A Robust and High Precision Algorithm for Elastic Scattering Problems from Cornered Domains

The Navier equation is the governing equation of elastic waves, and computing its solution accurately and rapidly has a wide range of applications in geophysical exploration, materials science, etc. In this paper, we focus on the efficient and high-precision numerical algorithm for the time harmonic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing Vol. 98; no. 3; p. 65
Main Authors: Yao, Jianan, Xie, Baoling, Lai, Jun
Format: Journal Article
Language:English
Published: New York Springer US 01.03.2024
Springer Nature B.V
Subjects:
ISSN:0885-7474, 1573-7691
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Navier equation is the governing equation of elastic waves, and computing its solution accurately and rapidly has a wide range of applications in geophysical exploration, materials science, etc. In this paper, we focus on the efficient and high-precision numerical algorithm for the time harmonic elastic wave scattering problems from cornered domains via the boundary integral equations in two dimensions. The approach is based on the combination of Nyström discretization, analytical singular integrals and kernel-splitting method, which results in a high-order solver for smooth boundaries. It is then combined with the recursively compressed inverse preconditioning (RCIP) method to solve elastic scattering problems from cornered domains. Numerical experiments demonstrate that the proposed approach achieves high accuracy, with stabilized errors close to machine precision in various geometric configurations. The algorithm is further applied to investigate the asymptotic behavior of density functions associated with boundary integral operators near corners, and the numerical results are highly consistent with the theoretical formulas.
AbstractList The Navier equation is the governing equation of elastic waves, and computing its solution accurately and rapidly has a wide range of applications in geophysical exploration, materials science, etc. In this paper, we focus on the efficient and high-precision numerical algorithm for the time harmonic elastic wave scattering problems from cornered domains via the boundary integral equations in two dimensions. The approach is based on the combination of Nyström discretization, analytical singular integrals and kernel-splitting method, which results in a high-order solver for smooth boundaries. It is then combined with the recursively compressed inverse preconditioning (RCIP) method to solve elastic scattering problems from cornered domains. Numerical experiments demonstrate that the proposed approach achieves high accuracy, with stabilized errors close to machine precision in various geometric configurations. The algorithm is further applied to investigate the asymptotic behavior of density functions associated with boundary integral operators near corners, and the numerical results are highly consistent with the theoretical formulas.
ArticleNumber 65
Author Lai, Jun
Yao, Jianan
Xie, Baoling
Author_xml – sequence: 1
  givenname: Jianan
  surname: Yao
  fullname: Yao, Jianan
  organization: School of Mathematical Sciences, Zhejiang University
– sequence: 2
  givenname: Baoling
  surname: Xie
  fullname: Xie, Baoling
  organization: School of Mathematical Sciences, Zhejiang University
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-3044-5583
  surname: Lai
  fullname: Lai, Jun
  email: laijun6@zju.edu.cn
  organization: School of Mathematical Sciences, Zhejiang University
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6uTbLbZHEutVhAUP04eQjadbVN2NzVJD_57t1YQPPQwDAPvMzM8IzLofIeEXDK4ZgDyJjJQrMiAi30VeQYnZMgKmWdyotiADKEsi0wKKc7IKMYNAKhS8SH5mNIXX-1ioqZb0oVbrelzQOui8x2dNisfXFq3tPaBzhsTk7P01ZqUMLhu1Ud91WAbaR18S2c-dBhwSW99a1wXz8lpbZqIF799TN7v5m-zRfb4dP8wmz5mNmcqZUqirYUEwGJZl9VEMqygkByZELaCfs4NtyVXhiMKyVhVVUsBNSsVA6xtPiZXh73b4D93GJPe-F3o-pOaKz7JRcGl6lP8kLLBxxiw1tvgWhO-NAO9l6gPEnUvUP9I1NBD5T_IumRSLycF45rjaH5A43bvCsPfV0eob6PgiCA
CitedBy_id crossref_primary_10_3934_ipi_2025014
Cites_doi 10.1137/17M1162238
10.1016/j.jcp.2021.110714
10.1073/pnas.1609578113
10.1016/S0022-247X(02)00161-0
10.1137/080737046
10.1137/18M1232814
10.1137/1.9781611972030
10.1007/s00220-014-2030-0
10.1109/TAP.2013.2258317
10.1090/mcom/3660
10.1016/j.acha.2011.03.002
10.1016/j.jcp.2013.11.009
10.1016/j.jcp.2009.09.004
10.1007/978-3-642-97146-4
10.1088/1361-6420/ac8ac7
10.1016/j.jcp.2017.07.032
10.1137/18M1227263
10.1016/j.jcp.2008.06.022
10.1137/1.9781611973167
10.23943/princeton/9780691165318.001.0001
10.1007/978-3-540-68545-6
10.1137/15M1028248
10.1007/s00211-022-01273-4
10.1155/2013/938167
10.1137/23M1571666
10.1007/s10444-022-09935-5
10.1016/j.jcp.2014.08.047
10.1002/mma.7980
10.1017/CBO9780511626340
10.1007/BF01385616
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-024-02453-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
ExternalDocumentID 10_1007_s10915_024_02453_0
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U21A20425; 12371427
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Key Technologies Research and Development Program
  grantid: 2023YFA1009100
  funderid: http://dx.doi.org/10.13039/501100012165
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-97ecf4700e5df8b671eb0572e144cb06713a2c829a2ee4711bbbd40f18910efc3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001161626000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Thu Nov 06 12:27:32 EST 2025
Sat Nov 29 01:56:32 EST 2025
Tue Nov 18 22:09:48 EST 2025
Fri Feb 21 02:40:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nyström method
Elastic wave scattering
RCIP method
65R20
45L05
75B05
Kernel-splitting method
35J05
Navier equations
45E05
Boundary integral equations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-97ecf4700e5df8b671eb0572e144cb06713a2c829a2ee4711bbbd40f18910efc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3044-5583
PQID 2926345279
PQPubID 2043771
ParticipantIDs proquest_journals_2926345279
crossref_primary_10_1007_s10915_024_02453_0
crossref_citationtrail_10_1007_s10915_024_02453_0
springer_journals_10_1007_s10915_024_02453_0
PublicationCentury 2000
PublicationDate 20240300
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 3
  year: 2024
  text: 20240300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References FanbinBLinJReitichFA fast and high-order method for the three-dimensional elastic wave scattering problemJ. Comput. Phys.20142588568702014JCoPh.258..856B314531010.1016/j.jcp.2013.11.009
LaiJDongHA fast solver for elastic scattering from axisymmetric objects by boundary integral equationsAdv. Comput. Math.2022483130440982610.1007/s10444-022-09935-5
LiPYuanXAn adaptive finite element DtN method for the elastic wave scattering problemNumer. Math.20221509931033440568910.1007/s00211-022-01273-4
HelsingJOjalaRCorner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioningJ. Comput. Phys.200822720882088402008JCoPh.227.8820H245953710.1016/j.jcp.2008.06.022
LaiJZhangJFast inverse elastic scattering of multiple particles in three dimensionsInverse Problems202238102022InvPr..38j4002L448246910.1088/1361-6420/ac8ac7
Bao, G, Hua, W, Lai, J, Zhang, J: Singularity swapping method for nearly singular integrals based on trapezoidal rule. arXiv:2305.05855, 2023
Le LouërFA high order spectral algorithm for elastic obstacle scattering in three dimensionsJ. Comput. Phys.20142791172014JCoPh.279....1L326709310.1016/j.jcp.2014.08.047
HelsingJJiangSSolving fredholm second-kind integral equations with singular right-hand sides on non-smooth boundariesJ. Comput. Phys.2022448431934210.1016/j.jcp.2021.110714
Grisvard, P: Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Mathematics, (2011)
BochniakMCakoniFDomain sensitivity analysis of the elastic far-field patterns in scattering from nonsmooth obstaclesJ. Math. Anal. Appl.20022721318334193071710.1016/S0022-247X(02)00161-0
Helsing, J: Solving integral equations on piecewise smooth boundaries using the RCIP method: a tutorial. 2013, 938167 (2013)
AtkinsonKEThe numerical solution of integral equations of the second kind1997LondonCambridge University Press10.1017/CBO9780511626340
AmmariHBretinEGarnierJKangHLeeHWahabAMathematical Methods in Elasticity Imaging2015PrincetonPrinceton University Press10.23943/princeton/9780691165318.001.0001
HsiaoGCWendlandWLBoundary integral equations2008ChamSpringer10.1007/978-3-540-68545-6
DongHLaiJLiPInverse obstacle scattering problem for elastic waves with phased or phaseless far-field dataSIAM J. Imaging Sci.201812280983810.1137/18M1227263
SändigA-MRichterUSändigRThe regularity of boundary value problems for the lamê equations in a polygonal domainRostock. Math. Kolloqu.19893601
BremerJOn the nyström discretization of integral equations on planar curves with cornersAppl. Comput. Harmon. Anal.20123214564285416110.1016/j.acha.2011.03.002
EpsteinCLO’NeilMSmoothed corners and scattered wavesSIAM J. Sci. Comput.2016385A2665A2698354316010.1137/15M1028248
BaoGLiweiXYinTAn accurate boundary element method for the exterior elastic scattering problem in two dimensionsJ. Comput. Phys.20173483433632017JCoPh.348..343B368963610.1016/j.jcp.2017.07.032
HelsingJJiangSOn integral equation methods for the first dirichlet problem of the biharmonic and modified biharmonic equations in nonsmooth domainsSIAM J. Sci. Comput.2018404A2609A2630384527710.1137/17M1162238
KupradzeVDGegeliaTGBasheleishviliMOBurchuladzeTVThree-dimensional problems of the mathematical theory of elasticity and thermoelasticity1979AmsterdamNorth-Holland Publishing Company
SerkhKRokhlinVOn the solution of the helmholtz equation on regions with cornersProc. Natl. Acad. Sci.2016113917191762016PNAS..113.9171S35428671:CAS:528:DC%2BC28Xht1Gru7vJ10.1073/pnas.1609578113274821104995988
Colton, D, Kress, R: Integral equation methods in scattering theory. Society for Industrial and Applied Mathematics, (2013)
LaiJLiPA framework for simulation of multiple elastic scattering in two dimensionsSIAM J. Sci. Comput.2019415A3276A3299402127510.1137/18M1232814
DongHLaiJLiPA highly accurate boundary integral method for the elastic obstacle scattering problemMath. Comput.20209027852814430536910.1090/mcom/3660
OlverFWJLozierDaniel WBoisvertRFClarkCWCambridge University Press2010LondonNIST handbook of mathematical functions
BremerJGimbutasZRokhlinVA nonlinear optimization procedure for generalized gaussian quadraturesSIAM J. Sci. Comput.201032417611788267129610.1137/080737046
KressRLinear integral equations1989ChamSpringer10.1007/978-3-642-97146-4
HelsingJIntegral equation methods for elliptic problems with boundary conditions of mixed typeJ. Comput. Phys.200922823889289072009JCoPh.228.8892H255878310.1016/j.jcp.2009.09.004
Anjam NadeemYAliAOn singularities of solution of the elasticity system in a bounded domain with angular corner pointsMath. Methods Appl. Sci.202245531243143439564410.1002/mma.7980
KressRA Nyström method for boundary integral equations in domains with cornersNumer. Math.199058145161106927610.1007/BF01385616
BlåstenEPäivärintaLSylvesterJCorners always scatterCommun. Math. Phys.20123317257532014CMaPh.331..725B323852910.1007/s00220-014-2030-0
HelsingJKarlssonAAn accurate boundary value problem solver applied to scattering from cylinders with cornersIEEE Trans. Antennas Propag.2013617369337002013ITAP...61.3693H308008610.1109/TAP.2013.2258317
M Bochniak (2453_CR6) 2002; 272
VD Kupradze (2453_CR24) 1979
KE Atkinson (2453_CR2) 1997
J Lai (2453_CR25) 2022; 48
J Bremer (2453_CR7) 2012; 32
P Li (2453_CR29) 2022; 150
E Blåsten (2453_CR5) 2012; 331
J Helsing (2453_CR17) 2018; 40
A-M Sändig (2453_CR32) 1989; 36
J Bremer (2453_CR8) 2010; 32
J Helsing (2453_CR15) 2009; 228
G Bao (2453_CR4) 2017; 348
B Fanbin (2453_CR9) 2014; 258
Y Anjam Nadeem (2453_CR30) 2022; 45
FWJ Olver (2453_CR31) 2010
J Helsing (2453_CR18) 2022; 448
J Lai (2453_CR27) 2022; 38
J Helsing (2453_CR19) 2013; 61
2453_CR10
GC Hsiao (2453_CR21) 2008
2453_CR3
H Dong (2453_CR11) 2018; 12
F Le Louër (2453_CR28) 2014; 279
R Kress (2453_CR22) 1989
2453_CR16
K Serkh (2453_CR33) 2016; 113
2453_CR14
CL Epstein (2453_CR13) 2016; 38
J Helsing (2453_CR20) 2008; 227
H Ammari (2453_CR1) 2015
H Dong (2453_CR12) 2020; 90
R Kress (2453_CR23) 1990; 58
J Lai (2453_CR26) 2019; 41
References_xml – reference: Anjam NadeemYAliAOn singularities of solution of the elasticity system in a bounded domain with angular corner pointsMath. Methods Appl. Sci.202245531243143439564410.1002/mma.7980
– reference: OlverFWJLozierDaniel WBoisvertRFClarkCWCambridge University Press2010LondonNIST handbook of mathematical functions
– reference: SerkhKRokhlinVOn the solution of the helmholtz equation on regions with cornersProc. Natl. Acad. Sci.2016113917191762016PNAS..113.9171S35428671:CAS:528:DC%2BC28Xht1Gru7vJ10.1073/pnas.1609578113274821104995988
– reference: BaoGLiweiXYinTAn accurate boundary element method for the exterior elastic scattering problem in two dimensionsJ. Comput. Phys.20173483433632017JCoPh.348..343B368963610.1016/j.jcp.2017.07.032
– reference: BremerJGimbutasZRokhlinVA nonlinear optimization procedure for generalized gaussian quadraturesSIAM J. Sci. Comput.201032417611788267129610.1137/080737046
– reference: KressRLinear integral equations1989ChamSpringer10.1007/978-3-642-97146-4
– reference: KressRA Nyström method for boundary integral equations in domains with cornersNumer. Math.199058145161106927610.1007/BF01385616
– reference: HelsingJIntegral equation methods for elliptic problems with boundary conditions of mixed typeJ. Comput. Phys.200922823889289072009JCoPh.228.8892H255878310.1016/j.jcp.2009.09.004
– reference: HelsingJJiangSSolving fredholm second-kind integral equations with singular right-hand sides on non-smooth boundariesJ. Comput. Phys.2022448431934210.1016/j.jcp.2021.110714
– reference: HelsingJOjalaRCorner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioningJ. Comput. Phys.200822720882088402008JCoPh.227.8820H245953710.1016/j.jcp.2008.06.022
– reference: Grisvard, P: Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Mathematics, (2011)
– reference: HelsingJJiangSOn integral equation methods for the first dirichlet problem of the biharmonic and modified biharmonic equations in nonsmooth domainsSIAM J. Sci. Comput.2018404A2609A2630384527710.1137/17M1162238
– reference: LaiJLiPA framework for simulation of multiple elastic scattering in two dimensionsSIAM J. Sci. Comput.2019415A3276A3299402127510.1137/18M1232814
– reference: LiPYuanXAn adaptive finite element DtN method for the elastic wave scattering problemNumer. Math.20221509931033440568910.1007/s00211-022-01273-4
– reference: AmmariHBretinEGarnierJKangHLeeHWahabAMathematical Methods in Elasticity Imaging2015PrincetonPrinceton University Press10.23943/princeton/9780691165318.001.0001
– reference: AtkinsonKEThe numerical solution of integral equations of the second kind1997LondonCambridge University Press10.1017/CBO9780511626340
– reference: HsiaoGCWendlandWLBoundary integral equations2008ChamSpringer10.1007/978-3-540-68545-6
– reference: DongHLaiJLiPA highly accurate boundary integral method for the elastic obstacle scattering problemMath. Comput.20209027852814430536910.1090/mcom/3660
– reference: KupradzeVDGegeliaTGBasheleishviliMOBurchuladzeTVThree-dimensional problems of the mathematical theory of elasticity and thermoelasticity1979AmsterdamNorth-Holland Publishing Company
– reference: Le LouërFA high order spectral algorithm for elastic obstacle scattering in three dimensionsJ. Comput. Phys.20142791172014JCoPh.279....1L326709310.1016/j.jcp.2014.08.047
– reference: BlåstenEPäivärintaLSylvesterJCorners always scatterCommun. Math. Phys.20123317257532014CMaPh.331..725B323852910.1007/s00220-014-2030-0
– reference: FanbinBLinJReitichFA fast and high-order method for the three-dimensional elastic wave scattering problemJ. Comput. Phys.20142588568702014JCoPh.258..856B314531010.1016/j.jcp.2013.11.009
– reference: Colton, D, Kress, R: Integral equation methods in scattering theory. Society for Industrial and Applied Mathematics, (2013)
– reference: LaiJZhangJFast inverse elastic scattering of multiple particles in three dimensionsInverse Problems202238102022InvPr..38j4002L448246910.1088/1361-6420/ac8ac7
– reference: Bao, G, Hua, W, Lai, J, Zhang, J: Singularity swapping method for nearly singular integrals based on trapezoidal rule. arXiv:2305.05855, 2023
– reference: BochniakMCakoniFDomain sensitivity analysis of the elastic far-field patterns in scattering from nonsmooth obstaclesJ. Math. Anal. Appl.20022721318334193071710.1016/S0022-247X(02)00161-0
– reference: EpsteinCLO’NeilMSmoothed corners and scattered wavesSIAM J. Sci. Comput.2016385A2665A2698354316010.1137/15M1028248
– reference: Helsing, J: Solving integral equations on piecewise smooth boundaries using the RCIP method: a tutorial. 2013, 938167 (2013)
– reference: BremerJOn the nyström discretization of integral equations on planar curves with cornersAppl. Comput. Harmon. Anal.20123214564285416110.1016/j.acha.2011.03.002
– reference: DongHLaiJLiPInverse obstacle scattering problem for elastic waves with phased or phaseless far-field dataSIAM J. Imaging Sci.201812280983810.1137/18M1227263
– reference: LaiJDongHA fast solver for elastic scattering from axisymmetric objects by boundary integral equationsAdv. Comput. Math.2022483130440982610.1007/s10444-022-09935-5
– reference: HelsingJKarlssonAAn accurate boundary value problem solver applied to scattering from cylinders with cornersIEEE Trans. Antennas Propag.2013617369337002013ITAP...61.3693H308008610.1109/TAP.2013.2258317
– reference: SändigA-MRichterUSändigRThe regularity of boundary value problems for the lamê equations in a polygonal domainRostock. Math. Kolloqu.19893601
– volume: 40
  start-page: A2609
  issue: 4
  year: 2018
  ident: 2453_CR17
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1162238
– volume: 448
  year: 2022
  ident: 2453_CR18
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110714
– volume: 113
  start-page: 9171
  year: 2016
  ident: 2453_CR33
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1609578113
– volume: 272
  start-page: 318
  issue: 1
  year: 2002
  ident: 2453_CR6
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00161-0
– volume: 32
  start-page: 1761
  issue: 4
  year: 2010
  ident: 2453_CR8
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080737046
– volume: 41
  start-page: A3276
  issue: 5
  year: 2019
  ident: 2453_CR26
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1232814
– ident: 2453_CR14
  doi: 10.1137/1.9781611972030
– volume: 331
  start-page: 725
  year: 2012
  ident: 2453_CR5
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-2030-0
– volume: 61
  start-page: 3693
  issue: 7
  year: 2013
  ident: 2453_CR19
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2013.2258317
– volume: 90
  start-page: 2785
  year: 2020
  ident: 2453_CR12
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3660
– volume-title: Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity
  year: 1979
  ident: 2453_CR24
– volume: 32
  start-page: 45
  issue: 1
  year: 2012
  ident: 2453_CR7
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2011.03.002
– volume: 258
  start-page: 856
  year: 2014
  ident: 2453_CR9
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.11.009
– volume: 228
  start-page: 8892
  issue: 23
  year: 2009
  ident: 2453_CR15
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.09.004
– volume-title: Linear integral equations
  year: 1989
  ident: 2453_CR22
  doi: 10.1007/978-3-642-97146-4
– volume: 38
  issue: 10
  year: 2022
  ident: 2453_CR27
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/ac8ac7
– volume: 348
  start-page: 343
  year: 2017
  ident: 2453_CR4
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.07.032
– volume: 12
  start-page: 809
  issue: 2
  year: 2018
  ident: 2453_CR11
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/18M1227263
– volume: 227
  start-page: 8820
  issue: 20
  year: 2008
  ident: 2453_CR20
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.06.022
– ident: 2453_CR10
  doi: 10.1137/1.9781611973167
– volume-title: Mathematical Methods in Elasticity Imaging
  year: 2015
  ident: 2453_CR1
  doi: 10.23943/princeton/9780691165318.001.0001
– volume-title: Boundary integral equations
  year: 2008
  ident: 2453_CR21
  doi: 10.1007/978-3-540-68545-6
– volume: 38
  start-page: A2665
  issue: 5
  year: 2016
  ident: 2453_CR13
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M1028248
– volume: 150
  start-page: 993
  year: 2022
  ident: 2453_CR29
  publication-title: Numer. Math.
  doi: 10.1007/s00211-022-01273-4
– volume: 36
  start-page: 01
  year: 1989
  ident: 2453_CR32
  publication-title: Rostock. Math. Kolloqu.
– ident: 2453_CR16
  doi: 10.1155/2013/938167
– ident: 2453_CR3
  doi: 10.1137/23M1571666
– volume-title: Cambridge University Press
  year: 2010
  ident: 2453_CR31
– volume: 48
  start-page: 1
  issue: 3
  year: 2022
  ident: 2453_CR25
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-022-09935-5
– volume: 279
  start-page: 1
  year: 2014
  ident: 2453_CR28
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.047
– volume: 45
  start-page: 3124
  issue: 5
  year: 2022
  ident: 2453_CR30
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.7980
– volume-title: The numerical solution of integral equations of the second kind
  year: 1997
  ident: 2453_CR2
  doi: 10.1017/CBO9780511626340
– volume: 58
  start-page: 145
  year: 1990
  ident: 2453_CR23
  publication-title: Numer. Math.
  doi: 10.1007/BF01385616
SSID ssj0009892
Score 2.3688452
Snippet The Navier equation is the governing equation of elastic waves, and computing its solution accurately and rapidly has a wide range of applications in...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms Algorithms
Asymptotic properties
Boundary integral method
Boundary value problems
Computational Mathematics and Numerical Analysis
Decomposition
Domains
Eigenvalues
Elastic scattering
Elastic waves
Integral equations
Integrals
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Nondestructive testing
Numerical analysis
Operators (mathematics)
Preconditioning
Radiation
Robustness (mathematics)
Smooth boundaries
Theoretical
Wave scattering
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-Dl7U9YHrixw8KBps03aTnGTxgQdZFh8geihJmurCbqtt9fc76aYWBb146KnpEDozmUky830I7etAwboYRURxLkmYyoQI6TGS8ihUikkRTnFmr9lgwB8exNAduJWurLJZE-uFOsm1PSM_oYL2gjCiTJy-vhHLGmVvVx2FxiyatygJlrphGD22oLu8JkUGR4oIpM2ha5pxrXPCt73JoX2igHjfA1Obbf64IK3jzuXyf2e8gpZcxon7UxPpoBmTraKO8-kSHzjg6cM19NTHN7l6LyssswTbChA8LBwHD-6Pn0F49TLBkObiC0i6QR6-1TU-J8wchtbUNCW2HSv4LC8ySwOKz_OJHGXlOrq_vLg7uyKOfIFo8MqKCGZ0GjLPM1GSctVjvlGQ21EDOzCtIMb5gaSaUyGpMRDhfKVUEnqpzyEBMakONtBclmdmE2EpYY_kS8oTKmBECgbAKdOBFkYHLOh1kd_8-Vg7ZHJLkDGOW0xlq60YNBXX2oq9Ljr6-uZ1isvx5-idRkWx89EybvXTRceNktvXv0vb-lvaNlqktV3ZQrUdNFcV72YXLeiPalQWe7WFfgKM3Om8
  priority: 102
  providerName: ProQuest
Title A Robust and High Precision Algorithm for Elastic Scattering Problems from Cornered Domains
URI https://link.springer.com/article/10.1007/s10915-024-02453-0
https://www.proquest.com/docview/2926345279
Volume 98
WOSCitedRecordID wos001161626000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH4asMM4bAOG6AaVDxxAYClxkto-dqxo0kZVFTYhdohsx4FKJUFJ2O_fc-pQmLZJ45Bc8mJZz35-n2W_7wPYN5HGdTFJqBZC0ThXGZUq4DQXSaw1VzJe8Mx-5eOxuLyUE18UVne33bsjyXalflTsJkNXTRy7J4kobtTXMN0JJ9gwPf--pNoVrRQyhk9CESzHvlTmz208TUdLjPnbsWibbU7fPK-fb-G1R5dkuJgOG_DCFpuwfvZAzVpvwoaP5poceMrpwy34MSTTUt_XDVFFRtzdDzKpvPoOGc6vy2rW3NwSBLhkhHAbWyLnpmXmxJ6haStKUxNXq0JOyqpwAqDkU3mrZkX9Dr6dji5OPlMvu0ANxmNDJbcmj3kQ2CTLhR7w0GpEdczi3stozG5hpJgRTCpmLea2UGudxUEeCoQeNjfRNqwWZWF3gCiFu6NQMZExiRY5Dr1g3ERGWhPxaNCDsPN-ajwnuZPGmKdLNmXnzRQ9mbbeTIMeHD38c7dg5Pin9W43qKmPzjplkg2iOGFc9uC4G8Tl57-39v7_zD_AK9bOA3dlbRdWm-re7sFL87OZ1VUf1j6OxpNpH1a-cIrvSXLVb2fyLx1r524
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXoDzElgI-gAQCi8R21vYBoVUfarXLqoIiVeIQbMehldqkbFIQf4rfyDjrEIFEbz1wyCnOSLa_Gc_EM_MBPHXcol3MMmqVMlSUpqDaJJKWKhPWSqPFss_sTM7n6vBQ76_Az74WJqRV9jaxM9RF7cI_8tdMszEXGZP67dlXGlijwu1qT6GxhMXU__iOIVvzZm8L9_cZYzvbB5u7NLIKUIdwa6mW3pVCJonPilLZsUy9RaeFeQwtnEXjnXLDnGLaMO_RdKfW2kIkZarwZPWl4yj3ClwVXMmgV1NJhya_qiNhRsXNKLrpIhbpxFI9nYZaaBGejNPkz4Nw8G7_upDtzrmdW__bCt2Gm9GjJpOlCqzBiq_uwFq0WQ15Hhtrv7gLnybkfW3Pm5aYqiAhw4XsLyLHEJmcfMHJtEenBN14so1BBcojH1zXfxRXCod21DsNCRU5ZLNeVIHmlGzVp-a4au7Bx0uZ5H1YrerKPwBiDMaAqWGqYBpHlAhwxaTjTnvHJR-PIO13Onex83ogADnJh57RAR05IiPv0JEnI3j5-5uzZd-RC0dv9JDIow1q8gEPI3jVg2p4_W9p6xdLewLXdw_ezfLZ3nz6EG6wDtMhKW8DVtvFuX8E19y39rhZPO60g8DnywbbL4XSRno
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5VtEJwKK8itrx86AFELRLHWdvHFbBqBV2teAmJQ2Q7TrsSJCgJ_f2Ms1kWEFSqOOSUiWV5ZjLfyDPfAHyzkcH_YhxTI6WmPNMpVToQNJMxN0Zoxcc8sydiMJBXV2r4pIu_qXafXEmOexo8S1Ne79-l2f6TxjcV-s5i7p84opi0f-S-kN7n62eXU9pd2YxFRleKKQJn3rbNvL7G89A0xZsvrkibyNNfeP-eF-FzizpJb2wmS_DB5csw_-uRsrVahqXWyyuy01JR767AdY-cFua-qonOU-JrQsiwbKfykN7N76Ic1X9uCQJfcoQwHFciZ7Zh7MRdomgzrKYivoeFHBRl7geDksPiVo_y6gtc9I_OD37QdhwDteinNVXC2YyLIHBxmknTFaEziPaYw5zMGox6YaSZlUxp5hzGvNAYk_IgCyVCEpfZaBVm8iJ3a0C0xqwp1EymTKFEhiYhmbCRVc5GIup2IJxoIrEtV7kfmXGTTFmW_WkmeJJJc5pJ0IG9x2_uxkwd_5TemCg4ab22Sphi3YjHTKgOfJ8odPr67dW-_p_4NswOD_vJyc_B8TrMscYkfFXbBszU5b3bhE_2bz2qyq3GmB8AQfnvzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+and+High+Precision+Algorithm+for+Elastic+Scattering+Problems+from+Cornered+Domains&rft.jtitle=Journal+of+scientific+computing&rft.au=Yao%2C+Jianan&rft.au=Xie%2C+Baoling&rft.au=Lai%2C+Jun&rft.date=2024-03-01&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=98&rft.issue=3&rft_id=info:doi/10.1007%2Fs10915-024-02453-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10915_024_02453_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon