Block size selection in rate-constrained geometry based point cloud compression
In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in the voxelized point clouds, i.e. , the number of voxels contained in a block, determines whether the geometry coding is lossless or lossy, and...
Uložené v:
| Vydané v: | Multimedia tools and applications Ročník 81; číslo 2; s. 2557 - 2575 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.01.2022
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1380-7501, 1573-7721 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in the voxelized point clouds,
i.e.
, the number of voxels contained in a block, determines whether the geometry coding is lossless or lossy, and the degree of geometry compression in lossy coding. Therefore, selecting an appropriate block size for octree coding is crucial for compression quality of voxelized point clouds. In this paper, we propose an optimal block size selection scheme for geometry based point cloud compression with a given bit rate constraint. Firstly, we analyze the gradients of the overall quality of the point clouds with color coding bit rate and geometry coding bit rate in lossy geometry coding. Then, we propose an octree level selection approach that can output the optimal octree level for point cloud compression under a target bit rate. In this approach, we consider the difference between the impacts of lossy geometry coding and lossless geometry coding on the overall quality of the point clouds. Experimental results demonstrate that, using the level selected by the proposed algorithm for geometry coding can yield best coding results in terms of the average quality of the images rendered from decoded point clouds. |
|---|---|
| AbstractList | In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in the voxelized point clouds, i.e., the number of voxels contained in a block, determines whether the geometry coding is lossless or lossy, and the degree of geometry compression in lossy coding. Therefore, selecting an appropriate block size for octree coding is crucial for compression quality of voxelized point clouds. In this paper, we propose an optimal block size selection scheme for geometry based point cloud compression with a given bit rate constraint. Firstly, we analyze the gradients of the overall quality of the point clouds with color coding bit rate and geometry coding bit rate in lossy geometry coding. Then, we propose an octree level selection approach that can output the optimal octree level for point cloud compression under a target bit rate. In this approach, we consider the difference between the impacts of lossy geometry coding and lossless geometry coding on the overall quality of the point clouds. Experimental results demonstrate that, using the level selected by the proposed algorithm for geometry coding can yield best coding results in terms of the average quality of the images rendered from decoded point clouds. In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in the voxelized point clouds, i.e. , the number of voxels contained in a block, determines whether the geometry coding is lossless or lossy, and the degree of geometry compression in lossy coding. Therefore, selecting an appropriate block size for octree coding is crucial for compression quality of voxelized point clouds. In this paper, we propose an optimal block size selection scheme for geometry based point cloud compression with a given bit rate constraint. Firstly, we analyze the gradients of the overall quality of the point clouds with color coding bit rate and geometry coding bit rate in lossy geometry coding. Then, we propose an octree level selection approach that can output the optimal octree level for point cloud compression under a target bit rate. In this approach, we consider the difference between the impacts of lossy geometry coding and lossless geometry coding on the overall quality of the point clouds. Experimental results demonstrate that, using the level selected by the proposed algorithm for geometry coding can yield best coding results in terms of the average quality of the images rendered from decoded point clouds. |
| Author | Gao, Pan Wei, Mingqiang |
| Author_xml | – sequence: 1 givenname: Pan orcidid: 0000-0002-4492-5430 surname: Gao fullname: Gao, Pan email: gaopan.1005@gmail.com organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Science and Technology on Electro-optic Control Laboratory – sequence: 2 givenname: Mingqiang surname: Wei fullname: Wei, Mingqiang organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics |
| BookMark | eNp9kE9PwzAMxSM0JLbBF-BUiXMgcdY2PcLEP2nSLnCOUtedOrqkJN1hfHpahoTEYSfb0vvZfm_GJs47YuxailspRH4XpRQL4AIklzLLgeszNpVprnieg5wMvdKC56mQF2wW41YImaWwmLL1Q-vxI4nNFyWRWsK-8S5pXBJsTxy9i32wjaMq2ZDfUR8OSWnjMHa-cX2Crd9XCfpdFyjGAb1k57VtI1391jl7f3p8W77w1fr5dXm_4qhk0fMCdakIEfJKVJqsKjLMsCw01kgAFWYVYAFCEdRlCmVZoRbKwgKsEKCtmrOb494u-M89xd5s_T644aSBDFSmpCj0oNJHFQYfY6DaYNPb0eLoqjVSmDE-c4zPDPGZn_jMiMI_tAvNzobDaUgdoTiI3YbC31cnqG-3RYWq |
| CitedBy_id | crossref_primary_10_3390_s24134285 |
| Cites_doi | 10.1109/TIP.2019.2931621 10.1109/LRA.2019.2900747 10.1109/TIP.2016.2529506 10.1109/VR46266.2020.00031 10.1109/TVCG.2007.70441 10.1109/ICIP.2017.8296925 10.1109/ICIP.2014.7025414 10.1109/ICIP.2019.8803413 10.1145/3329714.3338130 10.1109/ICRA.2012.6224647 10.1109/QoMEX48832.2020.9123147 10.1109/TIP.2016.2621666 10.1145/3343031.3350917 10.1109/TMM.2018.2859591 10.1109/TIP.2016.2575005 10.1109/ICMEW46912.2020.9106052 10.2352/ISSN.2470-1173.2019.10.IQSP-323 10.1145/2984511.2984517 10.1109/TIP.2017.2707807 10.1109/TCSVT.2005.857300 10.1145/3301293.3302358 10.1109/TCSVT.2016.2543039 10.1109/ICIP.2019.8803403 10.1109/ICME.2018.8486512 10.1109/QoMEX48832.2020.9123137 10.1016/j.jvcir.2018.03.012 10.1109/TCSVT.2012.2221191 10.1109/TIP.2019.2919198 10.1145/3210424.3210429 10.1109/ICRA.2011.5980567 10.1109/TIP.2019.2957853 10.3389/frobt.2016.00074 10.1016/j.cad.2007.10.013 10.1109/TIP.2019.2908095 10.1109/JETCAS.2018.2885981 10.1109/MSP.2019.2900721 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s11042-021-11672-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection (ProQuest) Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 2575 |
| ExternalDocumentID | 10_1007_s11042_021_11672_8 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c319t-9c8b3ecc27d0d8ea396c6cb98cfce22dc6d2c9203e2fb52bbdc803a242a0028a3 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000713070300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Wed Nov 05 01:00:15 EST 2025 Tue Nov 18 21:44:13 EST 2025 Sat Nov 29 06:20:13 EST 2025 Fri Feb 21 02:46:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Point cloud compression Block size selection Octree level Rate constrained |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-9c8b3ecc27d0d8ea396c6cb98cfce22dc6d2c9203e2fb52bbdc803a242a0028a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4492-5430 |
| PQID | 2623631098 |
| PQPubID | 54626 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2623631098 crossref_citationtrail_10_1007_s11042_021_11672_8 crossref_primary_10_1007_s11042_021_11672_8 springer_journals_10_1007_s11042_021_11672_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20220100 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Subramanyam S, Li J, Viola I, Cesar P (2020) Comparing the quality of highly realistic digital humans in 3dof and 6dof: A volumetric video case study. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 1–9 SongHFengH-YA global clustering approach to point cloud simplification with a specified data reduction ratioComput Aided Des200840328129210.1016/j.cad.2007.10.013 Cao C, Preda M, Zaharia (2019) T. 3d point cloud compression: A survey. In The 24th International Conference on 3D Web Technology (New York, NY, USA), Web3D ’19, Association for Computing Machinery, p. 1–9 SlaterMSanchez-VivesMVEnhancing our lives with immersive virtual realityFrontiers in Robotics and AI201637410.3389/frobt.2016.00074 Orts-Escolano S, Rhemann C, Fanello S, Chang W, Kowdle A, Degtyarev Y, Kim D, Davidson PL, Khamis S, Dou M, Tankovich V, Loop C, Cai Q, Chou PA, Mennicken S, Valentin J, Pradeep V, Wang S, Kang SB, Kohli P, Lutchyn Y, Keskin C, Izadi S (2016) Holoportation: Virtual 3d teleportation in real-time. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (New York, NY, USA), UIST ’16, Association for Computing Machinery, p. 741–754 SullivanGJOhmJ-RHanW-JWiegandTOverview of the high efficiency video coding (hevc) standardIEEE Trans Circuits Syst Video Technol201222121649166810.1109/TCSVT.2012.2221191 BT.709 (2015) Parameter values for the hdtv standards for production and international programme exchange GuoJVidalVChengIBasuABaskurtALavoueGSubjective and objective visual quality assessment of textured 3d meshesACM Trans Appl Percept2016142 LiLLiZZakharchenkoVChenJLiHAdvanced 3d motion prediction for video-based dynamic point cloud compressionIEEE Trans Image Process201929289302401494010.1109/TIP.2019.2931621 Rusu RB, Cousins S (2011) 3D is here: Point Cloud Library (PCL). In IEEE International Conference on Robotics and Automation (ICRA) (Shanghai, China) Alexiou E, Ebrahimi T (2018) Point cloud quality assessment metric based on angular similarity. 2018 IEEE International Conference on Multimedia and Expo (ICME), 1–6 Mammou K (2017) PCC test model category 3 v0. (2017) Doc. n17249, Macau, China Loop C, Cai Q, Orts Escolano S, Chou PA (2006) Microsoft voxelized upper bodies-a voxelized point cloud dataset (2006) Doc. m38673, Geneva, Switzerland MekuriaRBlomKCesarPDesign, implementation, and evaluation of a point cloud codec for tele-immersive videoIEEE Trans Circuits Syst Video Technol201627482884210.1109/TCSVT.2016.2543039 Chou PA, Koroteev M, Krivokuća M (2019) A volumetric approach to point cloud compression, part i Attribute compression. IEEE Trans Image Process GaoPSmolicAOcclusion-aware depth map coding optimization using allowable depth map distortionsIEEE Trans Image Process2019281152665280399927710.1109/TIP.2019.2919198 Kammerl J, Blodow N, Rusu RB, Gedikli S, Beetz M, Steinbach E (2012) Real-time compression of point cloud streams. In 2012 IEEE International Conference on Robotics and Automation, IEEE pp. 778–785 Chou PA, Nakagami O, Jang ES (2017) Point cloud compression test model for category 1 v0. (2017) Doc. n17223, Macau, China Mammou K, Chou PA, Flynn D, Krivokuća M, Nakagami O, Sugio T (2019) G-PCC codec description v2. (2019) Doc. n18189, Marrakech, MA PagésRAmplianitisKMonaghanDOndřejJSmolićAAffordable content creation for free-viewpoint video and vr/ar applicationsJ Vis Commun Image Represent20185319220110.1016/j.jvcir.2018.03.012 SchwarzSPredaMBaronciniVBudagaviMCesarPChouPACohenRAKrivokućaMLasserreSLiZEmerging mpeg standards for point cloud compressionIEEE J Emerging Sel Top Circuits Syst20189113314810.1109/JETCAS.2018.2885981 MPEG (2019) Geometry based point cloud compression (G-PCC) test model d’Eon E, Harrison B, Myers T, Chou PA (2017) 8i voxelized full bodies-a voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006 Meynet G, Nehme Y, Digne J, Lavoue G (2020) Pcqm: A full-reference quality metric for colored 3d point clouds. In 12th International Conference on Quality of Multimedia Experience (QoMEX 2020) IEEE, p. 1–6 JangESPredaMMammouKTourapisAMKimJGraziosiDBRhyuSBudagaviMVideo-based point-cloud-compression standard in mpeg: from evidence collection to committee draft [standards in a nutshell]IEEE Signal Process Mag201936311812310.1109/MSP.2019.2900721 MaSWenGYanLRate-distortion analysis for h 264/avc video coding and its application to rate controlIEEE Trans Circuits Syst Video Technol200515121533154410.1109/TCSVT.2005.857300 MPEG 3DG and Requirements (2017) Call for proposals for point cloud compression v2 Doc. n16763, Hobart, Australia Quach M, Valenzise G, Dufaux F (2019) Learning convolutional transforms for lossy point cloud geometry compression. In 2019 IEEE International Conference on Image Processing (ICIP) IEEE pp. 4320–4324 Liu Q, Yuan H, Hamzaoui R, Su H (2020) Coarse to fine rate control for region-based 3d point cloud compression. In 2020 IEEE International Conference on Multimedia Expo Workshops (ICMEW), pp. 1–6 Zhang C, Florencio D, Loop C (2014) Point cloud attribute compression with graph transform. In 2014 IEEE International Conference on Image Processing (ICIP) IEEE, pp. 2066–2070 ZermanEGaoPOzcinarCSmolicASubjective and objective quality assessment for volumetric video compressionElectron Imaging2019201910323110.2352/ISSN.2470-1173.2019.10.IQSP-323 KrivokucaMChouPAKoroteevMA volumetric approach to point cloud compression part ii: Geometry compressionIEEE Trans Image Process2020292217222910.1109/TIP.2019.2957853 Schnabel R, Klein R (2006) Octree-based point-cloud compression. In Proceedings of Eurographics Symposium Point-Based Graphics (Boston, USA) pp. 111–120 HuangYPengJKuoC-CJGopiMA generic scheme for progressive point cloud codingIEEE Trans Vis Comput Graph200814244045310.1109/TVCG.2007.70441 FiengoAChierchiaGCagnazzoMPesquet-PopescuBRate allocation in predictive video coding using a convex optimization frameworkIEEE Trans Image Process2016261479489358001710.1109/TIP.2016.2621666 Mammou K (2017) PCC test model category 2 v0. (2017) Doc. n17248, Macau, China van der Hooft J, Wauters T, De Turck F, Timmerer C, Hellwagner H (2019) Towards 6dof http adaptive streaming through point cloud compression. In Proceedings of the 27th ACM International Conference on Multimedia (New York, NY, USA), MM ’19, Association for Computing Machinery, p. 2405–C2413 de Oliveira RentePBritesCAscensoJPereiraFGraph-based static 3d point clouds geometry codingIEEE Trans Multimedia201821228429910.1109/TMM.2018.2859591 SunXMaHSunYLiuMA novel point cloud compression algorithm based on clusteringIEEE Robot Autom Lett2019422132213910.1109/LRA.2019.2900747 Torlig EM, Alexiou E, Fonseca TA, de Queiroz RL, Ebrahimi T (2018) A novel methodology for quality assessment of voxelized point clouds. In Applications of Digital Image Processing XLI, vol. 10752, International Society for Optics and Photonics, p. 107520I SchneiderPJEberlyDHGeometric tools for computer graphics2003San Francisco, CAMorgan Kaufmann Publishers de QueirozRLChouPAMotion-compensated compression of dynamic voxelized point cloudsIEEE Trans Image Process201726838863895366275810.1109/TIP.2017.2707807 Tian D, Ochimizu H, Feng C, Cohen R, Vetro A (2017) Evaluation metrics for point cloud compression (2017) Doc. m39966, Geneva Hosseini M, Timmerer C (2018) Dynamic adaptive point cloud streaming. In Proceedings of the 23rd Packet Video Workshop (New York, NY, USA), PV ’18, Association for Computing Machinery, p. 25–30 Qian F, Han B, Pair J, Gopalakrishnan V (2019) Toward practical volumetric video streaming on commodity smartphones. In Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications (New York, NY, USA), HotMobile ’19, Association for Computing Machinery, p. 135–140 Perry S (2020) JPEG pleno point cloud coding common test conditions v3.1 (2020) Document n86044, Sydney, Australia ThanouDChouPAFrossardPGraph-based compression of dynamic 3d point cloud sequencesIEEE Trans Image Process201625417651778347221210.1109/TIP.2016.2529506 De QueirozRLChouPACompression of 3d point clouds using a region-adaptive hierarchical transformIEEE Trans Image Process201625839473956351941010.1109/TIP.2016.2575005 Filali A, Ricordel V, Normand N, Hamidouche W (2019) Rate-distortion optimized tree-structured point-lattice vector quantization for compression of 3d point clouds geometry. In 2019 IEEE International Conference on Image Processing (ICIP), IEEE, pp. 1099–1103 Zerman E, Ozcinar C, Gao P, Smolic A (2020) Textured mesh vs coloured point cloud: A subjective study for volumetric video compression. In 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX) IEEE pp. 1–6 11672_CR49 11672_CR47 RL De Queiroz (11672_CR6) 2016; 25 11672_CR50 11672_CR13 11672_CR10 X Sun (11672_CR44) 2019; 4 M Krivokuca (11672_CR25) 2020; 29 11672_CR16 H Song (11672_CR41) 2008; 40 11672_CR17 11672_CR15 Y Huang (11672_CR14) 2008; 14 11672_CR18 11672_CR19 11672_CR20 11672_CR24 11672_CR21 11672_CR22 E Zerman (11672_CR48) 2019; 2019 P de Oliveira Rente (11672_CR5) 2018; 21 PJ Schneider (11672_CR38) 2003 D Thanou (11672_CR45) 2016; 25 L Li (11672_CR26) 2019; 29 ES Jang (11672_CR23) 2019; 36 11672_CR27 11672_CR30 11672_CR8 11672_CR31 R Mekuria (11672_CR29) 2016; 27 11672_CR34 11672_CR35 11672_CR32 S Schwarz (11672_CR39) 2018; 9 11672_CR3 RL de Queiroz (11672_CR7) 2017; 26 11672_CR4 11672_CR1 11672_CR2 M Slater (11672_CR40) 2016; 3 J Guo (11672_CR12) 2016; 14 S Ma (11672_CR28) 2005; 15 A Fiengo (11672_CR9) 2016; 26 11672_CR36 11672_CR37 P Gao (11672_CR11) 2019; 28 R Pagés (11672_CR33) 2018; 53 11672_CR42 GJ Sullivan (11672_CR43) 2012; 22 11672_CR46 |
| References_xml | – reference: PagésRAmplianitisKMonaghanDOndřejJSmolićAAffordable content creation for free-viewpoint video and vr/ar applicationsJ Vis Commun Image Represent20185319220110.1016/j.jvcir.2018.03.012 – reference: ThanouDChouPAFrossardPGraph-based compression of dynamic 3d point cloud sequencesIEEE Trans Image Process201625417651778347221210.1109/TIP.2016.2529506 – reference: Liu Q, Yuan H, Hamzaoui R, Su H (2020) Coarse to fine rate control for region-based 3d point cloud compression. In 2020 IEEE International Conference on Multimedia Expo Workshops (ICMEW), pp. 1–6 – reference: FiengoAChierchiaGCagnazzoMPesquet-PopescuBRate allocation in predictive video coding using a convex optimization frameworkIEEE Trans Image Process2016261479489358001710.1109/TIP.2016.2621666 – reference: Tian D, Ochimizu H, Feng C, Cohen R, Vetro A (2017) Evaluation metrics for point cloud compression (2017) Doc. m39966, Geneva – reference: Mammou K (2017) PCC test model category 3 v0. (2017) Doc. n17249, Macau, China – reference: de QueirozRLChouPAMotion-compensated compression of dynamic voxelized point cloudsIEEE Trans Image Process201726838863895366275810.1109/TIP.2017.2707807 – reference: HuangYPengJKuoC-CJGopiMA generic scheme for progressive point cloud codingIEEE Trans Vis Comput Graph200814244045310.1109/TVCG.2007.70441 – reference: LiLLiZZakharchenkoVChenJLiHAdvanced 3d motion prediction for video-based dynamic point cloud compressionIEEE Trans Image Process201929289302401494010.1109/TIP.2019.2931621 – reference: SunXMaHSunYLiuMA novel point cloud compression algorithm based on clusteringIEEE Robot Autom Lett2019422132213910.1109/LRA.2019.2900747 – reference: Kammerl J, Blodow N, Rusu RB, Gedikli S, Beetz M, Steinbach E (2012) Real-time compression of point cloud streams. In 2012 IEEE International Conference on Robotics and Automation, IEEE pp. 778–785 – reference: Quach M, Valenzise G, Dufaux F (2019) Learning convolutional transforms for lossy point cloud geometry compression. In 2019 IEEE International Conference on Image Processing (ICIP) IEEE pp. 4320–4324 – reference: ZermanEGaoPOzcinarCSmolicASubjective and objective quality assessment for volumetric video compressionElectron Imaging2019201910323110.2352/ISSN.2470-1173.2019.10.IQSP-323 – reference: Hosseini M, Timmerer C (2018) Dynamic adaptive point cloud streaming. In Proceedings of the 23rd Packet Video Workshop (New York, NY, USA), PV ’18, Association for Computing Machinery, p. 25–30 – reference: Zhang C, Florencio D, Loop C (2014) Point cloud attribute compression with graph transform. In 2014 IEEE International Conference on Image Processing (ICIP) IEEE, pp. 2066–2070 – reference: Orts-Escolano S, Rhemann C, Fanello S, Chang W, Kowdle A, Degtyarev Y, Kim D, Davidson PL, Khamis S, Dou M, Tankovich V, Loop C, Cai Q, Chou PA, Mennicken S, Valentin J, Pradeep V, Wang S, Kang SB, Kohli P, Lutchyn Y, Keskin C, Izadi S (2016) Holoportation: Virtual 3d teleportation in real-time. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (New York, NY, USA), UIST ’16, Association for Computing Machinery, p. 741–754 – reference: SchwarzSPredaMBaronciniVBudagaviMCesarPChouPACohenRAKrivokućaMLasserreSLiZEmerging mpeg standards for point cloud compressionIEEE J Emerging Sel Top Circuits Syst20189113314810.1109/JETCAS.2018.2885981 – reference: Subramanyam S, Li J, Viola I, Cesar P (2020) Comparing the quality of highly realistic digital humans in 3dof and 6dof: A volumetric video case study. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 1–9 – reference: Torlig EM, Alexiou E, Fonseca TA, de Queiroz RL, Ebrahimi T (2018) A novel methodology for quality assessment of voxelized point clouds. In Applications of Digital Image Processing XLI, vol. 10752, International Society for Optics and Photonics, p. 107520I – reference: SullivanGJOhmJ-RHanW-JWiegandTOverview of the high efficiency video coding (hevc) standardIEEE Trans Circuits Syst Video Technol201222121649166810.1109/TCSVT.2012.2221191 – reference: De QueirozRLChouPACompression of 3d point clouds using a region-adaptive hierarchical transformIEEE Trans Image Process201625839473956351941010.1109/TIP.2016.2575005 – reference: SongHFengH-YA global clustering approach to point cloud simplification with a specified data reduction ratioComput Aided Des200840328129210.1016/j.cad.2007.10.013 – reference: Schnabel R, Klein R (2006) Octree-based point-cloud compression. In Proceedings of Eurographics Symposium Point-Based Graphics (Boston, USA) pp. 111–120 – reference: GaoPSmolicAOcclusion-aware depth map coding optimization using allowable depth map distortionsIEEE Trans Image Process2019281152665280399927710.1109/TIP.2019.2919198 – reference: Alexiou E, Ebrahimi T (2018) Point cloud quality assessment metric based on angular similarity. 2018 IEEE International Conference on Multimedia and Expo (ICME), 1–6 – reference: van der Hooft J, Wauters T, De Turck F, Timmerer C, Hellwagner H (2019) Towards 6dof http adaptive streaming through point cloud compression. In Proceedings of the 27th ACM International Conference on Multimedia (New York, NY, USA), MM ’19, Association for Computing Machinery, p. 2405–C2413 – reference: Filali A, Ricordel V, Normand N, Hamidouche W (2019) Rate-distortion optimized tree-structured point-lattice vector quantization for compression of 3d point clouds geometry. In 2019 IEEE International Conference on Image Processing (ICIP), IEEE, pp. 1099–1103 – reference: Loop C, Cai Q, Orts Escolano S, Chou PA (2006) Microsoft voxelized upper bodies-a voxelized point cloud dataset (2006) Doc. m38673, Geneva, Switzerland – reference: Chou PA, Nakagami O, Jang ES (2017) Point cloud compression test model for category 1 v0. (2017) Doc. n17223, Macau, China – reference: Chou PA, Koroteev M, Krivokuća M (2019) A volumetric approach to point cloud compression, part i Attribute compression. IEEE Trans Image Process – reference: MPEG 3DG and Requirements (2017) Call for proposals for point cloud compression v2 Doc. n16763, Hobart, Australia – reference: SchneiderPJEberlyDHGeometric tools for computer graphics2003San Francisco, CAMorgan Kaufmann Publishers – reference: Perry S (2020) JPEG pleno point cloud coding common test conditions v3.1 (2020) Document n86044, Sydney, Australia – reference: KrivokucaMChouPAKoroteevMA volumetric approach to point cloud compression part ii: Geometry compressionIEEE Trans Image Process2020292217222910.1109/TIP.2019.2957853 – reference: Zerman E, Ozcinar C, Gao P, Smolic A (2020) Textured mesh vs coloured point cloud: A subjective study for volumetric video compression. In 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX) IEEE pp. 1–6 – reference: BT.709 (2015) Parameter values for the hdtv standards for production and international programme exchange – reference: GuoJVidalVChengIBasuABaskurtALavoueGSubjective and objective visual quality assessment of textured 3d meshesACM Trans Appl Percept2016142 – reference: Mammou K (2017) PCC test model category 2 v0. (2017) Doc. n17248, Macau, China – reference: MaSWenGYanLRate-distortion analysis for h 264/avc video coding and its application to rate controlIEEE Trans Circuits Syst Video Technol200515121533154410.1109/TCSVT.2005.857300 – reference: Rusu RB, Cousins S (2011) 3D is here: Point Cloud Library (PCL). In IEEE International Conference on Robotics and Automation (ICRA) (Shanghai, China) – reference: d’Eon E, Harrison B, Myers T, Chou PA (2017) 8i voxelized full bodies-a voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006 – reference: Mammou K, Chou PA, Flynn D, Krivokuća M, Nakagami O, Sugio T (2019) G-PCC codec description v2. (2019) Doc. n18189, Marrakech, MA – reference: de Oliveira RentePBritesCAscensoJPereiraFGraph-based static 3d point clouds geometry codingIEEE Trans Multimedia201821228429910.1109/TMM.2018.2859591 – reference: Meynet G, Nehme Y, Digne J, Lavoue G (2020) Pcqm: A full-reference quality metric for colored 3d point clouds. In 12th International Conference on Quality of Multimedia Experience (QoMEX 2020) IEEE, p. 1–6 – reference: MekuriaRBlomKCesarPDesign, implementation, and evaluation of a point cloud codec for tele-immersive videoIEEE Trans Circuits Syst Video Technol201627482884210.1109/TCSVT.2016.2543039 – reference: Cao C, Preda M, Zaharia (2019) T. 3d point cloud compression: A survey. In The 24th International Conference on 3D Web Technology (New York, NY, USA), Web3D ’19, Association for Computing Machinery, p. 1–9 – reference: MPEG (2019) Geometry based point cloud compression (G-PCC) test model – reference: JangESPredaMMammouKTourapisAMKimJGraziosiDBRhyuSBudagaviMVideo-based point-cloud-compression standard in mpeg: from evidence collection to committee draft [standards in a nutshell]IEEE Signal Process Mag201936311812310.1109/MSP.2019.2900721 – reference: Qian F, Han B, Pair J, Gopalakrishnan V (2019) Toward practical volumetric video streaming on commodity smartphones. In Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications (New York, NY, USA), HotMobile ’19, Association for Computing Machinery, p. 135–140 – reference: SlaterMSanchez-VivesMVEnhancing our lives with immersive virtual realityFrontiers in Robotics and AI201637410.3389/frobt.2016.00074 – volume: 29 start-page: 289 year: 2019 ident: 11672_CR26 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2931621 – volume: 4 start-page: 2132 issue: 2 year: 2019 ident: 11672_CR44 publication-title: IEEE Robot Autom Lett doi: 10.1109/LRA.2019.2900747 – volume: 25 start-page: 1765 issue: 4 year: 2016 ident: 11672_CR45 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2529506 – ident: 11672_CR19 – ident: 11672_CR42 doi: 10.1109/VR46266.2020.00031 – ident: 11672_CR31 – volume: 14 start-page: 440 issue: 2 year: 2008 ident: 11672_CR14 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2007.70441 – ident: 11672_CR17 doi: 10.1109/ICIP.2017.8296925 – ident: 11672_CR50 doi: 10.1109/ICIP.2014.7025414 – ident: 11672_CR16 – ident: 11672_CR35 doi: 10.1109/ICIP.2019.8803413 – ident: 11672_CR3 doi: 10.1145/3329714.3338130 – ident: 11672_CR21 – ident: 11672_CR24 doi: 10.1109/ICRA.2012.6224647 – volume: 14 start-page: 2 year: 2016 ident: 11672_CR12 publication-title: ACM Trans Appl Percept – ident: 11672_CR30 doi: 10.1109/QoMEX48832.2020.9123147 – volume: 26 start-page: 479 issue: 1 year: 2016 ident: 11672_CR9 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2621666 – ident: 11672_CR47 doi: 10.1145/3343031.3350917 – volume: 21 start-page: 284 issue: 2 year: 2018 ident: 11672_CR5 publication-title: IEEE Trans Multimedia doi: 10.1109/TMM.2018.2859591 – ident: 11672_CR15 – volume: 25 start-page: 3947 issue: 8 year: 2016 ident: 11672_CR6 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2575005 – ident: 11672_CR27 doi: 10.1109/ICMEW46912.2020.9106052 – volume: 2019 start-page: 323 issue: 10 year: 2019 ident: 11672_CR48 publication-title: Electron Imaging doi: 10.2352/ISSN.2470-1173.2019.10.IQSP-323 – ident: 11672_CR22 – ident: 11672_CR32 doi: 10.1145/2984511.2984517 – volume: 26 start-page: 3886 issue: 8 year: 2017 ident: 11672_CR7 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2707807 – volume: 15 start-page: 1533 issue: 12 year: 2005 ident: 11672_CR28 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2005.857300 – ident: 11672_CR34 doi: 10.1145/3301293.3302358 – volume: 27 start-page: 828 issue: 4 year: 2016 ident: 11672_CR29 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2016.2543039 – ident: 11672_CR10 doi: 10.1109/ICIP.2019.8803403 – ident: 11672_CR46 – ident: 11672_CR1 doi: 10.1109/ICME.2018.8486512 – ident: 11672_CR49 doi: 10.1109/QoMEX48832.2020.9123137 – volume: 53 start-page: 192 year: 2018 ident: 11672_CR33 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2018.03.012 – ident: 11672_CR37 – volume: 22 start-page: 1649 issue: 12 year: 2012 ident: 11672_CR43 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2012.2221191 – volume: 28 start-page: 5266 issue: 11 year: 2019 ident: 11672_CR11 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2919198 – ident: 11672_CR2 – ident: 11672_CR13 doi: 10.1145/3210424.3210429 – ident: 11672_CR36 doi: 10.1109/ICRA.2011.5980567 – volume: 29 start-page: 2217 year: 2020 ident: 11672_CR25 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2957853 – ident: 11672_CR8 – volume: 3 start-page: 74 year: 2016 ident: 11672_CR40 publication-title: Frontiers in Robotics and AI doi: 10.3389/frobt.2016.00074 – volume-title: Geometric tools for computer graphics year: 2003 ident: 11672_CR38 – volume: 40 start-page: 281 issue: 3 year: 2008 ident: 11672_CR41 publication-title: Comput Aided Des doi: 10.1016/j.cad.2007.10.013 – ident: 11672_CR18 – ident: 11672_CR4 doi: 10.1109/TIP.2019.2908095 – volume: 9 start-page: 133 issue: 1 year: 2018 ident: 11672_CR39 publication-title: IEEE J Emerging Sel Top Circuits Syst doi: 10.1109/JETCAS.2018.2885981 – ident: 11672_CR20 – volume: 36 start-page: 118 issue: 3 year: 2019 ident: 11672_CR23 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2019.2900721 |
| SSID | ssj0016524 |
| Score | 2.275055 |
| Snippet | In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2557 |
| SubjectTerms | Algorithms Color coding Computer Communication Networks Computer Science Constraints Data Structures and Information Theory Geometry Image quality Multimedia Information Systems Octree coding Special Purpose and Application-Based Systems |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG90etCD06lxOk0P3pQEyijtUY2LJzV-ZTfSvhZDnLAMZqJ_vS2DoUZN9EbS0sB7ff09eB8_hA5p7IYclLFvaY7APtWew5kInIBTJTjVoXChJJsILy_ZcMivq6KwvM52r0OS5UndFLt5tpTEphTY2IGx40W0ZOCOWcKGm9uHeeyABhWVLXMdg4deVSrz_Rqf4ajxMb-ERUu0GbT_95zraK3yLvHJbDtsoAWddlC7Zm7AlSF30OqHNoSb6OrUINoTzpM3jfOSF8coCycptm0kHLAepCWS0Ao_6uxZF5NXbMFP4XGWpAWGUTZV2Oamz3Jq0y10Pzi_O7twKqIFB4wFFg4HJn2jSxIqVzEtfE6BguQMYtCEKKCKACeur0ksAyKlAub6wqC7sN9swt9GrTRL9Q7CQEQoA-MImIs-UJfHvgCtFLgykL4nu8ir5R1B1YXcvsMoavonW_lFRn5RKb-IddHR_J7xrAfHr7N7tRqjyh7ziBgvj9omqGb4uFZbM_zzart_m76HVoitjyj_0fRQq5hM9T5ahpciyScH5T59B05l4fQ priority: 102 providerName: Springer Nature |
| Title | Block size selection in rate-constrained geometry based point cloud compression |
| URI | https://link.springer.com/article/10.1007/s11042-021-11672-8 https://www.proquest.com/docview/2623631098 |
| Volume | 81 |
| WOSCitedRecordID | wos000713070300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 7WY dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Collection (ProQuest) customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: M0C dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: P5Z dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: K7- dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library (ProQuest) customDbUrl: eissn: 1573-7721 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: M2O dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcKBQqFsrKB25g4TiNY58QrVohIbar8ipcInvsRStKsmxSJPj1eLJOF5DohYuVKA8l-TyPeB4fwGM1E6VBH-XbRRW4r0LGjbYFL4zy1qhQWoE92UQ5meizMzNNC25tSqscdGKvqH2DtEb-TEY7raiNpX6--MaJNYqiq4lCYwO2yLOhlL7X4vAyiqCKRGqrBY-WMUtFM6vSuYwKUyhBgSIRUSv8aZjW3uZfAdLe7hxv_-8T34ZbyeNkL1ZT5A5cC_UObA9sDiwJ9w7c_K014V04OYhW7gtr5z8Da3uunAggm9eMWktwJK-SyCWCZ59D8zV0yx-MDKJni2ZedwzPmwvPKF99lWdb34N3x0dvD1_yRL7AMUplxw1ql0d8ZemF18HmRqFCZzTOMEjpUXmJRoo8yJkrpHMetchttPiW_uNsvgubdVOH-8BQ2tIV0TmIG_uohJnlFoP3KFzh8syNIBu-fIWpMzm9w3m17qlMaFURrapHq9IjeHJ5zWLVl-PKs_cGiKoko221xmcETweQ14f_fbcHV9_tIdyQVCPRr9PswWa3vAiP4Dp-7-btcgwb5YePY9g6OJpMT-Peq5KP-1lLozyJ47T4FMfTN-9_AZ968mE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgk4UChFLLTgA5zAauJsHPuAEC1UrbYsHIrUW7DH3mpFSZZNCmp_VH8jnjy6gERvPXCLlMSK428e9jw-gOdyEmUaXZBvG1TgUPqYa2VSnmrpjJY-MxE2ZBPZeKyOjvSnJbjoa2EorbLXiY2idiXSGfmWCHZaUhtL9Wb2nRNrFEVXewqNFhYjf_YzbNmq1_vvwvq-EGL3_eHOHu9YBTgGuNVco7JJ-HCRucgpbxItUaLVCifohXAonUAtosSLiU2FtQ5VlJhgygxtUEwSxr0BK8NEZSRXo4xfRi1k2pHoqogHSxx3RTptqV5MhTCUEEGRj6CF_jSEC-_2r4BsY-d2V_-3P3QP7nYeNXvbisB9WPLFGqz2bBWsU15rcOe31osP4ON2sOJfWTU996xquIACQNm0YNQ6gyN5zUSe4R079uU3X8_PGBl8x2bltKgZnpSnjlE-fptHXKzD52uZ5ENYLsrCPwKGwmQ2Dc5PuBiijPQkMeidw8imNontAOJ-pXPsOq_THE7yRc9oQkce0JE36MjVAF5evjNr-45c-fRGD4m800FVvsDDAF71oFrc_vdoj68e7Rnc2jv8cJAf7I9HT-C2oHqQ5kxqA5br-anfhJv4o55W86eNdDD4ct1g-wU9s0uV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcWihFLC3gA5wgauI0jn2oEFBWVEXLHkCquIR47KAVJVk2Kaj8tP46ZvLoAhK99cAtUmJLjr952PP4AB6rIkwNOpJvSypwV_koMDpPgsQolxvl0zzElmwinUz00ZGZrsDZUAvDaZWDTmwVtauQ78h3JNlpxW0s9U7Rp0VM98fP598CZpDiSOtAp9FB5NCf_qDjW713sE97_UTK8ev3r94EPcNAgAS9JjCobUyLkKkLnfZ5bBQqtEZjgV5Kh8pJNDKMvSxsIq11qMM4J7OW82Elj2neK3A1pTMmpxNOk4_nEQyV9IS6OgzIKkd9wU5XthdxUQwnR3AUhDTSn0Zx6en-FZxtbd54_X_-W7dgrfe0xYtONG7Dii83YH1gsRC9UtuAm7-1ZLwD716Sdf8i6tlPL-qWI4iAK2al4JYaAbI3zaQa3onPvvrqm8WpYEfAiXk1KxuBx9WJE5yn3-UXl5vw4VIWeRdWy6r090CgzFObkFNED7uoQlPEOXrnMLSJjSM7gmjY9Qz7juy8huNs2UuakZIRUrIWKZkewdPzMfOuH8mFX28P8Mh63VRnS2yM4NkAsOXrf892_-LZHsF1wlj29mByuAU3JJeJtFdV27DaLE78A7iG35tZvXjYCoqAT5eNtV9UolS5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Block+size+selection+in+rate-constrained+geometry+based+point+cloud+compression&rft.jtitle=Multimedia+tools+and+applications&rft.au=Gao%2C+Pan&rft.au=Wei%2C+Mingqiang&rft.date=2022-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=2&rft.spage=2557&rft.epage=2575&rft_id=info:doi/10.1007%2Fs11042-021-11672-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_021_11672_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |