A randomized approximation algorithm for metric triangle packing

Given an edge-weighted complete graph G on 3 n vertices, the maximum-weight triangle packing problem asks for a collection of n vertex-disjoint triangles in G such that the total weight of edges in these n triangles is maximized. Although the problem has been extensively studied in the literature, i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 41; číslo 1; s. 12 - 27
Hlavní autoři: Chen, Yong, Chen, Zhi-Zhong, Lin, Guohui, Wang, Lusheng, Zhang, An
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2021
Springer Nature B.V
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given an edge-weighted complete graph G on 3 n vertices, the maximum-weight triangle packing problem asks for a collection of n vertex-disjoint triangles in G such that the total weight of edges in these n triangles is maximized. Although the problem has been extensively studied in the literature, it is surprising that prior to this work, no nontrivial approximation algorithm had been designed and analyzed for its metric case, where the edge weights in the input graph satisfy the triangle inequality. In this paper, we design the first nontrivial polynomial-time approximation algorithm for the maximum-weight metric triangle packing problem. Our algorithm is randomized and achieves an expected approximation ratio of 0.66768 - ϵ for any constant ϵ > 0 .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-020-00660-7