Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions

Families of mixtures of multivariate power exponential (MPE) distributions have already been introduced and shown to be competitive for cluster analysis in comparison to other mixtures of elliptical distributions, including mixtures of Gaussian distributions. A family of mixtures of multivariate ske...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of classification Ročník 40; číslo 1; s. 145 - 167
Hlavní autori: Dang, Utkarsh J., Gallaugher, Michael P.B., Browne, Ryan P., McNicholas, Paul D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.04.2023
Springer Nature B.V
Predmet:
ISSN:0176-4268, 1432-1343
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Families of mixtures of multivariate power exponential (MPE) distributions have already been introduced and shown to be competitive for cluster analysis in comparison to other mixtures of elliptical distributions, including mixtures of Gaussian distributions. A family of mixtures of multivariate skewed power exponential distributions is proposed that combines the flexibility of the MPE distribution with the ability to model skewness. These mixtures are more robust to variations from normality and can account for skewness, varying tail weight, and peakedness of data. A generalized expectation-maximization approach, which combines minorization-maximization and optimization based on accelerated line search algorithms on the Stiefel manifold, is used for parameter estimation. These mixtures are implemented both in the unsupervised and semi-supervised classification frameworks. Both simulated and real data are used for illustration and comparison to other mixture families.
AbstractList Families of mixtures of multivariate power exponential (MPE) distributions have already been introduced and shown to be competitive for cluster analysis in comparison to other mixtures of elliptical distributions, including mixtures of Gaussian distributions. A family of mixtures of multivariate skewed power exponential distributions is proposed that combines the flexibility of the MPE distribution with the ability to model skewness. These mixtures are more robust to variations from normality and can account for skewness, varying tail weight, and peakedness of data. A generalized expectation-maximization approach, which combines minorization-maximization and optimization based on accelerated line search algorithms on the Stiefel manifold, is used for parameter estimation. These mixtures are implemented both in the unsupervised and semi-supervised classification frameworks. Both simulated and real data are used for illustration and comparison to other mixture families.
Author Browne, Ryan P.
Dang, Utkarsh J.
Gallaugher, Michael P.B.
McNicholas, Paul D.
Author_xml – sequence: 1
  givenname: Utkarsh J.
  orcidid: 0000-0003-4120-2015
  surname: Dang
  fullname: Dang, Utkarsh J.
  email: utkarshdang@cunet.carleton.ca
  organization: Department of Health Sciences, Carleton University
– sequence: 2
  givenname: Michael P.B.
  orcidid: 0000-0002-5487-8965
  surname: Gallaugher
  fullname: Gallaugher, Michael P.B.
  organization: Department of Statistical Science, Baylor University
– sequence: 3
  givenname: Ryan P.
  orcidid: 0000-0003-4543-0218
  surname: Browne
  fullname: Browne, Ryan P.
  organization: Department of Statistics & Actuarial Sciences, University of Waterloo
– sequence: 4
  givenname: Paul D.
  orcidid: 0000-0002-2482-523X
  surname: McNicholas
  fullname: McNicholas, Paul D.
  organization: Department of Mathematics & Statistics, McMaster University
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxNowfiROllDKQ2oFEnRtOYmDXEJcbIeWvydpkJBYdGWNPOfOzJmgUWMbjdA5gUsCIK48AIsFBkoxZJwKLI7QmHBGMWGcjdAYiEgwp0l6giber6GDkkSMkV3aUtf4RnldRrO69UE707xFqulL5b2pTKGCsU208v3H0uxC67SPbBUt2zqYL-WMCjp6edfbLuPZbrWL5rtNt2ATjKqjW-ODM3nbh_hTdFyp2uuz33eKVnfz19kDXjzdP86uF7hgJAs4S1mq04SWoDgvRMUFyQtKcgplJXhFhS6zmOdxSSAVOYgs1xwqpRKSZ5BlOZuiiyF34-xnq32Qa9u6phspGY15DGkSx11XOnQVznrvdCULE_bXBqdMLQnIXq8c9MpOr9zrlaJD6T9048yHct-HITZAftNb1u5vqwPUDyVKkJQ
CitedBy_id crossref_primary_10_1080_00401706_2025_2467920
crossref_primary_10_3389_fgene_2023_1148147
crossref_primary_10_1080_01621459_2024_2427935
crossref_primary_10_1007_s00357_024_09479_x
crossref_primary_10_1016_j_spl_2025_110507
crossref_primary_10_1002_bimj_70042
Cites_doi 10.1007/s00357-021-09401-9
10.1016/j.patcog.2018.02.025
10.1007/BF01908075
10.1016/j.jspi.2009.11.006
10.1016/j.jmva.2017.07.008
10.1007/s11634-014-0165-7
10.1007/s11222-015-9545-x
10.1111/biom.12351
10.1198/0003130042836
10.1007/s11222-013-9386-4
10.21236/AD0620026
10.1037/1082-989X.9.3.386
10.1007/s11222-011-9272-x
10.1007/s00357-018-9280-z
10.1002/prot.340110203
10.1016/j.csda.2012.12.008
10.1007/s11222-012-9362-4
10.1007/s11222-012-9364-2
10.1515/9781400830244
10.1093/biomet/83.4.715
10.1111/j.0006-341X.1999.01277.x
10.1198/016214504000000359
10.1002/cjs.11246
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.csda.2009.02.011
10.1007/s11222-008-9072-0
10.1016/S0888-7543(05)80111-9
10.1007/s11222-009-9128-9
10.1201/9781315373577
10.1162/089976699300016728
10.1007/BF00049423
10.1080/00401706.1966.10490375
10.2307/2532201
10.1016/j.stamet.2010.09.001
10.1016/S0167-9473(02)00163-9
10.1109/TPAMI.2013.216
10.1023/A:1008981510081
10.1016/j.csda.2014.03.012
10.1007/s11222-008-9056-0
10.1007/s00357-016-9211-9
10.1093/biomet/56.3.463
10.1109/ICIP.2008.4711718
10.1016/j.csda.2013.07.008
10.1007/s00357-015-9188-9
10.1007/978-3-319-41573-4_18
10.1007/978-0-387-21706-2
10.1214/cbms/1462106013
10.1214/aos/1176344136
10.1080/03610929808832115
10.1017/S0370164600022070
10.1006/jmva.2000.1960
10.1109/34.865189
10.1016/j.csda.2014.09.006
10.1016/j.spl.2013.04.011
10.1016/0031-3203(94)00125-6
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Classification Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to The Classification Society 2023.
Copyright_xml – notice: The Author(s) under exclusive licence to The Classification Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to The Classification Society 2023.
DBID AAYXX
CITATION
3V.
7XB
88I
8AL
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L6V
M0N
M1O
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PTHSS
Q9U
DOI 10.1007/s00357-022-09427-7
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Social Science Premium Collection - Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Computing Database
Library Science Database (ProQuest)
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Library Science
ProQuest Engineering Collection
ProQuest Central Korea
Library & Information Science Collection
ProQuest Research Library
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Computing
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Library & Information Science
Statistics
Psychology
Philosophy
EISSN 1432-1343
EndPage 167
ExternalDocumentID 10_1007_s00357_022_09427_7
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: Vanier Canada Graduate Scholarship
  funderid: https://doi.org/10.13039/501100000038
– fundername: Canada Research Chairs
  funderid: https://doi.org/10.13039/501100001804
– fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: https://doi.org/10.13039/501100000038
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4I
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
77K
78A
88I
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHQT
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBD
EBLON
EBS
EIOEI
EJD
ELW
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M1O
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PADUT
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
YLTOR
Z45
Z81
Z83
Z8U
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PRQQA
7XB
8AL
8FK
E3H
F2A
JQ2
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-9838e862d0a44c7f471bc21b20df74f27ed954b5d1087b079be40faa61b9099b3
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000933353600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0176-4268
IngestDate Sat Nov 15 05:52:40 EST 2025
Sat Nov 29 02:13:06 EST 2025
Tue Nov 18 22:33:10 EST 2025
Fri Feb 21 02:45:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Model-based classification
Multivariate skewed power exponential distribution
Mixture models
Model-based clustering
Generalized expectation-maximization algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9838e862d0a44c7f471bc21b20df74f27ed954b5d1087b079be40faa61b9099b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4543-0218
0000-0002-2482-523X
0000-0002-5487-8965
0000-0003-4120-2015
PQID 3254508655
PQPubID 54109
PageCount 23
ParticipantIDs proquest_journals_3254508655
crossref_citationtrail_10_1007_s00357_022_09427_7
crossref_primary_10_1007_s00357_022_09427_7
springer_journals_10_1007_s00357_022_09427_7
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of classification
PublicationTitleAbbrev J Classif
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References McNicholasPDMurphyTBMcDaidAFFrostDSerial and parallel implementations of model-based clustering via parsimonious gaussian mixture modelsComputational Statistics & Data Analysis201054371172327444271464.6213110.1016/j.csda.2009.02.011
VrbikIMcNicholasPDFractionally-supervised classificationJournal of Classification201532335938134228921331.6231910.1007/s00357-015-9188-9
Flury, B. (2012). Flury: data sets from Flury, 1997. R package version 0.1–3.
DayNEEstimating the components of a mixture of normal distributionsBiometrika19695634634742549560183.4810610.1093/biomet/56.3.463
LeeSXMcLachlanGJFinite mixtures of canonical fundamental skew t-distributions: The unification of the restricted and unrestricted skew t-mixture modelsStatistics and Computing201626357358934898581420.6002010.1007/s11222-015-9545-x
McNicholasPDMurphyTBParsimonious gaussian mixture modelsStatistics and Computing2008183285296241338510.1007/s11222-008-9056-0
HunterDRLangeKRejoinder to discussion of optimization transfer using surrogate objective functionsJournal of Computational and Graphical Statistics2000915259
BrowneRPMcNicholasPDOrthogonal Stiefel manifold optimization for eigen-decomposed covariance parameter estimation in mixture modelsStatistics and Computing201424220321031655481325.6200810.1007/s11222-012-9364-2
ChoDBuiTDMultivariate statistical modeling for image denoising using wavelet transformsSignal Processing: Image Communication20052017789
VenablesWNRipleyBDModern applied statistics with S, fourth edn.2002New YorkSpringer1006.6200310.1007/978-0-387-21706-2ISBN 0-387-95457-0
NakaiKKanehisaMA knowledge base for predicting protein localization sites in eukaryotic cellsGenomics199214489791110.1016/S0888-7543(05)80111-9
KarlisDSantourianAModel-based clustering with non-elliptically contoured distributionsStatistics and Computing20091917383247055910.1007/s11222-008-9072-0
Dang, U.J., Browne, R.P., Gallaugher, M.P., & Band McNicholas, P.D. (2021). mixSPE: Mixtures of power exponential and skew power exponential distributions for use in model-based clustering and classification. R package version 0.9.1.
Wolfe, J.H. (1965). A computer program for the maximum likelihood analysis of types. U.S. Naval personnel research activity, technical bulletin:65-15.
HubertLArabiePComparing partitionsJournal of Classification1985211932180587.6212810.1007/BF01908075
NakaiKKanehisaMExpert system for predicting protein localization sites in gram-negative bacteria. Proteins: StructureFunction, and Bioinformatics19911129511010.1002/prot.340110203
FranczakBCBrowneRPMcNicholasPDBurakKLMixSAL: Mixtures of multivariate shifted asymmetric Laplace (SAL) distributionsR package version201810
SchwarzGEstimating the dimension of a modelThe Annals of Statistics1978624614644680140379.6200510.1214/aos/1176344136
MorrisKMcNicholasPDDimension reduction for model-based clustering via mixtures of shifted asymmetric Laplace distributionsStatistics and Probability Letters20138392088209330790501282.6215310.1016/j.spl.2013.04.011
GallaugherMPBMcNicholasPDOn fractionally-supervised classification: Weight selection and extension to the multivariate t-distributionJournal of Classification201936223226540263991436.6225210.1007/s00357-018-9280-z
Fraley, C., Raftery, A. E., Murphy, T. B., & Scrucca, L. (2012). mclust version 4 for R: Normal mixture modeling for model-based clustering, classification, and density estimation. Technical report 597, Department of statistics, university of Washington, Seattle, Washington.
SubediSMcNicholasPDVariational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributionsAdvances in Data Analysis and Classification20148216719332102651459.6212210.1007/s11634-014-0165-7
MurrayPMBrowneRBMcNicholasPDHidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clusteringJournal of Multivariate Analysis201716114115636981201403.6202810.1016/j.jmva.2017.07.008
Verdoolaege, G., De Backer, S., & Scheunders, P. (2008). Multiscale colour texture retrieval using the geodesic distance between multivariate generalized Gaussian models. In 2008 15th IEEE international conference on image processing (pp. 169–172).
BöhningDLindsayBGMonotonicity of quadratic-approximation algorithmsAnnals of the Institute of Statistical Mathematics19884046416639966900723.6515010.1007/BF00049423
DiCiccioTJMontiACInferential aspects of the skew exponential power distributionJournal of the American Statistical Association20049946643945020628291117.6231810.1198/016214504000000359
LindseyJKMultivariate elliptically contoured distributions for repeated measurementsBiometrics1999554127712801059.6254310.1111/j.0006-341X.1999.01277.x
Lindsay, B. G. (1995). Mixture models: Theory, geometry and applications. In NSF-CBMS regional conference series in probability and statistics (pp. 1–163).
MurrayPMBrowneRBMcNicholasPDMixtures of skew-t factor analyzersComputational Statistics and Data Analysis20147732633532100661506.6213210.1016/j.csda.2014.03.012
AzzaliniAValleADThe multivariate skew-normal distributionBiometrika19968371572614400390885.6206210.1093/biomet/83.4.715
BrancoMDDeyDKA general class of multivariate skew-elliptical distributionsJournal of Multivariate Analysis20017919911318672570992.6204710.1006/jmva.2000.1960
BasfordKGreenwayDMcLachlanGPeelDStandard errors of fitted component means of normal mixturesComputational Statistics19971211180924.62055
BiernackiCCeleuxGGovaertGAssessing a mixture model for clustering with the integrated completed likelihoodIEEE Transactions on Pattern Analysis and Machine Intelligence200022771972510.1109/34.865189
Hurley, C. (2012). gclus: clustering Graphics. R package version 1.3.1.
CeleuxGGovaertGGaussian parsimonious clustering modelsPattern Recognition199528578179310.1016/0031-3203(94)00125-6
Horst, A.M., Hill, A.P., & Gorman, K.B. (2020). Palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R package version 0.1.0.
ZhuXSarkarSMelnykovVMattransmix: An r package for matrix model-based clustering and parsimonious mixture modelingJournal of Classification202239114717043948310751235710.1007/s00357-021-09401-9
Pocuca, N., Browne, R.P., & McNicholas, P.D. (2022). Mixture: Mixture models for clustering and classification. R package version 2.0.5.
BouveyronCBrunet-SaumardCModel-based clustering of high-dimensional data: A reviewComputational Statistics and Data Analysis201471527831319541471.6203210.1016/j.csda.2012.12.008
DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJournal of the Royal Statistical Society. Series B19773911385015370364.62022
HasselbladVEstimation of parameters for a mixture of normal distributionsTechnometrics19668343144419684210.1080/00401706.1966.10490375
BrowneRPMcNicholasPDA mixture of generalized hyperbolic distributionsCanadian Journal of Statistics201543217619833533791320.6214410.1002/cjs.11246
DangUJBrowneRPMcNicholasPDMixtures of multivariate power exponential distributionsBiometrics20157141081108934367331419.6233010.1111/biom.12351
PeelDMcLachlanGJRobust mixture modelling using the t distributionStatistics and Computing200010433934810.1023/A:1008981510081
SteinleyDProperties of the Hubert-Arabie adjusted Rand indexPsychological Methods2004938639610.1037/1082-989X.9.3.386
BiernackiCCeleuxGGovaertGChoosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture modelsComputational Statistics & Data Analysis2003413–456157519680691429.6223510.1016/S0167-9473(02)00163-9
LinT-IRobust mixture modeling using multivariate skew t distributionsStatistics and Computing2010203343356272539210.1007/s11222-009-9128-9
ForinaMTiscorniaEPattern-recognition methods in the prediction of italian olive oil origin by their fatty-acid contentAnnali di Chimica1982723-4143155
da Silva FerreiraCBolfarineHLachosVHSkew scale mixtures of normal distributions: Properties and estimationStatistical Methodology20118215417127692771213.6202310.1016/j.stamet.2010.09.001
Absil, P.-A., Mahony, R., & Sepulchre, R. (2009). Optimization algorithms on matrix manifolds. Princeton University Press.
HartiganJAWongMAA k-means clustering algorithmJournal of the Royal Statistical Society: Series C19792811001080447.62062
Aitken, A.C. (1926). On Bernoulli’s numerical solution of algebraic equations. In Proceedings of the royal society of edinburgh (pp. 289–305).
LeeSMcLachlanGJFinite mixtures of multivariate skew t-distributions: some recent and new resultsStatistics and Computing201424218120231655471325.6210710.1007/s11222-012-9362-4
HunterDRLangeKA tutorial on MM algorithmsThe American Statistician20045813037205550910.1198/0003130042836
AndrewsJLMcNicholasPDModel-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributionsStatistics and Computing20122251021102929500821252.6206210.1007/s11222-011-9272-x
VrbikIMcNicholasPDParsimonious skew mixture models for model-based clustering and classificationComputational Statistics and Data Analysis20147119621031319641471.6220210.1016/j.csda.2013.07.008
GallaugherMPBMcNicholasPDFinite mixtures of skewed matrix variate distributionsPattern Recognition201880839310.1016/j.patcog.2018.02.025
McNicholas, S.M., McNicholas, P.D., & Browne, R.P. (2017). A mixture of variance-gamma factor analyzers. In Big and complex data analysis (pp 369–385). Springer international publishing, Cham.
McNicholas, P.D., ElSherbiny, A., McDaid, A.F., & Murphy, T. B. (2022). pgmm: Parsimonious Gaussian Mixture Models. R package version 1.2.6-2.
Tortora, C., ElSherbiny, A., Browne, R. P., Franczak, B.C., McNicholas, P.D., & Amos, D.D. (2018). MixGHD: Model based clustering, classification and discriminant analysis using the mixture of generalized hyperbolic distributions. R package version 2.2.
TippingMEBishopCMMixtures of probabilistic principal component analysersNeural Computation199911244348210.1162/089976699300016728
O’HaganAMurphyTBGormleyICMcNicholasPDKarlisDClustering with the multivariate normal inverse gaussian distributionComput
JL Andrews (9427_CR3) 2012; 22
ME Tipping (9427_CR64) 1999; 11
PD McNicholas (9427_CR45) 2010; 140
9427_CR23
9427_CR67
MPB Gallaugher (9427_CR29) 2019; 36
9427_CR65
9427_CR62
A Azzalini (9427_CR5) 1996; 83
JA Hartigan (9427_CR31) 1979; 28
X Zhu (9427_CR71) 2022; 39
D Böhning (9427_CR10) 1988; 40
9427_CR25
WN Venables (9427_CR66) 2002
D Cho (9427_CR16) 2005; 20
K Morris (9427_CR52) 2013; 83
UJ Dang (9427_CR18) 2015; 71
PM Murray (9427_CR54) 2017; 161
I Vrbik (9427_CR68) 2014; 71
T-I Lin (9427_CR41) 2010; 20
PM Murray (9427_CR53) 2014; 77
A O’Hagan (9427_CR57) 2016; 93
K Nakai (9427_CR55) 1991; 11
D Peel (9427_CR58) 2000; 10
BC Franczak (9427_CR27) 2018; 1
9427_CR51
9427_CR50
9427_CR19
DR Hunter (9427_CR35) 2000; 9
MD Branco (9427_CR12) 2001; 79
E Gómez (9427_CR30) 1998; 27
9427_CR59
PD McNicholas (9427_CR48) 2008; 18
T-I Lin (9427_CR42) 2014; 24
K Basford (9427_CR7) 1997; 12
G Schwarz (9427_CR60) 1978; 6
V Hasselblad (9427_CR32) 1966; 8
MPB Gallaugher (9427_CR28) 2018; 80
C Biernacki (9427_CR9) 2003; 41
D Steinley (9427_CR61) 2004; 9
L Hubert (9427_CR34) 1985; 2
PD McNicholas (9427_CR46) 2016
SX Lee (9427_CR40) 2016; 26
9427_CR43
PD McNicholas (9427_CR49) 2010; 54
BC Franczak (9427_CR26) 2014; 36
I Vrbik (9427_CR69) 2015; 32
JD Banfield (9427_CR6) 1993; 49
NE Day (9427_CR20) 1969; 56
AP Dempster (9427_CR21) 1977; 39
S Lee (9427_CR39) 2014; 24
A Azzalini (9427_CR4) 1986; 46
D Karlis (9427_CR38) 2009; 19
C da Silva Ferreira (9427_CR17) 2011; 8
9427_CR70
M Forina (9427_CR24) 1982; 72
9427_CR2
9427_CR33
DR Hunter (9427_CR36) 2004; 58
RP Browne (9427_CR13) 2014; 24
TJ DiCiccio (9427_CR22) 2004; 99
K Nakai (9427_CR56) 1992; 14
C Bouveyron (9427_CR11) 2014; 71
9427_CR1
G Celeux (9427_CR15) 1995; 28
9427_CR37
C Biernacki (9427_CR8) 2000; 22
JK Lindsey (9427_CR44) 1999; 55
RP Browne (9427_CR14) 2015; 43
PD McNicholas (9427_CR47) 2016; 33
S Subedi (9427_CR63) 2014; 8
References_xml – reference: McNicholasPDMurphyTBParsimonious gaussian mixture modelsStatistics and Computing2008183285296241338510.1007/s11222-008-9056-0
– reference: TippingMEBishopCMMixtures of probabilistic principal component analysersNeural Computation199911244348210.1162/089976699300016728
– reference: Pocuca, N., Browne, R.P., & McNicholas, P.D. (2022). Mixture: Mixture models for clustering and classification. R package version 2.0.5.
– reference: SteinleyDProperties of the Hubert-Arabie adjusted Rand indexPsychological Methods2004938639610.1037/1082-989X.9.3.386
– reference: BiernackiCCeleuxGGovaertGAssessing a mixture model for clustering with the integrated completed likelihoodIEEE Transactions on Pattern Analysis and Machine Intelligence200022771972510.1109/34.865189
– reference: NakaiKKanehisaMExpert system for predicting protein localization sites in gram-negative bacteria. Proteins: StructureFunction, and Bioinformatics19911129511010.1002/prot.340110203
– reference: Streuli, H. (1973). Der heutige stand der kaffeechemie. In 6th international colloquium on coffee chemisrty (pp. 61–72).
– reference: Hurley, C. (2012). gclus: clustering Graphics. R package version 1.3.1.
– reference: SchwarzGEstimating the dimension of a modelThe Annals of Statistics1978624614644680140379.6200510.1214/aos/1176344136
– reference: DempsterAPLairdNMRubinDBMaximum likelihood from incomplete data via the EM algorithmJournal of the Royal Statistical Society. Series B19773911385015370364.62022
– reference: LeeSXMcLachlanGJFinite mixtures of canonical fundamental skew t-distributions: The unification of the restricted and unrestricted skew t-mixture modelsStatistics and Computing201626357358934898581420.6002010.1007/s11222-015-9545-x
– reference: McNicholasPDMixture model-based classification2016Boca RatonChapman & Hall/CRC Press1454.6200510.1201/9781315373577
– reference: HartiganJAWongMAA k-means clustering algorithmJournal of the Royal Statistical Society: Series C19792811001080447.62062
– reference: LinT-IRobust mixture modeling using multivariate skew t distributionsStatistics and Computing2010203343356272539210.1007/s11222-009-9128-9
– reference: BöhningDLindsayBGMonotonicity of quadratic-approximation algorithmsAnnals of the Institute of Statistical Mathematics19884046416639966900723.6515010.1007/BF00049423
– reference: McNicholasPDMurphyTBMcDaidAFFrostDSerial and parallel implementations of model-based clustering via parsimonious gaussian mixture modelsComputational Statistics & Data Analysis201054371172327444271464.6213110.1016/j.csda.2009.02.011
– reference: HubertLArabiePComparing partitionsJournal of Classification1985211932180587.6212810.1007/BF01908075
– reference: Flury, B. (2012). Flury: data sets from Flury, 1997. R package version 0.1–3.
– reference: AndrewsJLMcNicholasPDModel-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributionsStatistics and Computing20122251021102929500821252.6206210.1007/s11222-011-9272-x
– reference: BouveyronCBrunet-SaumardCModel-based clustering of high-dimensional data: A reviewComputational Statistics and Data Analysis201471527831319541471.6203210.1016/j.csda.2012.12.008
– reference: Dang, U.J., Browne, R.P., Gallaugher, M.P., & Band McNicholas, P.D. (2021). mixSPE: Mixtures of power exponential and skew power exponential distributions for use in model-based clustering and classification. R package version 0.9.1.
– reference: LinT-IHoHJLeeC-RFlexible mixture modelling using the multivariate skew-t-normal distributionStatistics and Computing201424453154632235391325.6211310.1007/s11222-013-9386-4
– reference: McNicholasPDModel-based classification using latent Gaussian mixture modelsJournal of Statistical Planning and Inference201014051175118125811201181.6209510.1016/j.jspi.2009.11.006
– reference: KarlisDSantourianAModel-based clustering with non-elliptically contoured distributionsStatistics and Computing20091917383247055910.1007/s11222-008-9072-0
– reference: GallaugherMPBMcNicholasPDOn fractionally-supervised classification: Weight selection and extension to the multivariate t-distributionJournal of Classification201936223226540263991436.6225210.1007/s00357-018-9280-z
– reference: AzzaliniAFurther results on a class of distributions which includes the normal onesStatistica19864621992088777200606.62013
– reference: BanfieldJDRafteryAEModel-based Gaussian and non-Gaussian clusteringBiometrics199349380382112434940794.6203410.2307/2532201
– reference: BrowneRPMcNicholasPDOrthogonal Stiefel manifold optimization for eigen-decomposed covariance parameter estimation in mixture modelsStatistics and Computing201424220321031655481325.6200810.1007/s11222-012-9364-2
– reference: SubediSMcNicholasPDVariational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributionsAdvances in Data Analysis and Classification20148216719332102651459.6212210.1007/s11634-014-0165-7
– reference: FranczakBCBrowneRPMcNicholasPDMixtures of shifted asymmetric Laplace distributionsIEEE Transactions on Pattern Analysis and Machine Intelligence20143661149115710.1109/TPAMI.2013.216
– reference: Lindsay, B. G. (1995). Mixture models: Theory, geometry and applications. In NSF-CBMS regional conference series in probability and statistics (pp. 1–163).
– reference: Verdoolaege, G., De Backer, S., & Scheunders, P. (2008). Multiscale colour texture retrieval using the geodesic distance between multivariate generalized Gaussian models. In 2008 15th IEEE international conference on image processing (pp. 169–172).
– reference: Aitken, A.C. (1926). On Bernoulli’s numerical solution of algebraic equations. In Proceedings of the royal society of edinburgh (pp. 289–305).
– reference: MurrayPMBrowneRBMcNicholasPDMixtures of skew-t factor analyzersComputational Statistics and Data Analysis20147732633532100661506.6213210.1016/j.csda.2014.03.012
– reference: Tortora, C., ElSherbiny, A., Browne, R. P., Franczak, B.C., McNicholas, P.D., & Amos, D.D. (2018). MixGHD: Model based clustering, classification and discriminant analysis using the mixture of generalized hyperbolic distributions. R package version 2.2.
– reference: CeleuxGGovaertGGaussian parsimonious clustering modelsPattern Recognition199528578179310.1016/0031-3203(94)00125-6
– reference: O’HaganAMurphyTBGormleyICMcNicholasPDKarlisDClustering with the multivariate normal inverse gaussian distributionComputational Statistics and Data Analysis201693183034061931468.6215110.1016/j.csda.2014.09.006
– reference: BasfordKGreenwayDMcLachlanGPeelDStandard errors of fitted component means of normal mixturesComputational Statistics19971211180924.62055
– reference: LeeSMcLachlanGJFinite mixtures of multivariate skew t-distributions: some recent and new resultsStatistics and Computing201424218120231655471325.6210710.1007/s11222-012-9362-4
– reference: ForinaMTiscorniaEPattern-recognition methods in the prediction of italian olive oil origin by their fatty-acid contentAnnali di Chimica1982723-4143155
– reference: FranczakBCBrowneRPMcNicholasPDBurakKLMixSAL: Mixtures of multivariate shifted asymmetric Laplace (SAL) distributionsR package version201810
– reference: Fraley, C., Raftery, A. E., Murphy, T. B., & Scrucca, L. (2012). mclust version 4 for R: Normal mixture modeling for model-based clustering, classification, and density estimation. Technical report 597, Department of statistics, university of Washington, Seattle, Washington.
– reference: HunterDRLangeKA tutorial on MM algorithmsThe American Statistician20045813037205550910.1198/0003130042836
– reference: VenablesWNRipleyBDModern applied statistics with S, fourth edn.2002New YorkSpringer1006.6200310.1007/978-0-387-21706-2ISBN 0-387-95457-0
– reference: BiernackiCCeleuxGGovaertGChoosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture modelsComputational Statistics & Data Analysis2003413–456157519680691429.6223510.1016/S0167-9473(02)00163-9
– reference: GallaugherMPBMcNicholasPDFinite mixtures of skewed matrix variate distributionsPattern Recognition201880839310.1016/j.patcog.2018.02.025
– reference: ZhuXSarkarSMelnykovVMattransmix: An r package for matrix model-based clustering and parsimonious mixture modelingJournal of Classification202239114717043948310751235710.1007/s00357-021-09401-9
– reference: McNicholas, P.D., ElSherbiny, A., McDaid, A.F., & Murphy, T. B. (2022). pgmm: Parsimonious Gaussian Mixture Models. R package version 1.2.6-2.
– reference: VrbikIMcNicholasPDParsimonious skew mixture models for model-based clustering and classificationComputational Statistics and Data Analysis20147119621031319641471.6220210.1016/j.csda.2013.07.008
– reference: MurrayPMBrowneRBMcNicholasPDHidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clusteringJournal of Multivariate Analysis201716114115636981201403.6202810.1016/j.jmva.2017.07.008
– reference: HasselbladVEstimation of parameters for a mixture of normal distributionsTechnometrics19668343144419684210.1080/00401706.1966.10490375
– reference: Horst, A.M., Hill, A.P., & Gorman, K.B. (2020). Palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R package version 0.1.0.
– reference: PeelDMcLachlanGJRobust mixture modelling using the t distributionStatistics and Computing200010433934810.1023/A:1008981510081
– reference: GómezEGomez-ViilegasMAMarinJMA multivariate generalization of the power exponential family of distributionsCommunications in Statistics-Theory and Methods199827358960016190300895.6205310.1080/03610929808832115
– reference: BrancoMDDeyDKA general class of multivariate skew-elliptical distributionsJournal of Multivariate Analysis20017919911318672570992.6204710.1006/jmva.2000.1960
– reference: AzzaliniAValleADThe multivariate skew-normal distributionBiometrika19968371572614400390885.6206210.1093/biomet/83.4.715
– reference: DiCiccioTJMontiACInferential aspects of the skew exponential power distributionJournal of the American Statistical Association20049946643945020628291117.6231810.1198/016214504000000359
– reference: Wolfe, J.H. (1965). A computer program for the maximum likelihood analysis of types. U.S. Naval personnel research activity, technical bulletin:65-15.
– reference: BrowneRPMcNicholasPDA mixture of generalized hyperbolic distributionsCanadian Journal of Statistics201543217619833533791320.6214410.1002/cjs.11246
– reference: McNicholas, S.M., McNicholas, P.D., & Browne, R.P. (2017). A mixture of variance-gamma factor analyzers. In Big and complex data analysis (pp 369–385). Springer international publishing, Cham.
– reference: Absil, P.-A., Mahony, R., & Sepulchre, R. (2009). Optimization algorithms on matrix manifolds. Princeton University Press.
– reference: NakaiKKanehisaMA knowledge base for predicting protein localization sites in eukaryotic cellsGenomics199214489791110.1016/S0888-7543(05)80111-9
– reference: ChoDBuiTDMultivariate statistical modeling for image denoising using wavelet transformsSignal Processing: Image Communication20052017789
– reference: LindseyJKMultivariate elliptically contoured distributions for repeated measurementsBiometrics1999554127712801059.6254310.1111/j.0006-341X.1999.01277.x
– reference: VrbikIMcNicholasPDFractionally-supervised classificationJournal of Classification201532335938134228921331.6231910.1007/s00357-015-9188-9
– reference: McNicholasPDModel-based clusteringJournal of Classification201633333137335756211364.6215510.1007/s00357-016-9211-9
– reference: DangUJBrowneRPMcNicholasPDMixtures of multivariate power exponential distributionsBiometrics20157141081108934367331419.6233010.1111/biom.12351
– reference: da Silva FerreiraCBolfarineHLachosVHSkew scale mixtures of normal distributions: Properties and estimationStatistical Methodology20118215417127692771213.6202310.1016/j.stamet.2010.09.001
– reference: DayNEEstimating the components of a mixture of normal distributionsBiometrika19695634634742549560183.4810610.1093/biomet/56.3.463
– reference: HunterDRLangeKRejoinder to discussion of optimization transfer using surrogate objective functionsJournal of Computational and Graphical Statistics2000915259
– reference: MorrisKMcNicholasPDDimension reduction for model-based clustering via mixtures of shifted asymmetric Laplace distributionsStatistics and Probability Letters20138392088209330790501282.6215310.1016/j.spl.2013.04.011
– volume: 39
  start-page: 147
  issue: 1
  year: 2022
  ident: 9427_CR71
  publication-title: Journal of Classification
  doi: 10.1007/s00357-021-09401-9
– ident: 9427_CR19
– volume: 80
  start-page: 83
  year: 2018
  ident: 9427_CR28
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2018.02.025
– volume: 72
  start-page: 143
  issue: 3-4
  year: 1982
  ident: 9427_CR24
  publication-title: Annali di Chimica
– volume: 2
  start-page: 193
  issue: 1
  year: 1985
  ident: 9427_CR34
  publication-title: Journal of Classification
  doi: 10.1007/BF01908075
– volume: 140
  start-page: 1175
  issue: 5
  year: 2010
  ident: 9427_CR45
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2009.11.006
– volume: 161
  start-page: 141
  year: 2017
  ident: 9427_CR54
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2017.07.008
– ident: 9427_CR25
– volume: 8
  start-page: 167
  issue: 2
  year: 2014
  ident: 9427_CR63
  publication-title: Advances in Data Analysis and Classification
  doi: 10.1007/s11634-014-0165-7
– volume: 26
  start-page: 573
  issue: 3
  year: 2016
  ident: 9427_CR40
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-015-9545-x
– volume: 71
  start-page: 1081
  issue: 4
  year: 2015
  ident: 9427_CR18
  publication-title: Biometrics
  doi: 10.1111/biom.12351
– volume: 58
  start-page: 30
  issue: 1
  year: 2004
  ident: 9427_CR36
  publication-title: The American Statistician
  doi: 10.1198/0003130042836
– volume: 24
  start-page: 531
  issue: 4
  year: 2014
  ident: 9427_CR42
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-013-9386-4
– ident: 9427_CR70
  doi: 10.21236/AD0620026
– volume: 9
  start-page: 386
  year: 2004
  ident: 9427_CR61
  publication-title: Psychological Methods
  doi: 10.1037/1082-989X.9.3.386
– ident: 9427_CR50
– volume: 22
  start-page: 1021
  issue: 5
  year: 2012
  ident: 9427_CR3
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-011-9272-x
– volume: 36
  start-page: 232
  issue: 2
  year: 2019
  ident: 9427_CR29
  publication-title: Journal of Classification
  doi: 10.1007/s00357-018-9280-z
– volume: 11
  start-page: 95
  issue: 2
  year: 1991
  ident: 9427_CR55
  publication-title: Function, and Bioinformatics
  doi: 10.1002/prot.340110203
– volume: 71
  start-page: 52
  year: 2014
  ident: 9427_CR11
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2012.12.008
– volume: 24
  start-page: 181
  issue: 2
  year: 2014
  ident: 9427_CR39
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-012-9362-4
– volume: 20
  start-page: 77
  issue: 1
  year: 2005
  ident: 9427_CR16
  publication-title: Signal Processing: Image Communication
– volume: 24
  start-page: 203
  issue: 2
  year: 2014
  ident: 9427_CR13
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-012-9364-2
– ident: 9427_CR1
  doi: 10.1515/9781400830244
– volume: 83
  start-page: 715
  year: 1996
  ident: 9427_CR5
  publication-title: Biometrika
  doi: 10.1093/biomet/83.4.715
– volume: 55
  start-page: 1277
  issue: 4
  year: 1999
  ident: 9427_CR44
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.01277.x
– volume: 99
  start-page: 439
  issue: 466
  year: 2004
  ident: 9427_CR22
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000000359
– volume: 43
  start-page: 176
  issue: 2
  year: 2015
  ident: 9427_CR14
  publication-title: Canadian Journal of Statistics
  doi: 10.1002/cjs.11246
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 9427_CR21
  publication-title: Journal of the Royal Statistical Society. Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 54
  start-page: 711
  issue: 3
  year: 2010
  ident: 9427_CR49
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2009.02.011
– volume: 19
  start-page: 73
  issue: 1
  year: 2009
  ident: 9427_CR38
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-008-9072-0
– volume: 14
  start-page: 897
  issue: 4
  year: 1992
  ident: 9427_CR56
  publication-title: Genomics
  doi: 10.1016/S0888-7543(05)80111-9
– volume: 20
  start-page: 343
  issue: 3
  year: 2010
  ident: 9427_CR41
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-009-9128-9
– volume: 46
  start-page: 199
  issue: 2
  year: 1986
  ident: 9427_CR4
  publication-title: Statistica
– volume-title: Mixture model-based classification
  year: 2016
  ident: 9427_CR46
  doi: 10.1201/9781315373577
– volume: 9
  start-page: 52
  issue: 1
  year: 2000
  ident: 9427_CR35
  publication-title: Journal of Computational and Graphical Statistics
– volume: 11
  start-page: 443
  issue: 2
  year: 1999
  ident: 9427_CR64
  publication-title: Neural Computation
  doi: 10.1162/089976699300016728
– volume: 40
  start-page: 641
  issue: 4
  year: 1988
  ident: 9427_CR10
  publication-title: Annals of the Institute of Statistical Mathematics
  doi: 10.1007/BF00049423
– ident: 9427_CR65
– ident: 9427_CR23
– volume: 8
  start-page: 431
  issue: 3
  year: 1966
  ident: 9427_CR32
  publication-title: Technometrics
  doi: 10.1080/00401706.1966.10490375
– volume: 49
  start-page: 803
  issue: 3
  year: 1993
  ident: 9427_CR6
  publication-title: Biometrics
  doi: 10.2307/2532201
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 9427_CR31
  publication-title: Journal of the Royal Statistical Society: Series C
– volume: 8
  start-page: 154
  issue: 2
  year: 2011
  ident: 9427_CR17
  publication-title: Statistical Methodology
  doi: 10.1016/j.stamet.2010.09.001
– volume: 41
  start-page: 561
  issue: 3–4
  year: 2003
  ident: 9427_CR9
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/S0167-9473(02)00163-9
– ident: 9427_CR37
– volume: 36
  start-page: 1149
  issue: 6
  year: 2014
  ident: 9427_CR26
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2013.216
– volume: 10
  start-page: 339
  issue: 4
  year: 2000
  ident: 9427_CR58
  publication-title: Statistics and Computing
  doi: 10.1023/A:1008981510081
– ident: 9427_CR33
– volume: 77
  start-page: 326
  year: 2014
  ident: 9427_CR53
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2014.03.012
– volume: 12
  start-page: 1
  issue: 1
  year: 1997
  ident: 9427_CR7
  publication-title: Computational Statistics
– volume: 18
  start-page: 285
  issue: 3
  year: 2008
  ident: 9427_CR48
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-008-9056-0
– volume: 1
  start-page: 0
  year: 2018
  ident: 9427_CR27
  publication-title: R package version
– volume: 33
  start-page: 331
  issue: 3
  year: 2016
  ident: 9427_CR47
  publication-title: Journal of Classification
  doi: 10.1007/s00357-016-9211-9
– volume: 56
  start-page: 463
  issue: 3
  year: 1969
  ident: 9427_CR20
  publication-title: Biometrika
  doi: 10.1093/biomet/56.3.463
– ident: 9427_CR62
– ident: 9427_CR67
  doi: 10.1109/ICIP.2008.4711718
– volume: 71
  start-page: 196
  year: 2014
  ident: 9427_CR68
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2013.07.008
– volume: 32
  start-page: 359
  issue: 3
  year: 2015
  ident: 9427_CR69
  publication-title: Journal of Classification
  doi: 10.1007/s00357-015-9188-9
– ident: 9427_CR51
  doi: 10.1007/978-3-319-41573-4_18
– volume-title: Modern applied statistics with S, fourth edn.
  year: 2002
  ident: 9427_CR66
  doi: 10.1007/978-0-387-21706-2
– ident: 9427_CR43
  doi: 10.1214/cbms/1462106013
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 9427_CR60
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344136
– volume: 27
  start-page: 589
  issue: 3
  year: 1998
  ident: 9427_CR30
  publication-title: Communications in Statistics-Theory and Methods
  doi: 10.1080/03610929808832115
– ident: 9427_CR59
– ident: 9427_CR2
  doi: 10.1017/S0370164600022070
– volume: 79
  start-page: 99
  issue: 1
  year: 2001
  ident: 9427_CR12
  publication-title: Journal of Multivariate Analysis
  doi: 10.1006/jmva.2000.1960
– volume: 22
  start-page: 719
  issue: 7
  year: 2000
  ident: 9427_CR8
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.865189
– volume: 93
  start-page: 18
  year: 2016
  ident: 9427_CR57
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2014.09.006
– volume: 83
  start-page: 2088
  issue: 9
  year: 2013
  ident: 9427_CR52
  publication-title: Statistics and Probability Letters
  doi: 10.1016/j.spl.2013.04.011
– volume: 28
  start-page: 781
  issue: 5
  year: 1995
  ident: 9427_CR15
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(94)00125-6
SSID ssj0007667
Score 2.3370452
Snippet Families of mixtures of multivariate power exponential (MPE) distributions have already been introduced and shown to be competitive for cluster analysis in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 145
SubjectTerms Algorithms
Bioinformatics
Classification
Cluster analysis
Clustering
Decomposition
Eigenvalues
Expected values
Families & family life
Kurtosis
Manifolds (mathematics)
Marketing
Mathematics and Statistics
Maximization
Mixtures
Multivariate analysis
Normal distribution
Normality
Optimization
Parameter estimation
Pattern Recognition
Power
Psychometrics
Random variables
Search algorithms
Signal,Image and Speech Processing
Skewness
Statistical Theory and Methods
Statistics
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5B4dAeeCwgFlrkA-ICFokTP3JC0Ic4sNVKgNRbZDuxVLHaXZrt698z4zi7olJ76TFKMnE043l4Hh_Ae5eLIF0VeCFyxdEeK145a7lslLQ2mLLwcbr-D318bE5Oqmk6cOtSWeWgE6Oibhaezsg_FxjJoDOhpPyy_MsJNYqyqwlC4yE8Qs8mp5KuiZiuNbFWqm-X1rgMoUxqmomtc5RC05xq2THAEZrr_w3Txtu8kSCNdufo6X1X_AyeJI-Tfe1F5Dk8aOcj2Ev9CuwDSw1JxCCWdvoIdibrca7dCLanA-DBNV0MOvP6BSwIS23Gv6EtbNj-7JzGLuBvMDunS3TMqRKppx2LE9jk9IpyFh1bBBabfy8wWEd_l_38014ijSmhtrHDq-ViTnVMuPADGu2bULm6l_D76PDX_neeMBy4x8294pUpTItRU5PZsvQ6oC10XuROZE3QZRC6bSpZOtnkmdEu05VryyxYq3JXofPqilewNccvvgZWmsYE6YVzKELKYujuVdtWNsjco1NlxpAPDKx9GnBOOBuzej2aOTK9RqbXkem1HsPH9TvLfrzHnU_vDpyu01bv6g2bx_BpkJXN7dupvbmb2lvYJmj7vkpoF7ZWZ-ftHjz2F6vT7uxdFPR_S5cEEA
  priority: 102
  providerName: ProQuest
Title Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions
URI https://link.springer.com/article/10.1007/s00357-022-09427-7
https://www.proquest.com/docview/3254508655
Volume 40
WOSCitedRecordID wos000933353600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-1343
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007667
  issn: 0176-4268
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1432-1343
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007667
  issn: 0176-4268
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1432-1343
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007667
  issn: 0176-4268
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 1432-1343
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007667
  issn: 0176-4268
  databaseCode: M1O
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-1343
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007667
  issn: 0176-4268
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1432-1343
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007667
  issn: 0176-4268
  databaseCode: M2O
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1432-1343
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007667
  issn: 0176-4268
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007667
  issn: 0176-4268
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLfYxsP2wOAAcbCd8oB4gUht2nz0kW03IcEdFQdo4qVK2kZCnO6mdV_899ht2mkTIMGLpahtkspObMv2zwAvXSy8dJnniYgVR32seOas5bJS0lpv0qRs0fU_6PncnJxkeSgKa_ps9z4k2d7UQ7EbBb00p-xzdEmE5noDtiShzZCPvvg63L9aqa5IWuPiQplQKvP7OW6roxsb805YtNU2x7v_t8-H8CBYl-xtJw6P4F69GsF-qE1gr1goPiJmsHCqR7AzG6BbmxFs531zg5806O9HGpBh2uE6P4Y1NVFb8gNUghU7XF4Q3gLuktkVDdEipxSkbqE2K4HNvl9TsKJha8_aqt9L9NLR0GWLH_UVzpFTuzY2vT5dryiBCf_iiDB9Qzuu5gl8OZ5-PnzHQ_MGXuKpPueZSUyN7lIV2TQttUcl6EoROxFVXqde6LrKZOpkFUdGu0hnrk4jb62KXYZWq0uewuYKV3wGLDWV8bIUzqHsKIs-e6nqOrNexiVaU2YMcc_DogzI5tRgY1kMmMwtTwrkSdHypNBjeD18c9rhevz17b1eNIpwxpsiQd8azVsl5Rje9KJw8_jPsz3_t9dfwDb1uO_ShfZg8_zsot6H--UlsvxsAlsH03n-aQIb7zVHOos_EhUdzYnqBdJcfpu05-QXvUUFkg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qBYlyYAkgAi3MAbjACHtiz4wPCEEXtWoSIlGk3tyZ8YxUESWhTpf8KX4j73lJBBK99cBxZPvZHn9v89sAXttYhNRmgfdELDnqY8kzawxPC5kaE3TSc1V3_b4aDvXxcTZag19tLQylVbYysRLUxdTRP_IPPfRk0JiQafpp9pPT1CiKrrYjNGpYHPrFJbps5ceDHfy-b4TY2z3a3ufNVAHuEG5znume9mjHF5FJEqcCSmfrRGxFVASVBKF8kaWJTYs40spGKrM-iYIxMrYZmlO2h3RvwW3qq0ccNYi_LiW_krIuz1b42kLqpkinKtWjkJ3ilDuPDpVQXP2pCFfW7V8B2UrP7T3433boIdxvLGr2uWaBR7DmJx3Yauox2FvWFFwRAFkjyTpwb7BsV1t2YGPUDnRY0KLVCYvHMKVZcWP-BXV9wbbH59RWAreNmQkt0fGgTKuadpV8wQanVxSTKdk0sKq4-cIgi889-_bDXyKNEU2lY7tXs-mE8rTwwXeodXEzdax8At9vZK-ewvoE7_gMWKILHVInrEUWkUZr7aT3mQlp7NBo1F2IW8DkrmngTnNExvmy9XQFshxBllcgy1UX3i2vmdXtS649e7NFVt6IsjJfwaoL71tsrg7_m9rz66m9grv7R4N-3j8YHr6ADYHGY50RtQnr87NzvwV33MX8tDx7WTEZg5Obxuxv0pBgLA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQag98FhAXWjBB8QFrCZO_MgR2q5AtKsVBdRbZDuxhFhlV91tKf-emcRJAQES4mglsR3N2PONZuYbgGcuFUG6IvBMpIqjPVa8cNZyWSlpbTB55lt2_SM9nZrT02L2QxV_m-3ehyS7mgZiaWrWe8sq7A2FbxQA05wy0dE9EZrr63AjR0-Gkrren3wa7mKtVFcwrXEjQplYNvP7OX42TVd485cQaWt5Jnf-f8934XZEnexVpyb34FrdjGA31iyw5ywWJZGQWDztI9g6HihdVyPYnPVND77RoL83aUCAteN7vg8Laq4256_ROFZsf35OPAy4Y2YbGiJSp9SkbqE2W4Edf76kIMaKLQJrq4Ev0HtHAMxOvtRfcY4ZtXFjh5fLRUOJTfgXB8T1G9t0rR7Ax8nhh_03PDZ14B5P-5oXJjM1ulFVYvPc64DG0XmROpFUQedB6LoqZO5klSZGu0QXrs6TYK1KXYFo1mUPYaPBFbeB5aYyQXrhHOqUsujLe1XXhQ0y9YiyzBjSXp6lj4zn1HhjXg5cza1MSpRJ2cqk1GN4MXyz7Pg-_vr2Tq8mZTz7qzJDnxthr5JyDC97tbh6_OfZHv3b60_h1uxgUh69nb57DJsCwVeXUbQDG-uz83oXbvoLlP7Zk_ZIfAcqeAor
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Based+Clustering+and+Classification+Using+Mixtures+of+Multivariate+Skewed+Power+Exponential+Distributions&rft.jtitle=Journal+of+classification&rft.au=Dang%2C+Utkarsh+J.&rft.au=Gallaugher%2C+Michael+P.B.&rft.au=Browne%2C+Ryan+P.&rft.au=McNicholas%2C+Paul+D.&rft.date=2023-04-01&rft.pub=Springer+US&rft.issn=0176-4268&rft.eissn=1432-1343&rft.volume=40&rft.issue=1&rft.spage=145&rft.epage=167&rft_id=info:doi/10.1007%2Fs00357-022-09427-7&rft.externalDocID=10_1007_s00357_022_09427_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-4268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-4268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-4268&client=summon