Approximate Polynomial GCD by Approximate Syzygies

One way to compute a GCD of a pair of multivariate polynomials is by finding a certain syzygy. We can weaken this to create an “approximate syzygy”, for the purpose of computing an approximate GCD. The primary tools are Gröbner bases and optimization. Depending on specifics of the formulation, one m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics in computer science Ročník 13; číslo 4; s. 517 - 532
Hlavný autor: Lichtblau, Daniel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.12.2019
Springer Nature B.V
Predmet:
ISSN:1661-8270, 1661-8289
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:One way to compute a GCD of a pair of multivariate polynomials is by finding a certain syzygy. We can weaken this to create an “approximate syzygy”, for the purpose of computing an approximate GCD. The primary tools are Gröbner bases and optimization. Depending on specifics of the formulation, one might use quadratic programming, linear programming, unconstrained with quadratic main term and quartic penalty, or a penalty-free sum-of-squares optimization. There are relative strengths and weaknesses to all four approaches, trade-offs in terms of speed vs. quality of result, size of problem that can be handled, and the like. Once a syzygy is found, there is a polynomial quotient to form, in order to get an approximation to an exact quotient. This step too can be tricky and requires careful handling. We will show what seem to be reasonable formulations for the optimization and quotient steps. We illustrate with several examples from the literature.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1661-8270
1661-8289
DOI:10.1007/s11786-019-00392-w