Block size selection in rate-constrained geometry based point cloud compression

In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in the voxelized point clouds, i.e. , the number of voxels contained in a block, determines whether the geometry coding is lossless or lossy, and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Multimedia tools and applications Ročník 81; číslo 2; s. 2557 - 2575
Hlavní autori: Gao, Pan, Wei, Mingqiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.01.2022
Springer Nature B.V
Predmet:
ISSN:1380-7501, 1573-7721
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in the voxelized point clouds, i.e. , the number of voxels contained in a block, determines whether the geometry coding is lossless or lossy, and the degree of geometry compression in lossy coding. Therefore, selecting an appropriate block size for octree coding is crucial for compression quality of voxelized point clouds. In this paper, we propose an optimal block size selection scheme for geometry based point cloud compression with a given bit rate constraint. Firstly, we analyze the gradients of the overall quality of the point clouds with color coding bit rate and geometry coding bit rate in lossy geometry coding. Then, we propose an octree level selection approach that can output the optimal octree level for point cloud compression under a target bit rate. In this approach, we consider the difference between the impacts of lossy geometry coding and lossless geometry coding on the overall quality of the point clouds. Experimental results demonstrate that, using the level selected by the proposed algorithm for geometry coding can yield best coding results in terms of the average quality of the images rendered from decoded point clouds.
AbstractList In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in the voxelized point clouds, i.e., the number of voxels contained in a block, determines whether the geometry coding is lossless or lossy, and the degree of geometry compression in lossy coding. Therefore, selecting an appropriate block size for octree coding is crucial for compression quality of voxelized point clouds. In this paper, we propose an optimal block size selection scheme for geometry based point cloud compression with a given bit rate constraint. Firstly, we analyze the gradients of the overall quality of the point clouds with color coding bit rate and geometry coding bit rate in lossy geometry coding. Then, we propose an octree level selection approach that can output the optimal octree level for point cloud compression under a target bit rate. In this approach, we consider the difference between the impacts of lossy geometry coding and lossless geometry coding on the overall quality of the point clouds. Experimental results demonstrate that, using the level selected by the proposed algorithm for geometry coding can yield best coding results in terms of the average quality of the images rendered from decoded point clouds.
In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in the voxelized point clouds, i.e. , the number of voxels contained in a block, determines whether the geometry coding is lossless or lossy, and the degree of geometry compression in lossy coding. Therefore, selecting an appropriate block size for octree coding is crucial for compression quality of voxelized point clouds. In this paper, we propose an optimal block size selection scheme for geometry based point cloud compression with a given bit rate constraint. Firstly, we analyze the gradients of the overall quality of the point clouds with color coding bit rate and geometry coding bit rate in lossy geometry coding. Then, we propose an octree level selection approach that can output the optimal octree level for point cloud compression under a target bit rate. In this approach, we consider the difference between the impacts of lossy geometry coding and lossless geometry coding on the overall quality of the point clouds. Experimental results demonstrate that, using the level selected by the proposed algorithm for geometry coding can yield best coding results in terms of the average quality of the images rendered from decoded point clouds.
Author Gao, Pan
Wei, Mingqiang
Author_xml – sequence: 1
  givenname: Pan
  orcidid: 0000-0002-4492-5430
  surname: Gao
  fullname: Gao, Pan
  email: gaopan.1005@gmail.com
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Science and Technology on Electro-optic Control Laboratory
– sequence: 2
  givenname: Mingqiang
  surname: Wei
  fullname: Wei, Mingqiang
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
BookMark eNp9kE9PwzAMxSM0JLbBF-BUiXMgcdY2PcLEP2nSLnCOUtedOrqkJN1hfHpahoTEYSfb0vvZfm_GJs47YuxailspRH4XpRQL4AIklzLLgeszNpVprnieg5wMvdKC56mQF2wW41YImaWwmLL1Q-vxI4nNFyWRWsK-8S5pXBJsTxy9i32wjaMq2ZDfUR8OSWnjMHa-cX2Crd9XCfpdFyjGAb1k57VtI1391jl7f3p8W77w1fr5dXm_4qhk0fMCdakIEfJKVJqsKjLMsCw01kgAFWYVYAFCEdRlCmVZoRbKwgKsEKCtmrOb494u-M89xd5s_T644aSBDFSmpCj0oNJHFQYfY6DaYNPb0eLoqjVSmDE-c4zPDPGZn_jMiMI_tAvNzobDaUgdoTiI3YbC31cnqG-3RYWq
CitedBy_id crossref_primary_10_3390_s24134285
Cites_doi 10.1109/TIP.2019.2931621
10.1109/LRA.2019.2900747
10.1109/TIP.2016.2529506
10.1109/VR46266.2020.00031
10.1109/TVCG.2007.70441
10.1109/ICIP.2017.8296925
10.1109/ICIP.2014.7025414
10.1109/ICIP.2019.8803413
10.1145/3329714.3338130
10.1109/ICRA.2012.6224647
10.1109/QoMEX48832.2020.9123147
10.1109/TIP.2016.2621666
10.1145/3343031.3350917
10.1109/TMM.2018.2859591
10.1109/TIP.2016.2575005
10.1109/ICMEW46912.2020.9106052
10.2352/ISSN.2470-1173.2019.10.IQSP-323
10.1145/2984511.2984517
10.1109/TIP.2017.2707807
10.1109/TCSVT.2005.857300
10.1145/3301293.3302358
10.1109/TCSVT.2016.2543039
10.1109/ICIP.2019.8803403
10.1109/ICME.2018.8486512
10.1109/QoMEX48832.2020.9123137
10.1016/j.jvcir.2018.03.012
10.1109/TCSVT.2012.2221191
10.1109/TIP.2019.2919198
10.1145/3210424.3210429
10.1109/ICRA.2011.5980567
10.1109/TIP.2019.2957853
10.3389/frobt.2016.00074
10.1016/j.cad.2007.10.013
10.1109/TIP.2019.2908095
10.1109/JETCAS.2018.2885981
10.1109/MSP.2019.2900721
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-021-11672-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 2575
ExternalDocumentID 10_1007_s11042_021_11672_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-9c8b3ecc27d0d8ea396c6cb98cfce22dc6d2c9203e2fb52bbdc803a242a0028a3
IEDL.DBID M0C
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000713070300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Wed Nov 05 01:00:15 EST 2025
Tue Nov 18 21:44:13 EST 2025
Sat Nov 29 06:20:13 EST 2025
Fri Feb 21 02:46:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Point cloud compression
Block size selection
Octree level
Rate constrained
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9c8b3ecc27d0d8ea396c6cb98cfce22dc6d2c9203e2fb52bbdc803a242a0028a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4492-5430
PQID 2623631098
PQPubID 54626
PageCount 19
ParticipantIDs proquest_journals_2623631098
crossref_citationtrail_10_1007_s11042_021_11672_8
crossref_primary_10_1007_s11042_021_11672_8
springer_journals_10_1007_s11042_021_11672_8
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Subramanyam S, Li J, Viola I, Cesar P (2020) Comparing the quality of highly realistic digital humans in 3dof and 6dof: A volumetric video case study. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 1–9
SongHFengH-YA global clustering approach to point cloud simplification with a specified data reduction ratioComput Aided Des200840328129210.1016/j.cad.2007.10.013
Cao C, Preda M, Zaharia (2019) T. 3d point cloud compression: A survey. In The 24th International Conference on 3D Web Technology (New York, NY, USA), Web3D ’19, Association for Computing Machinery, p. 1–9
SlaterMSanchez-VivesMVEnhancing our lives with immersive virtual realityFrontiers in Robotics and AI201637410.3389/frobt.2016.00074
Orts-Escolano S, Rhemann C, Fanello S, Chang W, Kowdle A, Degtyarev Y, Kim D, Davidson PL, Khamis S, Dou M, Tankovich V, Loop C, Cai Q, Chou PA, Mennicken S, Valentin J, Pradeep V, Wang S, Kang SB, Kohli P, Lutchyn Y, Keskin C, Izadi S (2016) Holoportation: Virtual 3d teleportation in real-time. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (New York, NY, USA), UIST ’16, Association for Computing Machinery, p. 741–754
SullivanGJOhmJ-RHanW-JWiegandTOverview of the high efficiency video coding (hevc) standardIEEE Trans Circuits Syst Video Technol201222121649166810.1109/TCSVT.2012.2221191
BT.709 (2015) Parameter values for the hdtv standards for production and international programme exchange
GuoJVidalVChengIBasuABaskurtALavoueGSubjective and objective visual quality assessment of textured 3d meshesACM Trans Appl Percept2016142
LiLLiZZakharchenkoVChenJLiHAdvanced 3d motion prediction for video-based dynamic point cloud compressionIEEE Trans Image Process201929289302401494010.1109/TIP.2019.2931621
Rusu RB, Cousins S (2011) 3D is here: Point Cloud Library (PCL). In IEEE International Conference on Robotics and Automation (ICRA) (Shanghai, China)
Alexiou E, Ebrahimi T (2018) Point cloud quality assessment metric based on angular similarity. 2018 IEEE International Conference on Multimedia and Expo (ICME), 1–6
Mammou K (2017) PCC test model category 3 v0. (2017) Doc. n17249, Macau, China
Loop C, Cai Q, Orts Escolano S, Chou PA (2006) Microsoft voxelized upper bodies-a voxelized point cloud dataset (2006) Doc. m38673, Geneva, Switzerland
MekuriaRBlomKCesarPDesign, implementation, and evaluation of a point cloud codec for tele-immersive videoIEEE Trans Circuits Syst Video Technol201627482884210.1109/TCSVT.2016.2543039
Chou PA, Koroteev M, Krivokuća M (2019) A volumetric approach to point cloud compression, part i Attribute compression. IEEE Trans Image Process
GaoPSmolicAOcclusion-aware depth map coding optimization using allowable depth map distortionsIEEE Trans Image Process2019281152665280399927710.1109/TIP.2019.2919198
Kammerl J, Blodow N, Rusu RB, Gedikli S, Beetz M, Steinbach E (2012) Real-time compression of point cloud streams. In 2012 IEEE International Conference on Robotics and Automation, IEEE pp. 778–785
Chou PA, Nakagami O, Jang ES (2017) Point cloud compression test model for category 1 v0. (2017) Doc. n17223, Macau, China
Mammou K, Chou PA, Flynn D, Krivokuća M, Nakagami O, Sugio T (2019) G-PCC codec description v2. (2019) Doc. n18189, Marrakech, MA
PagésRAmplianitisKMonaghanDOndřejJSmolićAAffordable content creation for free-viewpoint video and vr/ar applicationsJ Vis Commun Image Represent20185319220110.1016/j.jvcir.2018.03.012
SchwarzSPredaMBaronciniVBudagaviMCesarPChouPACohenRAKrivokućaMLasserreSLiZEmerging mpeg standards for point cloud compressionIEEE J Emerging Sel Top Circuits Syst20189113314810.1109/JETCAS.2018.2885981
MPEG (2019) Geometry based point cloud compression (G-PCC) test model
d’Eon E, Harrison B, Myers T, Chou PA (2017) 8i voxelized full bodies-a voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006
Meynet G, Nehme Y, Digne J, Lavoue G (2020) Pcqm: A full-reference quality metric for colored 3d point clouds. In 12th International Conference on Quality of Multimedia Experience (QoMEX 2020) IEEE, p. 1–6
JangESPredaMMammouKTourapisAMKimJGraziosiDBRhyuSBudagaviMVideo-based point-cloud-compression standard in mpeg: from evidence collection to committee draft [standards in a nutshell]IEEE Signal Process Mag201936311812310.1109/MSP.2019.2900721
MaSWenGYanLRate-distortion analysis for h 264/avc video coding and its application to rate controlIEEE Trans Circuits Syst Video Technol200515121533154410.1109/TCSVT.2005.857300
MPEG 3DG and Requirements (2017) Call for proposals for point cloud compression v2 Doc. n16763, Hobart, Australia
Quach M, Valenzise G, Dufaux F (2019) Learning convolutional transforms for lossy point cloud geometry compression. In 2019 IEEE International Conference on Image Processing (ICIP) IEEE pp. 4320–4324
Liu Q, Yuan H, Hamzaoui R, Su H (2020) Coarse to fine rate control for region-based 3d point cloud compression. In 2020 IEEE International Conference on Multimedia Expo Workshops (ICMEW), pp. 1–6
Zhang C, Florencio D, Loop C (2014) Point cloud attribute compression with graph transform. In 2014 IEEE International Conference on Image Processing (ICIP) IEEE, pp. 2066–2070
ZermanEGaoPOzcinarCSmolicASubjective and objective quality assessment for volumetric video compressionElectron Imaging2019201910323110.2352/ISSN.2470-1173.2019.10.IQSP-323
KrivokucaMChouPAKoroteevMA volumetric approach to point cloud compression part ii: Geometry compressionIEEE Trans Image Process2020292217222910.1109/TIP.2019.2957853
Schnabel R, Klein R (2006) Octree-based point-cloud compression. In Proceedings of Eurographics Symposium Point-Based Graphics (Boston, USA) pp. 111–120
HuangYPengJKuoC-CJGopiMA generic scheme for progressive point cloud codingIEEE Trans Vis Comput Graph200814244045310.1109/TVCG.2007.70441
FiengoAChierchiaGCagnazzoMPesquet-PopescuBRate allocation in predictive video coding using a convex optimization frameworkIEEE Trans Image Process2016261479489358001710.1109/TIP.2016.2621666
Mammou K (2017) PCC test model category 2 v0. (2017) Doc. n17248, Macau, China
van der Hooft J, Wauters T, De Turck F, Timmerer C, Hellwagner H (2019) Towards 6dof http adaptive streaming through point cloud compression. In Proceedings of the 27th ACM International Conference on Multimedia (New York, NY, USA), MM ’19, Association for Computing Machinery, p. 2405–C2413
de Oliveira RentePBritesCAscensoJPereiraFGraph-based static 3d point clouds geometry codingIEEE Trans Multimedia201821228429910.1109/TMM.2018.2859591
SunXMaHSunYLiuMA novel point cloud compression algorithm based on clusteringIEEE Robot Autom Lett2019422132213910.1109/LRA.2019.2900747
Torlig EM, Alexiou E, Fonseca TA, de Queiroz RL, Ebrahimi T (2018) A novel methodology for quality assessment of voxelized point clouds. In Applications of Digital Image Processing XLI, vol. 10752, International Society for Optics and Photonics, p. 107520I
SchneiderPJEberlyDHGeometric tools for computer graphics2003San Francisco, CAMorgan Kaufmann Publishers
de QueirozRLChouPAMotion-compensated compression of dynamic voxelized point cloudsIEEE Trans Image Process201726838863895366275810.1109/TIP.2017.2707807
Tian D, Ochimizu H, Feng C, Cohen R, Vetro A (2017) Evaluation metrics for point cloud compression (2017) Doc. m39966, Geneva
Hosseini M, Timmerer C (2018) Dynamic adaptive point cloud streaming. In Proceedings of the 23rd Packet Video Workshop (New York, NY, USA), PV ’18, Association for Computing Machinery, p. 25–30
Qian F, Han B, Pair J, Gopalakrishnan V (2019) Toward practical volumetric video streaming on commodity smartphones. In Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications (New York, NY, USA), HotMobile ’19, Association for Computing Machinery, p. 135–140
Perry S (2020) JPEG pleno point cloud coding common test conditions v3.1 (2020) Document n86044, Sydney, Australia
ThanouDChouPAFrossardPGraph-based compression of dynamic 3d point cloud sequencesIEEE Trans Image Process201625417651778347221210.1109/TIP.2016.2529506
De QueirozRLChouPACompression of 3d point clouds using a region-adaptive hierarchical transformIEEE Trans Image Process201625839473956351941010.1109/TIP.2016.2575005
Filali A, Ricordel V, Normand N, Hamidouche W (2019) Rate-distortion optimized tree-structured point-lattice vector quantization for compression of 3d point clouds geometry. In 2019 IEEE International Conference on Image Processing (ICIP), IEEE, pp. 1099–1103
Zerman E, Ozcinar C, Gao P, Smolic A (2020) Textured mesh vs coloured point cloud: A subjective study for volumetric video compression. In 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX) IEEE pp. 1–6
11672_CR49
11672_CR47
RL De Queiroz (11672_CR6) 2016; 25
11672_CR50
11672_CR13
11672_CR10
X Sun (11672_CR44) 2019; 4
M Krivokuca (11672_CR25) 2020; 29
11672_CR16
H Song (11672_CR41) 2008; 40
11672_CR17
11672_CR15
Y Huang (11672_CR14) 2008; 14
11672_CR18
11672_CR19
11672_CR20
11672_CR24
11672_CR21
11672_CR22
E Zerman (11672_CR48) 2019; 2019
P de Oliveira Rente (11672_CR5) 2018; 21
PJ Schneider (11672_CR38) 2003
D Thanou (11672_CR45) 2016; 25
L Li (11672_CR26) 2019; 29
ES Jang (11672_CR23) 2019; 36
11672_CR27
11672_CR30
11672_CR8
11672_CR31
R Mekuria (11672_CR29) 2016; 27
11672_CR34
11672_CR35
11672_CR32
S Schwarz (11672_CR39) 2018; 9
11672_CR3
RL de Queiroz (11672_CR7) 2017; 26
11672_CR4
11672_CR1
11672_CR2
M Slater (11672_CR40) 2016; 3
J Guo (11672_CR12) 2016; 14
S Ma (11672_CR28) 2005; 15
A Fiengo (11672_CR9) 2016; 26
11672_CR36
11672_CR37
P Gao (11672_CR11) 2019; 28
R Pagés (11672_CR33) 2018; 53
11672_CR42
GJ Sullivan (11672_CR43) 2012; 22
11672_CR46
References_xml – reference: PagésRAmplianitisKMonaghanDOndřejJSmolićAAffordable content creation for free-viewpoint video and vr/ar applicationsJ Vis Commun Image Represent20185319220110.1016/j.jvcir.2018.03.012
– reference: ThanouDChouPAFrossardPGraph-based compression of dynamic 3d point cloud sequencesIEEE Trans Image Process201625417651778347221210.1109/TIP.2016.2529506
– reference: Liu Q, Yuan H, Hamzaoui R, Su H (2020) Coarse to fine rate control for region-based 3d point cloud compression. In 2020 IEEE International Conference on Multimedia Expo Workshops (ICMEW), pp. 1–6
– reference: FiengoAChierchiaGCagnazzoMPesquet-PopescuBRate allocation in predictive video coding using a convex optimization frameworkIEEE Trans Image Process2016261479489358001710.1109/TIP.2016.2621666
– reference: Tian D, Ochimizu H, Feng C, Cohen R, Vetro A (2017) Evaluation metrics for point cloud compression (2017) Doc. m39966, Geneva
– reference: Mammou K (2017) PCC test model category 3 v0. (2017) Doc. n17249, Macau, China
– reference: de QueirozRLChouPAMotion-compensated compression of dynamic voxelized point cloudsIEEE Trans Image Process201726838863895366275810.1109/TIP.2017.2707807
– reference: HuangYPengJKuoC-CJGopiMA generic scheme for progressive point cloud codingIEEE Trans Vis Comput Graph200814244045310.1109/TVCG.2007.70441
– reference: LiLLiZZakharchenkoVChenJLiHAdvanced 3d motion prediction for video-based dynamic point cloud compressionIEEE Trans Image Process201929289302401494010.1109/TIP.2019.2931621
– reference: SunXMaHSunYLiuMA novel point cloud compression algorithm based on clusteringIEEE Robot Autom Lett2019422132213910.1109/LRA.2019.2900747
– reference: Kammerl J, Blodow N, Rusu RB, Gedikli S, Beetz M, Steinbach E (2012) Real-time compression of point cloud streams. In 2012 IEEE International Conference on Robotics and Automation, IEEE pp. 778–785
– reference: Quach M, Valenzise G, Dufaux F (2019) Learning convolutional transforms for lossy point cloud geometry compression. In 2019 IEEE International Conference on Image Processing (ICIP) IEEE pp. 4320–4324
– reference: ZermanEGaoPOzcinarCSmolicASubjective and objective quality assessment for volumetric video compressionElectron Imaging2019201910323110.2352/ISSN.2470-1173.2019.10.IQSP-323
– reference: Hosseini M, Timmerer C (2018) Dynamic adaptive point cloud streaming. In Proceedings of the 23rd Packet Video Workshop (New York, NY, USA), PV ’18, Association for Computing Machinery, p. 25–30
– reference: Zhang C, Florencio D, Loop C (2014) Point cloud attribute compression with graph transform. In 2014 IEEE International Conference on Image Processing (ICIP) IEEE, pp. 2066–2070
– reference: Orts-Escolano S, Rhemann C, Fanello S, Chang W, Kowdle A, Degtyarev Y, Kim D, Davidson PL, Khamis S, Dou M, Tankovich V, Loop C, Cai Q, Chou PA, Mennicken S, Valentin J, Pradeep V, Wang S, Kang SB, Kohli P, Lutchyn Y, Keskin C, Izadi S (2016) Holoportation: Virtual 3d teleportation in real-time. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (New York, NY, USA), UIST ’16, Association for Computing Machinery, p. 741–754
– reference: SchwarzSPredaMBaronciniVBudagaviMCesarPChouPACohenRAKrivokućaMLasserreSLiZEmerging mpeg standards for point cloud compressionIEEE J Emerging Sel Top Circuits Syst20189113314810.1109/JETCAS.2018.2885981
– reference: Subramanyam S, Li J, Viola I, Cesar P (2020) Comparing the quality of highly realistic digital humans in 3dof and 6dof: A volumetric video case study. 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), 1–9
– reference: Torlig EM, Alexiou E, Fonseca TA, de Queiroz RL, Ebrahimi T (2018) A novel methodology for quality assessment of voxelized point clouds. In Applications of Digital Image Processing XLI, vol. 10752, International Society for Optics and Photonics, p. 107520I
– reference: SullivanGJOhmJ-RHanW-JWiegandTOverview of the high efficiency video coding (hevc) standardIEEE Trans Circuits Syst Video Technol201222121649166810.1109/TCSVT.2012.2221191
– reference: De QueirozRLChouPACompression of 3d point clouds using a region-adaptive hierarchical transformIEEE Trans Image Process201625839473956351941010.1109/TIP.2016.2575005
– reference: SongHFengH-YA global clustering approach to point cloud simplification with a specified data reduction ratioComput Aided Des200840328129210.1016/j.cad.2007.10.013
– reference: Schnabel R, Klein R (2006) Octree-based point-cloud compression. In Proceedings of Eurographics Symposium Point-Based Graphics (Boston, USA) pp. 111–120
– reference: GaoPSmolicAOcclusion-aware depth map coding optimization using allowable depth map distortionsIEEE Trans Image Process2019281152665280399927710.1109/TIP.2019.2919198
– reference: Alexiou E, Ebrahimi T (2018) Point cloud quality assessment metric based on angular similarity. 2018 IEEE International Conference on Multimedia and Expo (ICME), 1–6
– reference: van der Hooft J, Wauters T, De Turck F, Timmerer C, Hellwagner H (2019) Towards 6dof http adaptive streaming through point cloud compression. In Proceedings of the 27th ACM International Conference on Multimedia (New York, NY, USA), MM ’19, Association for Computing Machinery, p. 2405–C2413
– reference: Filali A, Ricordel V, Normand N, Hamidouche W (2019) Rate-distortion optimized tree-structured point-lattice vector quantization for compression of 3d point clouds geometry. In 2019 IEEE International Conference on Image Processing (ICIP), IEEE, pp. 1099–1103
– reference: Loop C, Cai Q, Orts Escolano S, Chou PA (2006) Microsoft voxelized upper bodies-a voxelized point cloud dataset (2006) Doc. m38673, Geneva, Switzerland
– reference: Chou PA, Nakagami O, Jang ES (2017) Point cloud compression test model for category 1 v0. (2017) Doc. n17223, Macau, China
– reference: Chou PA, Koroteev M, Krivokuća M (2019) A volumetric approach to point cloud compression, part i Attribute compression. IEEE Trans Image Process
– reference: MPEG 3DG and Requirements (2017) Call for proposals for point cloud compression v2 Doc. n16763, Hobart, Australia
– reference: SchneiderPJEberlyDHGeometric tools for computer graphics2003San Francisco, CAMorgan Kaufmann Publishers
– reference: Perry S (2020) JPEG pleno point cloud coding common test conditions v3.1 (2020) Document n86044, Sydney, Australia
– reference: KrivokucaMChouPAKoroteevMA volumetric approach to point cloud compression part ii: Geometry compressionIEEE Trans Image Process2020292217222910.1109/TIP.2019.2957853
– reference: Zerman E, Ozcinar C, Gao P, Smolic A (2020) Textured mesh vs coloured point cloud: A subjective study for volumetric video compression. In 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX) IEEE pp. 1–6
– reference: BT.709 (2015) Parameter values for the hdtv standards for production and international programme exchange
– reference: GuoJVidalVChengIBasuABaskurtALavoueGSubjective and objective visual quality assessment of textured 3d meshesACM Trans Appl Percept2016142
– reference: Mammou K (2017) PCC test model category 2 v0. (2017) Doc. n17248, Macau, China
– reference: MaSWenGYanLRate-distortion analysis for h 264/avc video coding and its application to rate controlIEEE Trans Circuits Syst Video Technol200515121533154410.1109/TCSVT.2005.857300
– reference: Rusu RB, Cousins S (2011) 3D is here: Point Cloud Library (PCL). In IEEE International Conference on Robotics and Automation (ICRA) (Shanghai, China)
– reference: d’Eon E, Harrison B, Myers T, Chou PA (2017) 8i voxelized full bodies-a voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document WG11M40059/WG1M74006
– reference: Mammou K, Chou PA, Flynn D, Krivokuća M, Nakagami O, Sugio T (2019) G-PCC codec description v2. (2019) Doc. n18189, Marrakech, MA
– reference: de Oliveira RentePBritesCAscensoJPereiraFGraph-based static 3d point clouds geometry codingIEEE Trans Multimedia201821228429910.1109/TMM.2018.2859591
– reference: Meynet G, Nehme Y, Digne J, Lavoue G (2020) Pcqm: A full-reference quality metric for colored 3d point clouds. In 12th International Conference on Quality of Multimedia Experience (QoMEX 2020) IEEE, p. 1–6
– reference: MekuriaRBlomKCesarPDesign, implementation, and evaluation of a point cloud codec for tele-immersive videoIEEE Trans Circuits Syst Video Technol201627482884210.1109/TCSVT.2016.2543039
– reference: Cao C, Preda M, Zaharia (2019) T. 3d point cloud compression: A survey. In The 24th International Conference on 3D Web Technology (New York, NY, USA), Web3D ’19, Association for Computing Machinery, p. 1–9
– reference: MPEG (2019) Geometry based point cloud compression (G-PCC) test model
– reference: JangESPredaMMammouKTourapisAMKimJGraziosiDBRhyuSBudagaviMVideo-based point-cloud-compression standard in mpeg: from evidence collection to committee draft [standards in a nutshell]IEEE Signal Process Mag201936311812310.1109/MSP.2019.2900721
– reference: Qian F, Han B, Pair J, Gopalakrishnan V (2019) Toward practical volumetric video streaming on commodity smartphones. In Proceedings of the 20th International Workshop on Mobile Computing Systems and Applications (New York, NY, USA), HotMobile ’19, Association for Computing Machinery, p. 135–140
– reference: SlaterMSanchez-VivesMVEnhancing our lives with immersive virtual realityFrontiers in Robotics and AI201637410.3389/frobt.2016.00074
– volume: 29
  start-page: 289
  year: 2019
  ident: 11672_CR26
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2931621
– volume: 4
  start-page: 2132
  issue: 2
  year: 2019
  ident: 11672_CR44
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2019.2900747
– volume: 25
  start-page: 1765
  issue: 4
  year: 2016
  ident: 11672_CR45
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2529506
– ident: 11672_CR19
– ident: 11672_CR42
  doi: 10.1109/VR46266.2020.00031
– ident: 11672_CR31
– volume: 14
  start-page: 440
  issue: 2
  year: 2008
  ident: 11672_CR14
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2007.70441
– ident: 11672_CR17
  doi: 10.1109/ICIP.2017.8296925
– ident: 11672_CR50
  doi: 10.1109/ICIP.2014.7025414
– ident: 11672_CR16
– ident: 11672_CR35
  doi: 10.1109/ICIP.2019.8803413
– ident: 11672_CR3
  doi: 10.1145/3329714.3338130
– ident: 11672_CR21
– ident: 11672_CR24
  doi: 10.1109/ICRA.2012.6224647
– volume: 14
  start-page: 2
  year: 2016
  ident: 11672_CR12
  publication-title: ACM Trans Appl Percept
– ident: 11672_CR30
  doi: 10.1109/QoMEX48832.2020.9123147
– volume: 26
  start-page: 479
  issue: 1
  year: 2016
  ident: 11672_CR9
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2621666
– ident: 11672_CR47
  doi: 10.1145/3343031.3350917
– volume: 21
  start-page: 284
  issue: 2
  year: 2018
  ident: 11672_CR5
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2018.2859591
– ident: 11672_CR15
– volume: 25
  start-page: 3947
  issue: 8
  year: 2016
  ident: 11672_CR6
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2575005
– ident: 11672_CR27
  doi: 10.1109/ICMEW46912.2020.9106052
– volume: 2019
  start-page: 323
  issue: 10
  year: 2019
  ident: 11672_CR48
  publication-title: Electron Imaging
  doi: 10.2352/ISSN.2470-1173.2019.10.IQSP-323
– ident: 11672_CR22
– ident: 11672_CR32
  doi: 10.1145/2984511.2984517
– volume: 26
  start-page: 3886
  issue: 8
  year: 2017
  ident: 11672_CR7
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2707807
– volume: 15
  start-page: 1533
  issue: 12
  year: 2005
  ident: 11672_CR28
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2005.857300
– ident: 11672_CR34
  doi: 10.1145/3301293.3302358
– volume: 27
  start-page: 828
  issue: 4
  year: 2016
  ident: 11672_CR29
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2016.2543039
– ident: 11672_CR10
  doi: 10.1109/ICIP.2019.8803403
– ident: 11672_CR46
– ident: 11672_CR1
  doi: 10.1109/ICME.2018.8486512
– ident: 11672_CR49
  doi: 10.1109/QoMEX48832.2020.9123137
– volume: 53
  start-page: 192
  year: 2018
  ident: 11672_CR33
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2018.03.012
– ident: 11672_CR37
– volume: 22
  start-page: 1649
  issue: 12
  year: 2012
  ident: 11672_CR43
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2012.2221191
– volume: 28
  start-page: 5266
  issue: 11
  year: 2019
  ident: 11672_CR11
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2919198
– ident: 11672_CR2
– ident: 11672_CR13
  doi: 10.1145/3210424.3210429
– ident: 11672_CR36
  doi: 10.1109/ICRA.2011.5980567
– volume: 29
  start-page: 2217
  year: 2020
  ident: 11672_CR25
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2019.2957853
– ident: 11672_CR8
– volume: 3
  start-page: 74
  year: 2016
  ident: 11672_CR40
  publication-title: Frontiers in Robotics and AI
  doi: 10.3389/frobt.2016.00074
– volume-title: Geometric tools for computer graphics
  year: 2003
  ident: 11672_CR38
– volume: 40
  start-page: 281
  issue: 3
  year: 2008
  ident: 11672_CR41
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2007.10.013
– ident: 11672_CR18
– ident: 11672_CR4
  doi: 10.1109/TIP.2019.2908095
– volume: 9
  start-page: 133
  issue: 1
  year: 2018
  ident: 11672_CR39
  publication-title: IEEE J Emerging Sel Top Circuits Syst
  doi: 10.1109/JETCAS.2018.2885981
– ident: 11672_CR20
– volume: 36
  start-page: 118
  issue: 3
  year: 2019
  ident: 11672_CR23
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2019.2900721
SSID ssj0016524
Score 2.275055
Snippet In geometry-based point cloud compression, the geometry information is typically compressed using octree coding. In octree coding, the size of the blocks in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2557
SubjectTerms Algorithms
Color coding
Computer Communication Networks
Computer Science
Constraints
Data Structures and Information Theory
Geometry
Image quality
Multimedia Information Systems
Octree coding
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG90etCD06lxOk0P3pQEyijtUY2LJzV-ZTfSvhZDnLAMZqJ_vS2DoUZN9EbS0sB7ff09eB8_hA5p7IYclLFvaY7APtWew5kInIBTJTjVoXChJJsILy_ZcMivq6KwvM52r0OS5UndFLt5tpTEphTY2IGx40W0ZOCOWcKGm9uHeeyABhWVLXMdg4deVSrz_Rqf4ajxMb-ERUu0GbT_95zraK3yLvHJbDtsoAWddlC7Zm7AlSF30OqHNoSb6OrUINoTzpM3jfOSF8coCycptm0kHLAepCWS0Ao_6uxZF5NXbMFP4XGWpAWGUTZV2Oamz3Jq0y10Pzi_O7twKqIFB4wFFg4HJn2jSxIqVzEtfE6BguQMYtCEKKCKACeur0ksAyKlAub6wqC7sN9swt9GrTRL9Q7CQEQoA-MImIs-UJfHvgCtFLgykL4nu8ir5R1B1YXcvsMoavonW_lFRn5RKb-IddHR_J7xrAfHr7N7tRqjyh7ziBgvj9omqGb4uFZbM_zzart_m76HVoitjyj_0fRQq5hM9T5ahpciyScH5T59B05l4fQ
  priority: 102
  providerName: Springer Nature
Title Block size selection in rate-constrained geometry based point cloud compression
URI https://link.springer.com/article/10.1007/s11042-021-11672-8
https://www.proquest.com/docview/2623631098
Volume 81
WOSCitedRecordID wos000713070300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 7WY
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection (ProQuest)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M0C
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: P5Z
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: K7-
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (ProQuest)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: M2O
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RlgMcKBQqFsrKB25g4TiNY58QrVohIbar8ipcInvsRStKsmxSJPj1eLJOF5DohYuVKA8l-TyPeB4fwGM1E6VBH-XbRRW4r0LGjbYFL4zy1qhQWoE92UQ5meizMzNNC25tSqscdGKvqH2DtEb-TEY7raiNpX6--MaJNYqiq4lCYwO2yLOhlL7X4vAyiqCKRGqrBY-WMUtFM6vSuYwKUyhBgSIRUSv8aZjW3uZfAdLe7hxv_-8T34ZbyeNkL1ZT5A5cC_UObA9sDiwJ9w7c_K014V04OYhW7gtr5z8Da3uunAggm9eMWktwJK-SyCWCZ59D8zV0yx-MDKJni2ZedwzPmwvPKF99lWdb34N3x0dvD1_yRL7AMUplxw1ql0d8ZemF18HmRqFCZzTOMEjpUXmJRoo8yJkrpHMetchttPiW_uNsvgubdVOH-8BQ2tIV0TmIG_uohJnlFoP3KFzh8syNIBu-fIWpMzm9w3m17qlMaFURrapHq9IjeHJ5zWLVl-PKs_cGiKoko221xmcETweQ14f_fbcHV9_tIdyQVCPRr9PswWa3vAiP4Dp-7-btcgwb5YePY9g6OJpMT-Peq5KP-1lLozyJ47T4FMfTN-9_AZ968mE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgk4UChFLLTgA5zAauJsHPuAEC1UrbYsHIrUW7DH3mpFSZZNCmp_VH8jnjy6gERvPXCLlMSK428e9jw-gOdyEmUaXZBvG1TgUPqYa2VSnmrpjJY-MxE2ZBPZeKyOjvSnJbjoa2EorbLXiY2idiXSGfmWCHZaUhtL9Wb2nRNrFEVXewqNFhYjf_YzbNmq1_vvwvq-EGL3_eHOHu9YBTgGuNVco7JJ-HCRucgpbxItUaLVCifohXAonUAtosSLiU2FtQ5VlJhgygxtUEwSxr0BK8NEZSRXo4xfRi1k2pHoqogHSxx3RTptqV5MhTCUEEGRj6CF_jSEC-_2r4BsY-d2V_-3P3QP7nYeNXvbisB9WPLFGqz2bBWsU15rcOe31osP4ON2sOJfWTU996xquIACQNm0YNQ6gyN5zUSe4R079uU3X8_PGBl8x2bltKgZnpSnjlE-fptHXKzD52uZ5ENYLsrCPwKGwmQ2Dc5PuBiijPQkMeidw8imNontAOJ-pXPsOq_THE7yRc9oQkce0JE36MjVAF5evjNr-45c-fRGD4m800FVvsDDAF71oFrc_vdoj68e7Rnc2jv8cJAf7I9HT-C2oHqQ5kxqA5br-anfhJv4o55W86eNdDD4ct1g-wU9s0uV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcWihFLC3gA5wgauI0jn2oEFBWVEXLHkCquIR47KAVJVk2Kaj8tP46ZvLoAhK99cAtUmJLjr952PP4AB6rIkwNOpJvSypwV_koMDpPgsQolxvl0zzElmwinUz00ZGZrsDZUAvDaZWDTmwVtauQ78h3JNlpxW0s9U7Rp0VM98fP598CZpDiSOtAp9FB5NCf_qDjW713sE97_UTK8ev3r94EPcNAgAS9JjCobUyLkKkLnfZ5bBQqtEZjgV5Kh8pJNDKMvSxsIq11qMM4J7OW82Elj2neK3A1pTMmpxNOk4_nEQyV9IS6OgzIKkd9wU5XthdxUQwnR3AUhDTSn0Zx6en-FZxtbd54_X_-W7dgrfe0xYtONG7Dii83YH1gsRC9UtuAm7-1ZLwD716Sdf8i6tlPL-qWI4iAK2al4JYaAbI3zaQa3onPvvrqm8WpYEfAiXk1KxuBx9WJE5yn3-UXl5vw4VIWeRdWy6r090CgzFObkFNED7uoQlPEOXrnMLSJjSM7gmjY9Qz7juy8huNs2UuakZIRUrIWKZkewdPzMfOuH8mFX28P8Mh63VRnS2yM4NkAsOXrf892_-LZHsF1wlj29mByuAU3JJeJtFdV27DaLE78A7iG35tZvXjYCoqAT5eNtV9UolS5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Block+size+selection+in+rate-constrained+geometry+based+point+cloud+compression&rft.jtitle=Multimedia+tools+and+applications&rft.au=Gao%2C+Pan&rft.au=Wei%2C+Mingqiang&rft.date=2022-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=2&rft.spage=2557&rft.epage=2575&rft_id=info:doi/10.1007%2Fs11042-021-11672-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_021_11672_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon