Dual quaternion QR decompositon and its corresponding complex structure-preserving algorithms

The dual quaternion matrix has important application value in brain science and multi-agent formation control. In this paper, a practical method for realizing dual quaternion QR decomposition (DQQRD) is proposed by using a dual quaternion Householder transformation. Since the product of dual quatern...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical algorithms Ročník 100; číslo 3; s. 1315 - 1331
Hlavní autoři: Sun, Jianhua, Li, Ying, Liu, Xiaochen, Zhang, Mingcui
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2025
Springer Nature B.V
Témata:
ISSN:1017-1398, 1572-9265
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The dual quaternion matrix has important application value in brain science and multi-agent formation control. In this paper, a practical method for realizing dual quaternion QR decomposition (DQQRD) is proposed by using a dual quaternion Householder transformation. Since the product of dual quaternions depends on the product law of quaternions, it will face complex computational problems. If DQQRD is directly performed, it will be inefficient. Therefore, in this paper, the complex representation of a dual quaternion matrix is established by using the semi-tensor product (STP) of matrices, and the complex structure-preserving algorithm of the DQQRD is proposed. In order to improve the accuracy of the decomposition, a method of column pivoting is given. Numerical experiments show that the method is effective. Finally, the DQQRD is applied to solve the dual quaternion linear equation A x = b .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-024-01989-4