Residual Spatiotemporal Autoencoder with Skip Connected and Memory Guided Network for Detecting Video Anomalies

Real-time video anomaly detection and localization still prevail as a challenging task. Autoencoders are expected to give high reconstruction error for abnormal events than normal events while trained on video segments of normal events. Nevertheless, this assumption is not always true in practice. S...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural processing letters Ročník 53; číslo 6; s. 4677 - 4692
Hlavní autoři: Chandrakala, S., Srinivas, V., Deepak, K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2021
Springer Nature B.V
Témata:
ISSN:1370-4621, 1573-773X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Real-time video anomaly detection and localization still prevail as a challenging task. Autoencoders are expected to give high reconstruction error for abnormal events than normal events while trained on video segments of normal events. Nevertheless, this assumption is not always true in practice. Sometimes the autoencoder offers better generalization. Therefore, it also reconstructs abnormal events well, leading to slightly degraded performance for anomaly detection. To alleviate this issue, we propose a Skip connected and Memory Guided Network (SMGNet) for video anomaly detection. The memory guided network with skip connection help in avoiding loss of meaningful information such as foreground patterns, in addition to memorizing significant normality patterns. The effect of augmenting memory guided network with skip connection in the residual spatiotemporal autoencoder (R-STAE) architecture is evaluated. The proposed technique achieved improved results over three benchmark datasets.
AbstractList Real-time video anomaly detection and localization still prevail as a challenging task. Autoencoders are expected to give high reconstruction error for abnormal events than normal events while trained on video segments of normal events. Nevertheless, this assumption is not always true in practice. Sometimes the autoencoder offers better generalization. Therefore, it also reconstructs abnormal events well, leading to slightly degraded performance for anomaly detection. To alleviate this issue, we propose a Skip connected and Memory Guided Network (SMGNet) for video anomaly detection. The memory guided network with skip connection help in avoiding loss of meaningful information such as foreground patterns, in addition to memorizing significant normality patterns. The effect of augmenting memory guided network with skip connection in the residual spatiotemporal autoencoder (R-STAE) architecture is evaluated. The proposed technique achieved improved results over three benchmark datasets.
Author Chandrakala, S.
Deepak, K.
Srinivas, V.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-4723-1984
  surname: Chandrakala
  fullname: Chandrakala, S.
  email: chandrakal@cse.sastra.edu, sckala@cse.iitm.ac.in
  organization: Intelligent Systems Group, SASTRA Deemed to be University
– sequence: 2
  givenname: V.
  surname: Srinivas
  fullname: Srinivas, V.
  organization: Intelligent Systems Group, SASTRA Deemed to be University
– sequence: 3
  givenname: K.
  surname: Deepak
  fullname: Deepak, K.
  organization: SRM Institute of Science and Technology
BookMark eNp9kMtOAyEUhompia36Aq5IXI_CMNdlU7WaeEmsGneEgUNFWxiBifHtpdbExIUrzoH_O8A3QSPrLCB0RMkJJaQ-DZSSimUkp1kqaJOxHTSmZc2yumbPo1SzmmRFldM9NAnhlZCE5WSM3D0EowaxwoteROMirHvnUzsdogMrnQKPP0x8wYs30-OZsxZkBIWFVfgG1s5_4vlgVNq5hfjh_BvWzuMziClm7BI_pTOHp9atxcpAOEC7WqwCHP6s--jx4vxhdpld382vZtPrTDLaxqyVoinKTstaUNnqLjVFq1hLNYNWt0oXoiEFkRXRKi-ZKouuEl0JTKU_lh2wfXS8ndt79z5AiPzVDd6mK3ne0oYVLC-qlGq2KeldCB40lyZuNNjohVlxSvhGL9_q5Ukv_9bLWULzP2jvzVr4z_8htoVCCtsl-N9X_UN9AU_2kJw
CitedBy_id crossref_primary_10_1007_s11063_023_11347_5
crossref_primary_10_1109_TII_2023_3298476
crossref_primary_10_1016_j_neucom_2024_127444
crossref_primary_10_1080_13682199_2023_2202577
crossref_primary_10_1016_j_cma_2024_117071
crossref_primary_10_1016_j_imavis_2024_105011
Cites_doi 10.1109/CVPR.2009.5206641
10.1109/ICCV.2015.510
10.2352/ISSN.2470-1173.2017.7.MWSF-330
10.1109/ICIP.2017.8296547
10.1016/j.patcog.2016.09.016
10.1109/IWBF.2017.7935096
10.1007/978-3-319-10602-1_48
10.1109/TMM.2017.2666540
10.1109/CVPR.2010.5539872
10.1016/j.neucom.2019.08.044
10.1109/NCVPRIPG.2013.6776164
10.1109/ACCESS.2020.2993373
10.1109/TSP.2017.8076061
10.1016/j.neucom.2016.09.063
10.1109/TIP.2015.2475625
10.1109/ICCV.2017.45
10.1007/s11760-020-01740-1
10.1109/WACV.2019.00212
10.1109/ICCV.2017.315
10.1109/ICME.2017.8019325
10.1007/978-3-319-46454-1_21
10.1109/ICCV.2019.00179
10.1109/CVPR.2018.00684
10.1145/3123266.3123451
10.1007/11744047_33
10.1109/CVPR.2019.00803
10.1109/ICCV.2017.391
10.1109/CVPR.2005.177
10.1109/CVPR.2009.5206771
10.1007/s11263-016-0981-7
10.1109/TMM.2020.2984093
10.1109/WACV45572.2020.9093417
10.1007/978-3-319-59081-3_23
10.5244/C.31.139
10.1109/ICCV.2015.169
10.1109/ICCV.2013.338
10.1109/CVPR.2016.86
10.1109/TIFS.2018.2856189
10.5244/C.29.8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
Copyright Springer Nature B.V. Dec 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: Copyright Springer Nature B.V. Dec 2021
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-021-10618-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 4692
ExternalDocumentID 10_1007_s11063_021_10618_3
GrantInformation_xml – fundername: Department of Science and Technology, Ministry of Science and Technology
  grantid: No.DST/CSRI/2017/131(G)
  funderid: http://dx.doi.org/10.13039/501100001409
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-9ca845bfc7a1c9fb84549d391f3e9f9df4a8040c60fd253d54b6ab5e3d4625be3
IEDL.DBID RSV
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688362300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1370-4621
IngestDate Sat Oct 18 23:13:32 EDT 2025
Tue Nov 18 21:43:05 EST 2025
Sat Nov 29 02:27:52 EST 2025
Fri Feb 21 02:47:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Video anomaly detection
Residual blocks
Normality modeling
Memory guided network
Spatio temporal autoencoders
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9ca845bfc7a1c9fb84549d391f3e9f9df4a8040c60fd253d54b6ab5e3d4625be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4723-1984
PQID 2918343246
PQPubID 2043838
PageCount 16
ParticipantIDs proquest_journals_2918343246
crossref_citationtrail_10_1007_s11063_021_10618_3
crossref_primary_10_1007_s11063_021_10618_3
springer_journals_10_1007_s11063_021_10618_3
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References LiNChangFLiuCSpatial-temporal cascade autoencoder for video anomaly detection in crowded scenesIEEE Trans Multimed20202320321510.1109/TMM.2020.2984093
Luo W, Liu W, Gao S (2017) Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE international conference on multimedia and Expo (ICME), IEEE, pp 439–444
FengYYuanYLuXLearning deep event models for crowd anomaly detectionNeurocomputing201721954855610.1016/j.neucom.2016.09.063
Hinami R, Mei T, Satoh S (2017) Joint detection and recounting of abnormal events by learning deep generic knowledge. In: Proceedings of the IEEE international conference on computer vision, pp 3619–3627
Ravanbakhsh M, Nabi M, Sangineto E, Marcenaro L, Regazzoni C, Sebe N (2017) Abnormal event detection in videos using generative adversarial nets. In: 2017 IEEE international conference on image processing (ICIP), IEEE, pp 1577–1581
KhanMUKParkHSKyungCMRejecting motion outliers for efficient crowd anomaly detectionIEEE Trans Inf Forensics Secur201814254155610.1109/TIFS.2018.2856189
Hasan M, Choi J, Neumann J, Roy-Chowdhury AK, Davis LS (2016) Learning temporal regularity in video sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 733–742
Ionescu RT, Smeureanu S, Popescu M, Alexe B (2019) Detecting abnormal events in video using narrowed normality clusters. In: 2019 IEEE winter conference on applications of computer vision (WACV), IEEE, pp 1951–1960
Leyva R, Sanchez V, Li CT (2017) The lv dataset: A realistic surveillance video dataset for abnormal event detection. In: 2017 5th international workshop on biometrics and forensics (IWBF), IEEE, pp 1–6
Zhao Y, Deng B, Shen C, Liu Y, Lu H, Hua XS (2017) Spatio-temporal autoencoder for video anomaly detection. In: Proceedings of the 25th ACM international conference on Multimedia, pp 1933–1941
Zhao Y, Deng B, Shen C, Liu Y, Lu H, Hua XS (2017) Spatio-temporal autoencoder for video anomaly detection. In: ACM Multimedia
Deepak K, Chandrakala S, Mohan CK (2021) Residual spatiotemporal autoencoder for unsupervised video anomaly detection. Sig Image Video Process 15(1):215–222
D’Avino D, Cozzolino D, Poggi G, Verdoliva L (2017) Autoencoder with recurrent neural networks for video forgery detection. Electron Imaging 2017(7):92–99
ChanTHJiaKGaoSLuJZengZMaYPcanet: a simple deep learning baseline for image classification?IEEE Trans Image Process2015241250175032340609910.1109/TIP.2015.2475625
SunQLiuHHaradaTOnline growing neural gas for anomaly detection in changing surveillance scenesPattern Recogn20176418720110.1016/j.patcog.2016.09.016
Leyva R, Sanchez V, Li CT (2017) Abnormal event detection in videos using binary features. In: 2017 40th international conference on telecommunications and signal processing (TSP), IEEE, pp 621–625
LiNChangFVideo anomaly detection and localization via multivariate gaussian fully convolution adversarial autoencoderNeurocomputing20193699210510.1016/j.neucom.2019.08.044
Chong YS, Tay YH (2017) Abnormal event detection in videos using spatiotemporal autoencoder. In: International symposium on neural networks, Springer, pp 189–196
Tran HT, Hogg D (2017) Anomaly detection using a convolutional winner-take-all autoencoder. In: Proceedings of the British machine vision conference 2017. British Machine Vision Association
Gong D, Liu L, Le V, Saha B, Mansour MR, Venkatesh S, Hengel Avd (2019) Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE international conference on computer vision, pp 1705–1714
Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 935–942
Del Giorno A, Bagnell JA, Hebert M (2016) A discriminative framework for anomaly detection in large videos. In: European conference on computer vision, Springer, pp 334–349
Liu W, Luo W, Lian D, Gao S (2018) Future frame prediction for anomaly detection–a new baseline. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6536–6545
Tudor Ionescu R, Smeureanu S, Alexe B, Popescu M (2017) Unmasking the abnormal events in video. In: Proceedings of the ieee international conference on computer vision, pp 2895–2903
Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: 2010 IEEE computer society conference on computer vision and pattern recognition, IEEE, pp 1975–1981
Biswas S, Babu RV (2013) Real time anomaly detection in h. 264 compressed videos. In: 2013 Fourth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG), IEEE, pp 1–4
Luo W, Liu W, Gao S (2017) A revisit of sparse coding based anomaly detection in stacked rnn framework. In: Proceedings of the IEEE international conference on computer vision, pp 341–349
Ramachandra B, Jones M, Vatsavai R (2020) Learning a distance function with a siamese network to localize anomalies in videos. In: The IEEE winter conference on applications of computer vision, pp 2598–2607
Ionescu RT, Khan FS, Georgescu MI, Shao L (2019) Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7842–7851
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1, IEEE, pp 886–893
Fritzke B (1995) A growing neural gas network learns topologies. In: Advances in neural information processing systems, pp 625–632
Van den Oord A, Schrauwen B (2014) Factoring variations in natural images with deep gaussian mixture models. In: Advances in neural information processing systems, pp 3518–3526
Xingjian S, Chen Z, Wang H, Yeung DY, Wong WK, Woo Wc (2015) Convolutional lstm network: A machine learning approach for precipitation nowcasting. In: Advances in neural information processing systems, pp 802–810
Lu C, Shi J, Jia J (2013) Abnormal event detection at 150 fps in matlab. In: Proceedings of the IEEE international conference on computer vision, pp 2720–2727
Medel JR (2016) Anomaly detection using predictive convolutional long short-term memory units. Thesis. Rochester Institute of Technology
Srivastava N, Mansimov E, Salakhudinov R (2015) Unsupervised learning of video representations using lstms. In: International conference on machine learning, pp 843–852
KrishnaRZhuYGrothOJohnsonJHataKKravitzJChenSKalantidisYLiLJShammaDAVisual genome: Connecting language and vision using crowdsourced dense image annotationsInt J Comput Vis201712313273364073810.1007/s11263-016-0981-7
Dalal N, Triggs B, Schmid C (2006) Human detection using oriented histograms of flow and appearance. In: European conference on computer vision, Springer, pp 428–441
Dong F, Zhang Y, Nie X (2020) Dual discriminator generative adversarial network for video anomaly detection. IEEE. Access
Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497
Kratz L, Nishino K (2009) Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 1446–1453
Xu D, Ricci E, Yan Y, Song J, Sebe N (2015) Learning deep representations of appearance and motion for anomalous event detection. arXiv preprint arXiv:1510.01553
Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448
Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: Common objects in context. In: European conference on computer vision, Springer, pp 740–755
ShiYTianYWangYHuangTSequential deep trajectory descriptor for action recognition with three-stream cnnIEEE Trans Multimed20171971510152010.1109/TMM.2017.2666540
10618_CR1
10618_CR3
10618_CR4
10618_CR5
10618_CR6
10618_CR19
10618_CR7
10618_CR8
10618_CR17
10618_CR39
10618_CR9
10618_CR15
10618_CR37
10618_CR16
10618_CR13
10618_CR35
Y Feng (10618_CR10) 2017; 219
10618_CR14
10618_CR11
10618_CR33
10618_CR12
10618_CR34
10618_CR31
Y Shi (10618_CR36) 2017; 19
10618_CR32
10618_CR30
R Krishna (10618_CR20) 2017; 123
TH Chan (10618_CR2) 2015; 24
N Li (10618_CR24) 2020; 23
10618_CR28
10618_CR29
10618_CR26
10618_CR27
10618_CR25
10618_CR22
10618_CR44
10618_CR45
10618_CR42
10618_CR21
10618_CR43
10618_CR40
10618_CR41
MUK Khan (10618_CR18) 2018; 14
Q Sun (10618_CR38) 2017; 64
N Li (10618_CR23) 2019; 369
References_xml – reference: Biswas S, Babu RV (2013) Real time anomaly detection in h. 264 compressed videos. In: 2013 Fourth national conference on computer vision, pattern recognition, image processing and graphics (NCVPRIPG), IEEE, pp 1–4
– reference: ChanTHJiaKGaoSLuJZengZMaYPcanet: a simple deep learning baseline for image classification?IEEE Trans Image Process2015241250175032340609910.1109/TIP.2015.2475625
– reference: KhanMUKParkHSKyungCMRejecting motion outliers for efficient crowd anomaly detectionIEEE Trans Inf Forensics Secur201814254155610.1109/TIFS.2018.2856189
– reference: Luo W, Liu W, Gao S (2017) A revisit of sparse coding based anomaly detection in stacked rnn framework. In: Proceedings of the IEEE international conference on computer vision, pp 341–349
– reference: Tudor Ionescu R, Smeureanu S, Alexe B, Popescu M (2017) Unmasking the abnormal events in video. In: Proceedings of the ieee international conference on computer vision, pp 2895–2903
– reference: Dalal N, Triggs B, Schmid C (2006) Human detection using oriented histograms of flow and appearance. In: European conference on computer vision, Springer, pp 428–441
– reference: Luo W, Liu W, Gao S (2017) Remembering history with convolutional lstm for anomaly detection. In: 2017 IEEE international conference on multimedia and Expo (ICME), IEEE, pp 439–444
– reference: Ravanbakhsh M, Nabi M, Sangineto E, Marcenaro L, Regazzoni C, Sebe N (2017) Abnormal event detection in videos using generative adversarial nets. In: 2017 IEEE international conference on image processing (ICIP), IEEE, pp 1577–1581
– reference: SunQLiuHHaradaTOnline growing neural gas for anomaly detection in changing surveillance scenesPattern Recogn20176418720110.1016/j.patcog.2016.09.016
– reference: Ionescu RT, Smeureanu S, Popescu M, Alexe B (2019) Detecting abnormal events in video using narrowed normality clusters. In: 2019 IEEE winter conference on applications of computer vision (WACV), IEEE, pp 1951–1960
– reference: Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: Common objects in context. In: European conference on computer vision, Springer, pp 740–755
– reference: D’Avino D, Cozzolino D, Poggi G, Verdoliva L (2017) Autoencoder with recurrent neural networks for video forgery detection. Electron Imaging 2017(7):92–99
– reference: Medel JR (2016) Anomaly detection using predictive convolutional long short-term memory units. Thesis. Rochester Institute of Technology
– reference: Hasan M, Choi J, Neumann J, Roy-Chowdhury AK, Davis LS (2016) Learning temporal regularity in video sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 733–742
– reference: Ramachandra B, Jones M, Vatsavai R (2020) Learning a distance function with a siamese network to localize anomalies in videos. In: The IEEE winter conference on applications of computer vision, pp 2598–2607
– reference: ShiYTianYWangYHuangTSequential deep trajectory descriptor for action recognition with three-stream cnnIEEE Trans Multimed20171971510152010.1109/TMM.2017.2666540
– reference: Chong YS, Tay YH (2017) Abnormal event detection in videos using spatiotemporal autoencoder. In: International symposium on neural networks, Springer, pp 189–196
– reference: Lu C, Shi J, Jia J (2013) Abnormal event detection at 150 fps in matlab. In: Proceedings of the IEEE international conference on computer vision, pp 2720–2727
– reference: Del Giorno A, Bagnell JA, Hebert M (2016) A discriminative framework for anomaly detection in large videos. In: European conference on computer vision, Springer, pp 334–349
– reference: Srivastava N, Mansimov E, Salakhudinov R (2015) Unsupervised learning of video representations using lstms. In: International conference on machine learning, pp 843–852
– reference: Xu D, Ricci E, Yan Y, Song J, Sebe N (2015) Learning deep representations of appearance and motion for anomalous event detection. arXiv preprint arXiv:1510.01553
– reference: Leyva R, Sanchez V, Li CT (2017) The lv dataset: A realistic surveillance video dataset for abnormal event detection. In: 2017 5th international workshop on biometrics and forensics (IWBF), IEEE, pp 1–6
– reference: Xingjian S, Chen Z, Wang H, Yeung DY, Wong WK, Woo Wc (2015) Convolutional lstm network: A machine learning approach for precipitation nowcasting. In: Advances in neural information processing systems, pp 802–810
– reference: Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 935–942
– reference: Zhao Y, Deng B, Shen C, Liu Y, Lu H, Hua XS (2017) Spatio-temporal autoencoder for video anomaly detection. In: Proceedings of the 25th ACM international conference on Multimedia, pp 1933–1941
– reference: Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 1440–1448
– reference: Van den Oord A, Schrauwen B (2014) Factoring variations in natural images with deep gaussian mixture models. In: Advances in neural information processing systems, pp 3518–3526
– reference: LiNChangFVideo anomaly detection and localization via multivariate gaussian fully convolution adversarial autoencoderNeurocomputing20193699210510.1016/j.neucom.2019.08.044
– reference: Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05), vol 1, IEEE, pp 886–893
– reference: Leyva R, Sanchez V, Li CT (2017) Abnormal event detection in videos using binary features. In: 2017 40th international conference on telecommunications and signal processing (TSP), IEEE, pp 621–625
– reference: Liu W, Luo W, Lian D, Gao S (2018) Future frame prediction for anomaly detection–a new baseline. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 6536–6545
– reference: Zhao Y, Deng B, Shen C, Liu Y, Lu H, Hua XS (2017) Spatio-temporal autoencoder for video anomaly detection. In: ACM Multimedia
– reference: Hinami R, Mei T, Satoh S (2017) Joint detection and recounting of abnormal events by learning deep generic knowledge. In: Proceedings of the IEEE international conference on computer vision, pp 3619–3627
– reference: Mahadevan V, Li W, Bhalodia V, Vasconcelos N (2010) Anomaly detection in crowded scenes. In: 2010 IEEE computer society conference on computer vision and pattern recognition, IEEE, pp 1975–1981
– reference: Tran HT, Hogg D (2017) Anomaly detection using a convolutional winner-take-all autoencoder. In: Proceedings of the British machine vision conference 2017. British Machine Vision Association
– reference: Fritzke B (1995) A growing neural gas network learns topologies. In: Advances in neural information processing systems, pp 625–632
– reference: Deepak K, Chandrakala S, Mohan CK (2021) Residual spatiotemporal autoencoder for unsupervised video anomaly detection. Sig Image Video Process 15(1):215–222
– reference: Ionescu RT, Khan FS, Georgescu MI, Shao L (2019) Object-centric auto-encoders and dummy anomalies for abnormal event detection in video. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7842–7851
– reference: Kratz L, Nishino K (2009) Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: 2009 IEEE conference on computer vision and pattern recognition, IEEE, pp 1446–1453
– reference: Dong F, Zhang Y, Nie X (2020) Dual discriminator generative adversarial network for video anomaly detection. IEEE. Access
– reference: KrishnaRZhuYGrothOJohnsonJHataKKravitzJChenSKalantidisYLiLJShammaDAVisual genome: Connecting language and vision using crowdsourced dense image annotationsInt J Comput Vis201712313273364073810.1007/s11263-016-0981-7
– reference: LiNChangFLiuCSpatial-temporal cascade autoencoder for video anomaly detection in crowded scenesIEEE Trans Multimed20202320321510.1109/TMM.2020.2984093
– reference: FengYYuanYLuXLearning deep event models for crowd anomaly detectionNeurocomputing201721954855610.1016/j.neucom.2016.09.063
– reference: Gong D, Liu L, Le V, Saha B, Mansour MR, Venkatesh S, Hengel Avd (2019) Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In: Proceedings of the IEEE international conference on computer vision, pp 1705–1714
– reference: Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497
– ident: 10618_CR32
  doi: 10.1109/CVPR.2009.5206641
– ident: 10618_CR42
– ident: 10618_CR39
  doi: 10.1109/ICCV.2015.510
– ident: 10618_CR6
  doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-330
– ident: 10618_CR35
  doi: 10.1109/ICIP.2017.8296547
– volume: 64
  start-page: 187
  year: 2017
  ident: 10618_CR38
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.09.016
– ident: 10618_CR22
  doi: 10.1109/IWBF.2017.7935096
– ident: 10618_CR25
  doi: 10.1007/978-3-319-10602-1_48
– volume: 19
  start-page: 1510
  issue: 7
  year: 2017
  ident: 10618_CR36
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2666540
– ident: 10618_CR11
– ident: 10618_CR30
  doi: 10.1109/CVPR.2010.5539872
– volume: 369
  start-page: 92
  year: 2019
  ident: 10618_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.044
– ident: 10618_CR1
  doi: 10.1109/NCVPRIPG.2013.6776164
– ident: 10618_CR9
  doi: 10.1109/ACCESS.2020.2993373
– ident: 10618_CR21
  doi: 10.1109/TSP.2017.8076061
– volume: 219
  start-page: 548
  year: 2017
  ident: 10618_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.063
– volume: 24
  start-page: 5017
  issue: 12
  year: 2015
  ident: 10618_CR2
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2475625
– ident: 10618_CR29
  doi: 10.1109/ICCV.2017.45
– ident: 10618_CR7
  doi: 10.1007/s11760-020-01740-1
– ident: 10618_CR17
  doi: 10.1109/WACV.2019.00212
– ident: 10618_CR41
  doi: 10.1109/ICCV.2017.315
– ident: 10618_CR28
  doi: 10.1109/ICME.2017.8019325
– ident: 10618_CR8
  doi: 10.1007/978-3-319-46454-1_21
– ident: 10618_CR13
  doi: 10.1109/ICCV.2019.00179
– ident: 10618_CR26
  doi: 10.1109/CVPR.2018.00684
– ident: 10618_CR44
  doi: 10.1145/3123266.3123451
– ident: 10618_CR45
  doi: 10.1145/3123266.3123451
– ident: 10618_CR5
  doi: 10.1007/11744047_33
– ident: 10618_CR16
  doi: 10.1109/CVPR.2019.00803
– ident: 10618_CR15
  doi: 10.1109/ICCV.2017.391
– ident: 10618_CR4
  doi: 10.1109/CVPR.2005.177
– ident: 10618_CR19
  doi: 10.1109/CVPR.2009.5206771
– volume: 123
  start-page: 32
  issue: 1
  year: 2017
  ident: 10618_CR20
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-016-0981-7
– volume: 23
  start-page: 203
  year: 2020
  ident: 10618_CR24
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2020.2984093
– ident: 10618_CR34
  doi: 10.1109/WACV45572.2020.9093417
– ident: 10618_CR3
  doi: 10.1007/978-3-319-59081-3_23
– ident: 10618_CR40
  doi: 10.5244/C.31.139
– ident: 10618_CR37
– ident: 10618_CR12
  doi: 10.1109/ICCV.2015.169
– ident: 10618_CR31
– ident: 10618_CR27
  doi: 10.1109/ICCV.2013.338
– ident: 10618_CR33
– ident: 10618_CR14
  doi: 10.1109/CVPR.2016.86
– volume: 14
  start-page: 541
  issue: 2
  year: 2018
  ident: 10618_CR18
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2018.2856189
– ident: 10618_CR43
  doi: 10.5244/C.29.8
SSID ssj0010020
Score 2.33569
Snippet Real-time video anomaly detection and localization still prevail as a challenging task. Autoencoders are expected to give high reconstruction error for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4677
SubjectTerms Anomalies
Artificial Intelligence
Classification
Complex Systems
Computational Intelligence
Computer Science
Deep learning
Localization
Neural networks
Performance degradation
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELXYDlzYEWWTD9zAgsTZfEKI9QBVxSbEJYo3qQKS0rRI_D0zrtMKJLhwTLxkmRnP2DPzhpA9wQODMFUsM0mBGxTNJGgWlmgLoqVA5UmXKHydttvZ05Po-AO32odVNmuiW6h1pfCM_DAUwHwIH5cc994ZVo1C76ovoTFNZhElAUs3dOLnsRcBbSG34UqPWJSEgU-aGaXOwV4IPZgY0JUEGePfFdPE2vzhIHV652Lxv2-8RBa8xUlPRiyyTKZMuUIWm2oO1Av3KqluTe0ys-idi7L2oFUwcjioEO5SQ288tqV3L90edREyCuxVWpSa3mDA7ie9HHY13GmPYsspGMT0zKCbAj6NPkJbRU_K6g1sf1OvkYeL8_vTK-bLMTAFcjpgQhVZFEur0iJQwkq4iITmIrDcCCu0jYoMlgSVHFkdxlzHkUwKGRuu4d_H0vB1MlNWpdkgNBKc29QmUSFhhA5FGlgZpFohOA48p0WChha58ljlWDLjNZ-gLCP9cqBf7uiX8xbZH4_pjZA6_uy93RAt91Jb5xOKtchBQ_ZJ8--zbf492xaZDx2nYRTMNpkZ9Idmh8ypj0G37u86nv0CkP_xXA
  priority: 102
  providerName: ProQuest
Title Residual Spatiotemporal Autoencoder with Skip Connected and Memory Guided Network for Detecting Video Anomalies
URI https://link.springer.com/article/10.1007/s11063-021-10618-3
https://www.proquest.com/docview/2918343246
Volume 53
WOSCitedRecordID wos000688362300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: P5Z
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: K7-
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWJ9lD140wWTzWuPvgW1lFZFvITsC4qaFNMK_ntnt4lFUUEvgWSfzO7szGZmvgHY5czTFqaKJjrK7AVFUYGShUbKIGtJFHnCBQpfxZ1Ocn_Pu1VQWFl7u9cmSXdST4Pd8PZibY7WBSvyEspmYQ7FXWITNvT6dx-2A6sBuWtWfECDyPeqUJnv-_gsjqY65hezqJM2Z83_zXMJFivtkhxOtsMyzOh8BZp15gZSMfIqFD1duigs0nce1RVAFbYcjwoLbamwtv1FS_qPgyFx3jASdVOS5YpcW-fcN3I-Hij80pn4kRNUfsmJtiYJnCy5w7KCHObFM-r5ulyD27PTm-MLWqVeoBJ5ckS5zJIgFEbGmSe5EfgScMW4Z5jmhisTZAmyv4wOjPJDpsJARJkINVNI8VBotg6NvMj1BpCAM2ZiEwWZwBbK57FnhBcraYFwcJwWePUKpLLCJbfpMZ7SKaKypWiKFE0dRVPWgr2PNsMJKsevtbfrhU0rDi1Tn-NhZuEIoxbs1ws5Lf65t82_Vd-CBd_tBesBsw2N0ctY78C8fB0Nypc2zB2ddrq9NsxexhSf3fCh7XbzO-MH6ow
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BRaKXUmirLqXFBziBVRJnk_hQIVRKQbusEC9xC_FLWrVNFrLbij_V38iMk7CiUrlx4Jj4EcX-ZjzjeQGsSxFYSlPFUxvnpKAYrvBk4bFxSFoajzzlA4X7yWCQXl7K4xn428bCkFtlyxM9ozalpjvyz6FE8FH6uHhndM2pahRZV9sSGjUsevb2D6ps1ZfDPdzfjTDc_3b29YA3VQW4RriNudR5GnWV00keaOkUPkTSCBk4YaWTxkV5isjW8bYzYVeYbqTiXHWtMBHqCsoKnHcWXkQiTYiuegm_t1qQ7OUVvGSbY-egCdKpQ_VQ9yKLKTmQxUHKxcODcCrd_mOQ9efc_uJzW6HX8KqRqNluTQJLMGOLZVhsq1Wwhnm9gfLEVj7yjJ16L_ImKReOnIxLSudpsDddS7PTH8MR8x5AGuVxlheGHZFD8i37PhkafDOofecZCvxsz5IZBpeSXWBbyXaL8hfqNrZ6C-dP8tvvYK4oC_seWCSFcImLo1zhCBPKJHAqSIym5D_4nQ4E7d5nusnFTiVBfmbTLNKElwzxknm8ZKIDm_djRnUmkkd7r7YgyRquVGVThHRgq4XZtPn_s608PtsaLBycHfWz_uGg9wFehh7l5PGzCnPjm4n9CPP693hY3Xzy9MLg6qnhdwc0x0-U
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xUtVLA5SqaVO6B27USuz1a4-IEECkUUQAcbO8Lylqa0fEqdR_35mNnUDVIlUc7X14NbuzO-P55luAI8F9QzRVXmrinBwU7Uk8WbxYW1QthUeedInCw2Q0Su_vxfhRFr9DuzchyWVOA7E0FVV3pm13nfiGngzFHwmOFfupxzdhOyQgPfnrk7tVHIGsIedyJT0vjAO_Tpv5ex9Pj6a1vflHiNSdPIPWy8e8C29qq5OdLJfJHmyYYh9azY0OrFbwt1Bem7nLzmITh7Suiauw5aIqifJSY236dcsm36Yz5lAyCm1WlheafSXQ7i92vphqfDNa4ssZGsWsbyhUgQNnd1hWspOi_IH2v5kfwO3g7Ob0wquvZPAU6mrlCZWnYSStSnJfCSvxIRSaC99yI6zQNsxT3BZU3LM6iLiOQhnnMjJco_Qjafg72CrKwrwHFgrObWLjMJfYQgci8a30E62IIAe_0wa_mY1M1XzldG3G92zNtEwSzVCimZNoxttwvGozW7J1PFu700xyVmvuPAsEbnJEUxi34Uszqevif_f24f-qf4ZX4_4gG16Orj7C68AtCwLJdGCreliYT7CjflbT-cOhW9C_AQTP8uo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+Spatiotemporal+Autoencoder+with+Skip+Connected+and+Memory+Guided+Network+for+Detecting+Video+Anomalies&rft.jtitle=Neural+processing+letters&rft.au=Chandrakala%2C+S.&rft.au=Srinivas%2C+V.&rft.au=Deepak%2C+K.&rft.date=2021-12-01&rft.pub=Springer+US&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=53&rft.issue=6&rft.spage=4677&rft.epage=4692&rft_id=info:doi/10.1007%2Fs11063-021-10618-3&rft.externalDocID=10_1007_s11063_021_10618_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon