
MirjaliliSeyedaliSaremiShahrzadMirjaliliSeyed MohammadCoelhoLeandro dos S.Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimizationExpert Systems with Applications20164710611910.1016/j.eswa.2015.10.039
Mohamed, A. B., Reda, M., Seyedali, M., Ripon, K. C., & Michael, R. (2021). An Efficient Marine Predators Algorithm for Solving Multi-Objective Optimization Problems: Analysis and Validations. IEEE Access 9:42817-42844.
Vikas & Nanda, S. J. (2016) Multi-objective Moth Flame Optimization. In Proceedings of International Conference on Advances in Computing, Communications and Informatics (ICACCI). 2470-2476.
Long, C., Xuebing, C., Kezhong, J., & Zhenzhou, T. (2021). MOMPA: A high performance multi-objective optimizer based on marine predator algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '21). Association for Computing Machinery, New York, NY, USA, 177–178.
MoussouniFBrissetSBrochetPSome results on the design of brushless DC wheel motor using SQP and GAInt J Appl Electromagn Mech20072623324110.3233/JAE-2007-913
FaramarziAHeidarinejadMMirjaliliSGandomiAHMarine Predators Algorithm: a nature-inspired metaheuristicExpert Syst Appl202015211337711337710.1016/j.eswa.2020.113377
NguyenLBuiLTAbbassHADMEA-II: the direction-based multi-objective evolutionary algorithm-IISoft Comput2014182119213410.1007/s00500-013-1187-3
Sarker R, Coello Coello C. A. (2003). Assessment Methodologies for Multiobjective Evolutionary Algorithms. In: Evolutionary Optimization. International Series in Operations Research & Management Science, vol 48. Springer, Boston, MA.
Binh, T. T., & Korn, U. (1997). MOBES: A multiobjective evolution strategy for constrained optimization problems. Proc. 3rd - Int. Mendel Con. Genetic Algorithms, 176–182.
Jeong, M. J., Kobayashi, T., & Yoshimura, S. (2005). Extraction of design characteristics of multiobjective optimization–its application to design of artificial satellite heat pipe. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 561–575): Springer.
BuiLTDebKAbbassHAEssamDInterleaving guidance in evolutionary multi-objective optimizationJ Comput Sci Technol200823446310.1007/s11390-008-9114-2
Coello CoelloCAPulidoGTMultiobjective structural optimization using a microgenetic algorithmStruct Multidiscip Optim20053038840310.1007/s00158-005-0527-z
DebKSrinivasanAInnovization: discovery of innovative design principles through multiobjective evolutionary optimizationMultiobjective Probl Solving Nat200810.1007/978-3-540-72964-8_12
BuchHTrivediINA new non-dominated sorting ions motion algorithm: development and applicationsDecis Sci Lett20209597610.5267/j.dsl.2019.8.001
KotinisMA particle swarm optimizer for constrained multi-objective engineering design problemsEng Optim20104290792610.1080/03052150903505877
LiHZhangQMultiobjective optimization problems with complicated Pareto sets, MOEA/ D and NSGA-IIIEEE Trans Evol Comput20091328430210.1109/TEVC.2008.925798
SrinivasanNDebKMulti-objective function optimisation using non-dominated sorting genetic algorithmEvolutionary Comp1994222124810.1162/evco.1994.2.3.221
Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., & Tiwari, S. (2008). Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, 264.
MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp Swarm Algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002
Deb K., Thiele L., Laumanns M., Zitzler E. (2005) Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham A., Jain L., Goldberg R. (eds) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing. Springer, London.
Sumit, K., Pradeep, J., Tejani, G. G., Premkumar, M., Hassan Haes, A. (2021) MOPGO: A New Physics-Based Multi-Objective Plasma Generation Optimizer for Solving Structural Optimization Problems. IEEE Access 9:84982–85016.
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput2002618219710.1109/4235.996017
YuCLLuYZChuJMulti-objective optimization with combination of particle swarm and extremal optimization for constrained engineering designWSEAS Trans Syst Control20127129138
RayTTaiKSeowKCMultiobjective design optimization by an evolutionary algorithmEng Optim20013339942410.1080/03052150108940926
ZhangMWangHCuiZChenJHybrid multi-objective cuckoo search with dynamical local searchMemet Comput20181019920810.1007/s12293-017-0237-2
MirjaliliSJangirPMirjaliliSZSaremiSTrivediINOptimization of problems with multiple objectives using the multi-verse optimization algorithmKnowl-Based Syst2017134507110.1016/j.knosys.2017.07.018
PremkumarManoharanJangirPradeepSowmyaRavichandranMOGBO: A new Multiobjective Gradient-Based Optimizer for real-world structural optimization problemsKnowledge-Based Systems202121810685610.1016/j.knosys.2021.106856
JangirPJangirNA new Non-Dominated Sorting Grey Wolf Optimizer (NS-GWO) algorithm: development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind powerEng Appl Artif Intell20187244946710.1016/j.engappai.2018.04.018
ZitzlerEDebKThieleLComparison of multiobjective evolutionary algorithms: empirical resultsEvol Comput2000817319510.1162/106365600568202
Tan, K., Lee, T. & Khor, E. (2002) Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons. Artificial Intelligence Review 17:251–290.
Li, M., Yang, S., & Liu, X. (2015). Pareto or non-Pareto: Bi-criterion evolution in multi-objective optimization. IEEE Trans Evol Comput 20:645–665.
SadollahAEskandarHKimJHWater cycle algorithm for solving constrained multi-objective optimization problemsAppl Soft Comput J20152727929810.1016/j.asoc.2014.10.042
WolpertDHHMacreadyWGGNo free lunch theorems for optimizationIEEE Trans Evol Comput19971678210.1109/4235.585893
PandaAPaniSA symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problemsAppl Soft Comput J20164634436010.1016/j.asoc.2016.04.030
AkbariRHedayatzadehRZiaratiKHassanizadehBA multi-objective artificial bee colony algorithmSwarm Evolut Comput20122395210.1016/j.swevo.2011.08.001
NafchiAMMoradiAConstrained multi-objective optimization problems in mechanical engineering design using bees algorithmJ Solid Mech20113353364
Sierra, M.R., Coello Coello, C. A. (2005). Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ∈-Dominance. In: Coello Coello C.A., Hernández Aguirre A., Zitzler E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg.
Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization. Master of Science Thesis, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
BuiLTLiuJBenderABarlowMWesolkowskiSAbbassHADmea: a direction-based multiobjective evolutionary algorithmMemetic Computing2011327128510.1007/s12293-011-0072-9
Deb, K., & Srinivasan, A. (2006). Monotonicity Analysis, Evolutionary Multi-Objective Optimization, and Discovery of Design Principles. In KanGAL Report Number 2006004:1-12.
TianYChengRZhangXJinYPlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]IEEE Comput Intell Mag201712738710.1109/MCI.2017.2742868
SavsaniVTawhidMANon-dominated sorting moth flame optimization (NS-MFO) for multi-objective problemsEng Appl Artif Intell201763203210.1016/j.engappai.2017.04.018
Premkumar, M., Pradeep, J., Santhosh Kumar, B., Sowmya, R., Alhelou, H. H., Abualigah, L., Yildiz., A. R., Mirjalili, S. (2021) A New Arithmetic Optimization Algorithm for Solving Real-World Multiobjective CEC-2021 Constrained Optimization Problems: Diversity Analysis and Validations. IEEE Access 9:84263-84295.
RayTLiewKMA swarm metaphor for multiobjective design optimizationEng Optim20023414115310.1080/03052150210915
ZhongKeyuZhouGuoDengWuZhouYongquanLuoQifangMOMPA: Multi-objective marine predator algorithmComputer Methods in Applied Mechanics and Engineering202138511402910.1016/j.cma.2021.11402907415675
Coello CoelloCAPulidoGTLechugaMSHandling multiple objectives with particle swarm optimizationIEEE Trans Evol Comput2004825627910.1109/TEVC.2004.826067
MirjaliliSZSMirjaliliSZSSaremiSFarisHAljarahIGrasshopper optimization algorithm for multi-objective optimization problemsAppl Intell20184880582010.1007/s10489-017-1019-8
ZouFWangLHeiXChenDWangBMulti-objective optimization using teaching-learning-based optimization algorithmEng Appl Artif Intell2013261291130010.1016/j.engappai.2012.11.006
OsyczkaAKunduSA new method to solve generalized multicriteria optimization problems using the simple genetic algorithmStruct Optim199510
Manoharan Premkumar (649_CR3) 2021; 218
S Mirjalili (649_CR10) 2017; 114
649_CR2
649_CR1
T Ray (649_CR50) 2001; 33
A Faramarzi (649_CR23) 2020; 152
649_CR21
H Li (649_CR30) 2009; 13
K Deb (649_CR41) 2012; 44
649_CR25
649_CR26
T Ray (649_CR49) 2002; 34
S Mirjalili (649_CR15) 2016; 27
649_CR29
L Nguyen (649_CR32) 2014; 18
GQ Zeng (649_CR34) 2016; 330
M Kotinis (649_CR46) 2010; 42
Y Tian (649_CR55) 2017; 12
V Savsani (649_CR20) 2017; 63
E Zitzler (649_CR36) 2000; 8
F Zou (649_CR17) 2013; 26
CL Yu (649_CR51) 2012; 7
LT Bui (649_CR28) 2011; 3
F Moussouni (649_CR47) 2007; 26
AM Nafchi (649_CR48) 2011; 3
649_CR54
CA Coello Coello (649_CR42) 2005; 30
S Mirjalili (649_CR12) 2017; 46
649_CR52
649_CR53
649_CR56
649_CR6
649_CR4
N Srinivasan (649_CR9) 1994; 2
M Zhang (649_CR16) 2018; 10
H Buch (649_CR22) 2020; 9
LT Bui (649_CR27) 2008; 23
P Jangir (649_CR13) 2018; 72
K Deb (649_CR44) 2008
A Osyczka (649_CR39) 1995; 10
649_CR43
R Akbari (649_CR18) 2012; 2
CA Coello Coello (649_CR7) 2004; 8
649_CR45
DHH Wolpert (649_CR5) 1997; 1
Keyu Zhong (649_CR24) 2021; 385
S Mirjalili (649_CR11) 2017; 134
A Panda (649_CR33) 2016; 46
K Deb (649_CR8) 2002; 6
A Sadollah (649_CR40) 2015; 27
Seyedali Mirjalili (649_CR14) 2016; 47
649_CR31
M Li (649_CR38) 2014; 44
649_CR37
649_CR35
SZS Mirjalili (649_CR19) 2018; 48
References_xml – reference: Premkumar, M., Pradeep, J., Santhosh Kumar, B., Sowmya, R., Alhelou, H. H., Abualigah, L., Yildiz., A. R., Mirjalili, S. (2021) A New Arithmetic Optimization Algorithm for Solving Real-World Multiobjective CEC-2021 Constrained Optimization Problems: Diversity Analysis and Validations. IEEE Access 9:84263-84295.
– reference: LiHZhangQMultiobjective optimization problems with complicated Pareto sets, MOEA/ D and NSGA-IIIEEE Trans Evol Comput20091328430210.1109/TEVC.2008.925798
– reference: NguyenLBuiLTAbbassHADMEA-II: the direction-based multi-objective evolutionary algorithm-IISoft Comput2014182119213410.1007/s00500-013-1187-3
– reference: SadollahAEskandarHKimJHWater cycle algorithm for solving constrained multi-objective optimization problemsAppl Soft Comput J20152727929810.1016/j.asoc.2014.10.042
– reference: LiMYangSLiKLiuXEvolutionary algorithms with segment-based search for multiobjective optimization problemsIEEE Trans Cybern2014441295131310.1109/TCYB.2013.2282503
– reference: OsyczkaAKunduSA new method to solve generalized multicriteria optimization problems using the simple genetic algorithmStruct Optim199510949910.1007/BF01743536
– reference: ZitzlerEDebKThieleLComparison of multiobjective evolutionary algorithms: empirical resultsEvol Comput2000817319510.1162/106365600568202
– reference: Sumit, K., Pradeep, J., Tejani, G. G., Premkumar, M., Hassan Haes, A. (2021) MOPGO: A New Physics-Based Multi-Objective Plasma Generation Optimizer for Solving Structural Optimization Problems. IEEE Access 9:84982–85016.
– reference: Coello CoelloCAPulidoGTLechugaMSHandling multiple objectives with particle swarm optimizationIEEE Trans Evol Comput2004825627910.1109/TEVC.2004.826067
– reference: PandaAPaniSA symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problemsAppl Soft Comput J20164634436010.1016/j.asoc.2016.04.030
– reference: DebKDattaRHybrid evolutionary multi-objective optimization and analysis of machining operationsEng Optim20124468570610.1080/0305215X.2011.604316
– reference: NafchiAMMoradiAConstrained multi-objective optimization problems in mechanical engineering design using bees algorithmJ Solid Mech20113353364
– reference: RayTTaiKSeowKCMultiobjective design optimization by an evolutionary algorithmEng Optim20013339942410.1080/03052150108940926
– reference: JangirPJangirNA new Non-Dominated Sorting Grey Wolf Optimizer (NS-GWO) algorithm: development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind powerEng Appl Artif Intell20187244946710.1016/j.engappai.2018.04.018
– reference: Coello Coello, C. A., & Lechuga, M. S. MOPSO: a proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600). 2:1051–1056.
– reference: PremkumarManoharanJangirPradeepSowmyaRavichandranMOGBO: A new Multiobjective Gradient-Based Optimizer for real-world structural optimization problemsKnowledge-Based Systems202121810685610.1016/j.knosys.2021.106856
– reference: MirjaliliSeyedaliSaremiShahrzadMirjaliliSeyed MohammadCoelhoLeandro dos S.Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimizationExpert Systems with Applications20164710611910.1016/j.eswa.2015.10.039
– reference: Sierra, M.R., Coello Coello, C. A. (2005). Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ∈-Dominance. In: Coello Coello C.A., Hernández Aguirre A., Zitzler E. (eds) Evolutionary Multi-Criterion Optimization. EMO 2005. Lecture Notes in Computer Science, vol 3410. Springer, Berlin, Heidelberg.
– reference: MoussouniFBrissetSBrochetPSome results on the design of brushless DC wheel motor using SQP and GAInt J Appl Electromagn Mech20072623324110.3233/JAE-2007-913
– reference: MirjaliliSZSMirjaliliSZSSaremiSFarisHAljarahIGrasshopper optimization algorithm for multi-objective optimization problemsAppl Intell20184880582010.1007/s10489-017-1019-8
– reference: Sarker R, Coello Coello C. A. (2003). Assessment Methodologies for Multiobjective Evolutionary Algorithms. In: Evolutionary Optimization. International Series in Operations Research & Management Science, vol 48. Springer, Boston, MA.
– reference: ZengGQChenJLiLMChenMRWuLDaiYXZhengCWAn improved multi-objective population-based extremal optimization algorithm with polynomial mutationInf Sci2016330497310.1016/j.ins.2015.10.010
– reference: MirjaliliSJangirPMirjaliliSZSaremiSTrivediINOptimization of problems with multiple objectives using the multi-verse optimization algorithmKnowl-Based Syst2017134507110.1016/j.knosys.2017.07.018
– reference: SavsaniVTawhidMANon-dominated sorting moth flame optimization (NS-MFO) for multi-objective problemsEng Appl Artif Intell201763203210.1016/j.engappai.2017.04.018
– reference: BuchHTrivediINA new non-dominated sorting ions motion algorithm: development and applicationsDecis Sci Lett20209597610.5267/j.dsl.2019.8.001
– reference: Li, M., Yang, S., & Liu, X. (2015). Pareto or non-Pareto: Bi-criterion evolution in multi-objective optimization. IEEE Trans Evol Comput 20:645–665.
– reference: WolpertDHHMacreadyWGGNo free lunch theorems for optimizationIEEE Trans Evol Comput19971678210.1109/4235.585893
– reference: YuCLLuYZChuJMulti-objective optimization with combination of particle swarm and extremal optimization for constrained engineering designWSEAS Trans Syst Control20127129138
– reference: AkbariRHedayatzadehRZiaratiKHassanizadehBA multi-objective artificial bee colony algorithmSwarm Evolut Comput20122395210.1016/j.swevo.2011.08.001
– reference: Binh, T. T., & Korn, U. (1997). MOBES: A multiobjective evolution strategy for constrained optimization problems. Proc. 3rd - Int. Mendel Con. Genetic Algorithms, 176–182.
– reference: RayTLiewKMA swarm metaphor for multiobjective design optimizationEng Optim20023414115310.1080/03052150210915
– reference: Tan, K., Lee, T. & Khor, E. (2002) Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons. Artificial Intelligence Review 17:251–290.
– reference: TianYChengRZhangXJinYPlatEMO: a MATLAB platform for evolutionary multi-objective optimization [educational forum]IEEE Comput Intell Mag201712738710.1109/MCI.2017.2742868
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput2002618219710.1109/4235.996017
– reference: ZhongKeyuZhouGuoDengWuZhouYongquanLuoQifangMOMPA: Multi-objective marine predator algorithmComputer Methods in Applied Mechanics and Engineering202138511402910.1016/j.cma.2021.11402907415675
– reference: ZhangMWangHCuiZChenJHybrid multi-objective cuckoo search with dynamical local searchMemet Comput20181019920810.1007/s12293-017-0237-2
– reference: Vikas & Nanda, S. J. (2016) Multi-objective Moth Flame Optimization. In Proceedings of International Conference on Advances in Computing, Communications and Informatics (ICACCI). 2470-2476.
– reference: Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., & Tiwari, S. (2008). Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, 264.
– reference: Mohamed, A. B., Reda, M., Seyedali, M., Ripon, K. C., & Michael, R. (2021). An Efficient Marine Predators Algorithm for Solving Multi-Objective Optimization Problems: Analysis and Validations. IEEE Access 9:42817-42844.
– reference: Deb K., Thiele L., Laumanns M., Zitzler E. (2005) Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham A., Jain L., Goldberg R. (eds) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing. Springer, London.
– reference: DebKSrinivasanAInnovization: discovery of innovative design principles through multiobjective evolutionary optimizationMultiobjective Probl Solving Nat200810.1007/978-3-540-72964-8_12
– reference: Jeong, M. J., Kobayashi, T., & Yoshimura, S. (2005). Extraction of design characteristics of multiobjective optimization–its application to design of artificial satellite heat pipe. In International Conference on Evolutionary Multi-Criterion Optimization (pp. 561–575): Springer.
– reference: BuiLTLiuJBenderABarlowMWesolkowskiSAbbassHADmea: a direction-based multiobjective evolutionary algorithmMemetic Computing2011327128510.1007/s12293-011-0072-9
– reference: Deb, K., & Srinivasan, A. (2006). Monotonicity Analysis, Evolutionary Multi-Objective Optimization, and Discovery of Design Principles. In KanGAL Report Number 2006004:1-12.
– reference: SrinivasanNDebKMulti-objective function optimisation using non-dominated sorting genetic algorithmEvolutionary Comp1994222124810.1162/evco.1994.2.3.221
– reference: BuiLTDebKAbbassHAEssamDInterleaving guidance in evolutionary multi-objective optimizationJ Comput Sci Technol200823446310.1007/s11390-008-9114-2
– reference: MirjaliliSJangirPSaremiSMulti-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problemsAppl Intell201746799510.1007/s10489-016-0825-8
– reference: ZouFWangLHeiXChenDWangBMulti-objective optimization using teaching-learning-based optimization algorithmEng Appl Artif Intell2013261291130010.1016/j.engappai.2012.11.006
– reference: MirjaliliSGandomiAHMirjaliliSZSaremiSFarisHMirjaliliSMSalp Swarm Algorithm: a bio-inspired optimizer for engineering design problemsAdv Eng Softw201711416319110.1016/j.advengsoft.2017.07.002
– reference: KotinisMA particle swarm optimizer for constrained multi-objective engineering design problemsEng Optim20104290792610.1080/03052150903505877
– reference: Long, C., Xuebing, C., Kezhong, J., & Zhenzhou, T. (2021). MOMPA: A high performance multi-objective optimizer based on marine predator algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO '21). Association for Computing Machinery, New York, NY, USA, 177–178.
– reference: MirjaliliSDragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problemsNeural Comput Appl2016271053107310.1007/s00521-015-1920-1
– reference: Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization. Master of Science Thesis, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
– reference: Premkumar, M., Pradeep, J., Sowmya, R., Hassan Haes, A., Ali Asghar, H., & Huiling, C. (2021) MOSMA: Multi-Objective Slime Mould Algorithm Based on Elitist Non-Dominated Sorting. IEEE Access 9:3229–3248.
– reference: FaramarziAHeidarinejadMMirjaliliSGandomiAHMarine Predators Algorithm: a nature-inspired metaheuristicExpert Syst Appl202015211337711337710.1016/j.eswa.2020.113377
– reference: Coello CoelloCAPulidoGTMultiobjective structural optimization using a microgenetic algorithmStruct Multidiscip Optim20053038840310.1007/s00158-005-0527-z
– volume: 18
  start-page: 2119
  year: 2014
  ident: 649_CR32
  publication-title: Soft Comput
  doi: 10.1007/s00500-013-1187-3
– ident: 649_CR21
  doi: 10.1109/ICACCI.2016.7732428
– ident: 649_CR4
  doi: 10.1109/ACCESS.2020.3047936
– volume: 114
  start-page: 163
  year: 2017
  ident: 649_CR10
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 9
  start-page: 59
  year: 2020
  ident: 649_CR22
  publication-title: Decis Sci Lett
  doi: 10.5267/j.dsl.2019.8.001
– volume: 44
  start-page: 685
  year: 2012
  ident: 649_CR41
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2011.604316
– volume: 2
  start-page: 221
  year: 1994
  ident: 649_CR9
  publication-title: Evolutionary Comp
  doi: 10.1162/evco.1994.2.3.221
– volume: 46
  start-page: 344
  year: 2016
  ident: 649_CR33
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2016.04.030
– ident: 649_CR1
  doi: 10.1109/ACCESS.2021.3085529
– volume: 330
  start-page: 49
  year: 2016
  ident: 649_CR34
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2015.10.010
– volume: 6
  start-page: 182
  year: 2002
  ident: 649_CR8
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– volume: 8
  start-page: 256
  year: 2004
  ident: 649_CR7
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826067
– ident: 649_CR52
  doi: 10.1023/A:1015516501242
– volume: 46
  start-page: 79
  year: 2017
  ident: 649_CR12
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0825-8
– volume: 63
  start-page: 20
  year: 2017
  ident: 649_CR20
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2017.04.018
– volume: 3
  start-page: 271
  year: 2011
  ident: 649_CR28
  publication-title: Memetic Computing
  doi: 10.1007/s12293-011-0072-9
– volume: 30
  start-page: 388
  year: 2005
  ident: 649_CR42
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-005-0527-z
– ident: 649_CR56
– volume: 10
  start-page: 199
  year: 2018
  ident: 649_CR16
  publication-title: Memet Comput
  doi: 10.1007/s12293-017-0237-2
– ident: 649_CR35
– volume: 3
  start-page: 353
  year: 2011
  ident: 649_CR48
  publication-title: J Solid Mech
– ident: 649_CR25
– volume: 72
  start-page: 449
  year: 2018
  ident: 649_CR13
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.04.018
– ident: 649_CR29
– volume: 2
  start-page: 39
  year: 2012
  ident: 649_CR18
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2011.08.001
– ident: 649_CR6
  doi: 10.1109/CEC.2002.1004388
– volume: 13
  start-page: 284
  year: 2009
  ident: 649_CR30
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.925798
– volume: 8
  start-page: 173
  year: 2000
  ident: 649_CR36
  publication-title: Evol Comput
  doi: 10.1162/106365600568202
– volume: 48
  start-page: 805
  year: 2018
  ident: 649_CR19
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1019-8
– volume: 7
  start-page: 129
  year: 2012
  ident: 649_CR51
  publication-title: WSEAS Trans Syst Control
– volume: 152
  start-page: 113377
  year: 2020
  ident: 649_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113377
– ident: 649_CR53
– volume: 33
  start-page: 399
  year: 2001
  ident: 649_CR50
  publication-title: Eng Optim
  doi: 10.1080/03052150108940926
– volume: 12
  start-page: 73
  year: 2017
  ident: 649_CR55
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2017.2742868
– volume: 27
  start-page: 279
  year: 2015
  ident: 649_CR40
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2014.10.042
– volume: 34
  start-page: 141
  year: 2002
  ident: 649_CR49
  publication-title: Eng Optim
  doi: 10.1080/03052150210915
– ident: 649_CR54
  doi: 10.1007/b106458
– volume: 26
  start-page: 1291
  year: 2013
  ident: 649_CR17
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.11.006
– volume: 23
  start-page: 44
  year: 2008
  ident: 649_CR27
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-008-9114-2
– ident: 649_CR43
– volume: 385
  start-page: 114029
  year: 2021
  ident: 649_CR24
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2021.114029
– ident: 649_CR2
  doi: 10.1109/ACCESS.2021.3087739
– volume: 1
  start-page: 67
  year: 1997
  ident: 649_CR5
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– ident: 649_CR37
– volume: 134
  start-page: 50
  year: 2017
  ident: 649_CR11
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2017.07.018
– volume: 42
  start-page: 907
  year: 2010
  ident: 649_CR46
  publication-title: Eng Optim
  doi: 10.1080/03052150903505877
– ident: 649_CR31
  doi: 10.1109/TEVC.2015.2504730
– volume: 218
  start-page: 106856
  year: 2021
  ident: 649_CR3
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106856
– ident: 649_CR45
  doi: 10.1007/978-3-540-31880-4_39
– volume: 44
  start-page: 1295
  year: 2014
  ident: 649_CR38
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2013.2282503
– ident: 649_CR26
  doi: 10.1109/ACCESS.2021.3066323
– volume: 27
  start-page: 1053
  year: 2016
  ident: 649_CR15
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– year: 2008
  ident: 649_CR44
  publication-title: Multiobjective Probl Solving Nat
  doi: 10.1007/978-3-540-72964-8_12
– volume: 47
  start-page: 106
  year: 2016
  ident: 649_CR14
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.039
– volume: 10
  start-page: 94
  year: 1995
  ident: 649_CR39
  publication-title: Struct Optim
  doi: 10.1007/BF01743536
– volume: 26
  start-page: 233
  year: 2007
  ident: 649_CR47
  publication-title: Int J Appl Electromagn Mech
  doi: 10.3233/JAE-2007-913
SSID ssj0062074
Score 2.5366533
Snippet This paper proposes a new multi-objective algorithm, called Multi-Objective Marine-Predator Algorithm (MOMPA), dependent on elitist non-dominated sorting and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 169
SubjectTerms Algorithms
Applications of Mathematics
Archives & records
Artificial Intelligence
Benchmarks
Bioinformatics
Control
Crowding
Design engineering
Engineering
Heuristic
Linear programming
Mathematical and Computational Engineering
Mechatronics
Multiple objective analysis
Objectives
Optimization
Pareto optimization
Pareto optimum
Predators
Research Paper
Robotics
Statistical Physics and Dynamical Systems
Success
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sIjzcGwWVCEQS0sHkLpFsWPzUF80haG_nnPiEFGJLszxS7nz3Wf77j6EzoVKDWhORuCIrEkIPtaWvGUEPJWhBk5vksuCbCLu9fhgIPruwi13YZWVTSwMdTZR9o78KgDsGwJc8KKb6QexrFH2ddVRaKyjDUA21IZ0df1-ZYmZ7xVVmClnIYmEJ1zSTJk654PzJTZAwXplQRa_HVONNpceSAu_c9_874p30LZDnLhTqsguWtPjPdSs2Byw29z7SHYfu_3ONS5ScslEvpemEI9SmyCIpzOd2QM6TocvMMv8dYQB72JQXXslgUdLvSZgikYuxxM71pr8AD3f3z3dPhDHwEAUbM05ESZSLM7iTAZac20oWCNOqea-8JnSUhrFjM91IAOuWcaggQb86aep8JUxaXCIGuPJWB8h7PGYC8ACzBgaZrGSNEp1DCunoYrCIGshWv3-RLny5JYlY5jUhZWtyBIQWVKILFm00MVPn2lZnGNl63Ylp8Rt1DyphdRCl5Wk689_j3a8erQTtGWJ6cv47jZqzGef-hRtqq_5Wz47K9T0G15Q70M
  priority: 102
  providerName: ProQuest
Title MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems
URI https://link.springer.com/article/10.1007/s12065-021-00649-z
https://www.proquest.com/docview/3255483505
Volume 16
WOSCitedRecordID wos000685361200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: M7S
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: M2P
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer BSL Vakbibliotheek
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: RSV
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58HfTgW6yPkoM3DTT7yCbeVBRBWhdfiJdlk018YFtpqwd_vZNt1qqooJdcNgkhM5lvZpOZD2BL6tyi5hQUQ2RDI8RYV_KWU0QqyyxGb0qokmwiabXE9bVMfVJYv3rtXl1JlpZ6lOwWIFxS96TA4aikr-MwiXAnHGHD2flVZX950ChrLzPBIxrLhvSpMt_P8RmORj7ml2vREm2O5v63znmY9d4l2RuqwwKMmc4izFXMDcQf5EWY-VCGcAlU87SZ7u2SMhmXdtXD0AiSdu5SA8lTzxQuNCf54223dz-4axP0dAkqrfsZQdpfRnXRCLV9difxfDX9Zbg8Orw4OKaee4FqPJQDKm2seVIkhQqNEcYytEOCMSMCGXBtlLKa20CYUIXC8IJjB4OeZ5DnMtDW5uEKTHS6HbMKpCESIdEL4NayqEi0YnFuElw5i3QchUUNWCWCTPvC5I4f4zEblVR2W5rhlmbllmavNdh-H_M0LMvxa--NSrKZP6L9LMRgKkL_sxHXYKeS5Ojzz7Ot_a37Okw7ivrhS-8NmBj0ns0mTOmXwX2_V4fJ_cNWelaH8ZOEYtsMUtcm59im8U29VO03gqDv6g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VgASXFgpVQwP1gZ7AYu3d9dqVKlQBUas2IYcg9basvTYU5UWSFpEf1d_Y8T6IqERuOfS8trW2v5n5bM8D4I0ymUPk5BSPyJZGaGN9yltB0VI55vD0pqUuik0k3a68uFC9DbipY2G8W2WtEwtFnY-NvyN_HyL3jZAuBPGHyS_qq0b519W6hEYJizP75zce2WZHp59wfw84b3_ufzyhVVUBahBuc6pcbESSJ7kOrZXWMZQwyZiVXHFhrNbOCMelDXUorcgFNrDIqXiWKW6cy0Ic9wE8jHxmMe8qyHu15hc8KLI-MykiGqtAVUE6ZageR2NPvUOEZwGKLv41hEt2e-dBtrBz7a37tkJPYbNi1OS4FIFnsGFH27BVV6sglfJ6DrrzpdM7PiRFyDEd65-lqifDzAdAksnU5v4CgmSD7zir-Y8hQT5PUDT9lQsZ3uk1RlU7rGJYSVWVZ_YCvq5lpjvQGI1HdhdIIBOpkOsI51iUJ0azOLMJ_jmLTByFeRNYvd2pqdKv-yogg3SZONpDJEWIpAVE0kUT3v7tMymTj6xs3apxkVaKaJYuQdGEdzWylp__P9rL1aPtw-OTfuc8PT_tnu3BE1yTsPRlb0FjPr2yr-CRuZ5fzqavCxEh8G3diLsFG5dO-w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JbxMxFH5qU1SVQwOBipQUfOAGVsazeGxuUWlUBAmRWJTbaOyxaatsSgYO-fV9noWEqCBVPY9tWfZbx-_7HsAbqVOLkpNRTJENDdHHOspbTtFTWWYxe1NCFc0m4uFQjMdytIXiL6rd6yfJEtPgWJpmeXeR2e4G-Oaj66SuvMD5VEnX-3AQukJ6l69__VHbYu57BQ8zEzykkfRkBZu5e42_XdMm3tx5Ii08T7_58D0_geMq6iS9Ukyewp6ZtaBZd3QglYK34PEWPeEzUIMvg1HvPSlAunSubkrjSKapgwySxdJkLmUn6eTnfHmdX00JRsAEhdn9pCDTnVlzNE7TCvVJqj42q-fwvX_x7fySVj0ZqEZlzam0keZxFmcqMEYYy9A-CcaM8KXPtVHKam59YQIVCMMzjgMMRqR-mkpfW5sGJ9CYzWfmBRBPxEJidMCtZWEWa8Wi1MS4cxbqKAyyNrD6OhJdEZa7vhmTZEO17I40wSNNiiNN1m14-2fOoqTr-O_oTn3LSaW6qyTAJCvEuNSL2vCuvtXN53-vdnq_4a_hcPShn3z-OPz0Eo5cF_uyGLwDjXz5y5zBI_07v14tXxUSfQtrevZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MOMPA%3A+Multi-objective+marine+predator+algorithm+for+solving+multi-objective+optimization+problems&rft.jtitle=Evolutionary+intelligence&rft.au=Jangir%2C+Pradeep&rft.au=Buch%2C+Hitarth&rft.au=Mirjalili%2C+Seyedali&rft.au=Manoharan%2C+Premkumar&rft.date=2023-02-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=16&rft.issue=1&rft.spage=169&rft.epage=195&rft_id=info:doi/10.1007%2Fs12065-021-00649-z&rft.externalDocID=10_1007_s12065_021_00649_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon