Multi-level optimal fusion algorithm for infrared and visible image

Image fusion technology has been widely used in analyzing fusion effect under various settings. This paper proposed the image fusion method suitable for both infrared and grayscale visible image. As a first step, the base and detail layers of the image are obtained through the multilayer image decom...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal, image and video processing Ročník 17; číslo 8; s. 4209 - 4217
Hlavní autoři: Jian, Bo-Lin, Tu, Ching-Che
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.11.2023
Springer Nature B.V
Témata:
ISSN:1863-1703, 1863-1711
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Image fusion technology has been widely used in analyzing fusion effect under various settings. This paper proposed the image fusion method suitable for both infrared and grayscale visible image. As a first step, the base and detail layers of the image are obtained through the multilayer image decomposition method. For the base layer, we select a fusion method based on the gradient weight map to address the loss of feature details inherent in the average fusion strategy. For the detail layer analysis, we use a weighted least squares-based fusion strategy to mitigate the impact of noise. In this research, the database containing various settings is used to verify the robustness of this methodology. The result is also used to compare with other types of fusion methods in order to provide subjective kind of method and objective kind of image indicator for easier verification. The fusion result indicated that this research method not only reduces noise in the infrared images but also maintains the desired global contrast. As a result, the fusion process can retrieve more feature details while preserving the structure of the feature area.
AbstractList Image fusion technology has been widely used in analyzing fusion effect under various settings. This paper proposed the image fusion method suitable for both infrared and grayscale visible image. As a first step, the base and detail layers of the image are obtained through the multilayer image decomposition method. For the base layer, we select a fusion method based on the gradient weight map to address the loss of feature details inherent in the average fusion strategy. For the detail layer analysis, we use a weighted least squares-based fusion strategy to mitigate the impact of noise. In this research, the database containing various settings is used to verify the robustness of this methodology. The result is also used to compare with other types of fusion methods in order to provide subjective kind of method and objective kind of image indicator for easier verification. The fusion result indicated that this research method not only reduces noise in the infrared images but also maintains the desired global contrast. As a result, the fusion process can retrieve more feature details while preserving the structure of the feature area.
Author Tu, Ching-Che
Jian, Bo-Lin
Author_xml – sequence: 1
  givenname: Bo-Lin
  orcidid: 0000-0003-3235-7429
  surname: Jian
  fullname: Jian, Bo-Lin
  email: bo.lin.jian@gmail.com
  organization: Department of Electrical Engineering, National Chin-Yi University of Technology
– sequence: 2
  givenname: Ching-Che
  orcidid: 0000-0001-6610-1830
  surname: Tu
  fullname: Tu, Ching-Che
  organization: Department of Electrical Engineering, National Chin-Yi University of Technology
BookMark eNp9kE1LAzEQhoNUsNb-AU8Bz6v52GSzRyl-geJFzyGbTWpKuqlJtuC_N7qi4KGBIXN4n5nhOQWzIQwGgHOMLjFCzVXCuOGoQoSW4oxW7AjMseC0wg3Gs98e0ROwTGmDyqOkEVzMwepp9NlV3uyNh2GX3VZ5aMfkwgCVX4fo8tsW2hChG2xU0fRQDT3cu-Q6b2CJr80ZOLbKJ7P8-Rfg9fbmZXVfPT7fPayuHytNcZurlgnSYEUoQ7VpeYcIbq3Woma9sK3oelGrmmrTa6aF0EJbZgRnrCGU467XdAEuprm7GN5Hk7LchDEOZaWkhPGW0xqTkiJTSseQUjRW7mI5M35IjOSXLzn5ksWX_PYlWYHEP0i7rHKxkKNy_jBKJzSVPcPaxL-rDlCft1SAXg
CitedBy_id crossref_primary_10_1007_s11760_025_04409_9
crossref_primary_10_1007_s00371_025_04120_3
Cites_doi 10.1201/9781315221069
10.1016/j.ins.2019.08.066
10.1016/j.inffus.2016.05.004
10.1109/TGRS.2011.2161320
10.1016/j.aqpro.2015.02.019
10.1109/TIP.2020.2977573
10.1109/TIP.2020.2975984
10.1109/LSP.2012.2227726
10.1016/j.infrared.2017.02.005
10.1016/j.neucom.2015.01.025
10.1109/ACCESS.2021.3090436
10.1109/TPAMI.2020.3012548
10.1016/j.inffus.2018.09.004
10.1006/gmip.1995.1022
10.1016/j.patcog.2006.11.010
10.1109/TCI.2021.3119954
10.1016/j.inffus.2018.02.004
10.1016/j.inffus.2021.02.008
10.1016/j.inffus.2019.07.011
10.1016/j.procs.2019.05.037
10.1016/j.imavis.2020.103955
10.1016/j.neucom.2016.02.047
10.1049/el:20000267
10.1109/36.739109
10.1016/j.inffus.2021.02.023
10.1109/TIM.2009.2026612
10.1109/ACCESS.2020.3001974
10.1016/j.inffus.2015.11.003
10.1016/j.sigpro.2022.108637
10.1016/j.optcom.2014.12.032
10.1109/ICCV.2011.6126422
10.1007/978-3-319-71607-7_59
10.1609/aaai.v34i07.6975
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s11760-023-02653-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
EndPage 4217
ExternalDocumentID 10_1007_s11760_023_02653_5
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: NSTC 110-2221-E-167-017
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-958271a23504e96b0219fcc845d8f98bd84a43cedc5c88c8cf5e865572361bdc3
IEDL.DBID BENPR
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016160600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1863-1703
IngestDate Tue Oct 07 06:09:25 EDT 2025
Sat Nov 29 05:31:00 EST 2025
Tue Nov 18 22:13:14 EST 2025
Fri Feb 21 02:42:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Gradient weight map
Multilayer image decomposition
Weighted least squares
Image fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-958271a23504e96b0219fcc845d8f98bd84a43cedc5c88c8cf5e865572361bdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3235-7429
0000-0001-6610-1830
PQID 3256963412
PQPubID 2044169
PageCount 9
ParticipantIDs proquest_journals_3256963412
crossref_primary_10_1007_s11760_023_02653_5
crossref_citationtrail_10_1007_s11760_023_02653_5
springer_journals_10_1007_s11760_023_02653_5
PublicationCentury 2000
PublicationDate 20231100
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Xydeas, Petrovic (CR33) 2000; 36
Zhang (CR26) 2021; 7
Zhou (CR7) 2016; 30
CR18
CR17
Mittal, Soundararajan, Bovik (CR35) 2013; 20
Ma (CR29) 2019; 48
Park (CR2) 2020; 36
CR11
CR31
Li, Lin, Qu (CR13) 2021; 71
Li, Manjunath, Mitra (CR12) 1995; 57
Yokoya, Yairi, Iwasaki (CR15) 2012; 50
Ma (CR23) 2020; 29
Han, Bhanu (CR1) 2007; 40
Bhatnagar, Wu, Liu (CR4) 2015; 157
Veshki (CR25) 2022; 200
Jagalingam, Hegde (CR32) 2015; 4
Xiuping, Richards (CR14) 1999; 37
Li (CR16) 2017; 33
Yang, Li (CR8) 2010; 59
Zhang (CR30) 2020; 54
CR28
Yu, Chen (CR19) 2020; 8
Li, Wu, Kittler (CR20) 2020; 29
Li, Wu, Kittler (CR24) 2021; 73
Hong (CR3) 2020; 100
Gao (CR6) 2021; 9
CR21
Rajalingam, Priya, Bhavani (CR37) 2019; 152
Blum, Liu (CR34) 2018
Cui (CR36) 2015; 341
Chen (CR9) 2020; 508
Xu (CR27) 2022; 44
Ma, Ma, Li (CR5) 2019; 45
Du (CR10) 2016; 194
Ma (CR22) 2017; 82
2653_CR21
J Chen (2653_CR9) 2020; 508
G Bhatnagar (2653_CR4) 2015; 157
J Ma (2653_CR5) 2019; 45
DS Hong (2653_CR3) 2020; 100
S Park (2653_CR2) 2020; 36
A Mittal (2653_CR35) 2013; 20
G Li (2653_CR13) 2021; 71
J Ma (2653_CR23) 2020; 29
J Xiuping (2653_CR14) 1999; 37
J Han (2653_CR1) 2007; 40
2653_CR28
J Du (2653_CR10) 2016; 194
S Li (2653_CR16) 2017; 33
S Yu (2653_CR19) 2020; 8
2653_CR31
2653_CR11
Y Zhang (2653_CR30) 2020; 54
H Xu (2653_CR27) 2022; 44
J Ma (2653_CR22) 2017; 82
G Cui (2653_CR36) 2015; 341
ZQ Zhou (2653_CR7) 2016; 30
B Yang (2653_CR8) 2010; 59
J Ma (2653_CR29) 2019; 48
P Jagalingam (2653_CR32) 2015; 4
N Yokoya (2653_CR15) 2012; 50
B Rajalingam (2653_CR37) 2019; 152
H Li (2653_CR12) 1995; 57
H Li (2653_CR24) 2021; 73
FG Veshki (2653_CR25) 2022; 200
H Zhang (2653_CR26) 2021; 7
2653_CR17
H Li (2653_CR20) 2020; 29
2653_CR18
C Xydeas (2653_CR33) 2000; 36
C Gao (2653_CR6) 2021; 9
RS Blum (2653_CR34) 2018
References_xml – year: 2018
  ident: CR34
  publication-title: Multi-sensor image fusion and its applications
  doi: 10.1201/9781315221069
– volume: 508
  start-page: 64
  year: 2020
  end-page: 78
  ident: CR9
  article-title: Infrared and visible image fusion based on target-enhanced multiscale transform decomposition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.08.066
– volume: 33
  start-page: 100
  year: 2017
  end-page: 112
  ident: CR16
  article-title: Pixel-level image fusion: a survey of the state of the art
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.05.004
– ident: CR18
– volume: 50
  start-page: 528
  issue: 2
  year: 2012
  end-page: 537
  ident: CR15
  article-title: Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2161320
– volume: 4
  start-page: 133
  year: 2015
  end-page: 142
  ident: CR32
  article-title: A review of quality metrics for fused image
  publication-title: Aquat. Procedia
  doi: 10.1016/j.aqpro.2015.02.019
– volume: 29
  start-page: 4980
  year: 2020
  end-page: 4995
  ident: CR23
  article-title: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2977573
– volume: 29
  start-page: 4733
  year: 2020
  end-page: 4746
  ident: CR20
  article-title: MDLatLRR: a novel decomposition method for infrared and visible image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2975984
– volume: 20
  start-page: 209
  issue: 3
  year: 2013
  end-page: 212
  ident: CR35
  article-title: Making a “completely blind” image quality analyzer
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2227726
– volume: 82
  start-page: 8
  year: 2017
  end-page: 17
  ident: CR22
  article-title: Infrared and visible image fusion based on visual saliency map and weighted least square optimization
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.02.005
– volume: 157
  start-page: 143
  year: 2015
  end-page: 152
  ident: CR4
  article-title: A new contrast based multimodal medical image fusion framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.025
– volume: 36
  start-page: 807
  issue: 5
  year: 2020
  end-page: 821
  ident: CR2
  article-title: Evaluation of spatio-temporal fusion models of multi-sensor high-resolution satellite images for crop monitoring: an experiment on the fusion of Sentinel-2 and RapidEye images
  publication-title: Korean J. Remote Sens.
– volume: 9
  start-page: 91462
  year: 2021
  end-page: 91475
  ident: CR6
  article-title: Improving the performance of infrared and visible image fusion based on latent low-rank representation nested with rolling guided image filtering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090436
– volume: 44
  start-page: 502
  issue: 1
  year: 2022
  end-page: 518
  ident: CR27
  article-title: U2Fusion: a unified unsupervised image fusion network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3012548
– volume: 48
  start-page: 11
  year: 2019
  end-page: 26
  ident: CR29
  article-title: FusionGAN: a generative adversarial network for infrared and visible image fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.004
– volume: 57
  start-page: 235
  issue: 3
  year: 1995
  end-page: 245
  ident: CR12
  article-title: Multisensor image fusion using the wavelet transform
  publication-title: Graph. Models Image Process.
  doi: 10.1006/gmip.1995.1022
– volume: 40
  start-page: 1771
  issue: 6
  year: 2007
  end-page: 1784
  ident: CR1
  article-title: Fusion of color and infrared video for moving human detection
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2006.11.010
– volume: 7
  start-page: 1134
  year: 2021
  end-page: 1147
  ident: CR26
  article-title: GAN-FM: infrared and visible image fusion using GAN with full-scale skip connection and dual Markovian discriminators
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2021.3119954
– volume: 45
  start-page: 153
  year: 2019
  end-page: 178
  ident: CR5
  article-title: Infrared and visible image fusion methods and applications: a survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.02.004
– volume: 71
  start-page: 109
  year: 2021
  end-page: 129
  ident: CR13
  article-title: An infrared and visible image fusion method based on multi-scale transformation and norm optimization
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.008
– ident: CR21
– volume: 54
  start-page: 99
  year: 2020
  end-page: 118
  ident: CR30
  article-title: IFCNN: a general image fusion framework based on convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.011
– volume: 152
  start-page: 150
  year: 2019
  end-page: 157
  ident: CR37
  article-title: Hybrid multimodal medical image fusion using combination of transform techniques for disease analysis
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.05.037
– volume: 100
  start-page: 103
  year: 2020
  ident: CR3
  article-title: CrossFusion net: deep 3D object detection based on RGB images and point clouds in autonomous driving
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2020.103955
– volume: 194
  start-page: 326
  year: 2016
  end-page: 339
  ident: CR10
  article-title: Union Laplacian pyramid with multiple features for medical image fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.047
– volume: 36
  start-page: 308
  year: 2000
  end-page: 309
  ident: CR33
  article-title: Objective image fusion performance measure
  publication-title: Electron. Lett.
  doi: 10.1049/el:20000267
– ident: CR17
– volume: 37
  start-page: 538
  issue: 1
  year: 1999
  end-page: 542
  ident: CR14
  article-title: Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.739109
– volume: 73
  start-page: 72
  year: 2021
  end-page: 86
  ident: CR24
  article-title: RFN-Nest: an end-to-end residual fusion network for infrared and visible images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.023
– ident: CR31
– volume: 59
  start-page: 884
  issue: 4
  year: 2010
  end-page: 892
  ident: CR8
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2026612
– ident: CR11
– volume: 8
  start-page: 110214
  year: 2020
  end-page: 110226
  ident: CR19
  article-title: Infrared and visible image fusion based on a latent low-rank representation nested with multiscale geometric transform
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001974
– volume: 30
  start-page: 15
  year: 2016
  end-page: 26
  ident: CR7
  article-title: Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.11.003
– ident: CR28
– volume: 200
  year: 2022
  ident: CR25
  article-title: Multimodal image fusion via coupled feature learning
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2022.108637
– volume: 341
  start-page: 199
  year: 2015
  end-page: 209
  ident: CR36
  article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.12.032
– volume: 20
  start-page: 209
  issue: 3
  year: 2013
  ident: 2653_CR35
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2012.2227726
– volume: 36
  start-page: 807
  issue: 5
  year: 2020
  ident: 2653_CR2
  publication-title: Korean J. Remote Sens.
– volume: 73
  start-page: 72
  year: 2021
  ident: 2653_CR24
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.023
– ident: 2653_CR31
– volume: 157
  start-page: 143
  year: 2015
  ident: 2653_CR4
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.025
– ident: 2653_CR21
  doi: 10.1109/ICCV.2011.6126422
– ident: 2653_CR18
  doi: 10.1007/978-3-319-71607-7_59
– volume: 29
  start-page: 4980
  year: 2020
  ident: 2653_CR23
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2977573
– volume: 48
  start-page: 11
  year: 2019
  ident: 2653_CR29
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.004
– volume: 40
  start-page: 1771
  issue: 6
  year: 2007
  ident: 2653_CR1
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2006.11.010
– volume: 200
  year: 2022
  ident: 2653_CR25
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2022.108637
– volume: 36
  start-page: 308
  year: 2000
  ident: 2653_CR33
  publication-title: Electron. Lett.
  doi: 10.1049/el:20000267
– volume: 341
  start-page: 199
  year: 2015
  ident: 2653_CR36
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.12.032
– volume: 37
  start-page: 538
  issue: 1
  year: 1999
  ident: 2653_CR14
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.739109
– volume: 9
  start-page: 91462
  year: 2021
  ident: 2653_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3090436
– volume: 54
  start-page: 99
  year: 2020
  ident: 2653_CR30
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.011
– volume: 50
  start-page: 528
  issue: 2
  year: 2012
  ident: 2653_CR15
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2161320
– volume: 100
  start-page: 103
  year: 2020
  ident: 2653_CR3
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2020.103955
– volume: 29
  start-page: 4733
  year: 2020
  ident: 2653_CR20
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2975984
– volume: 152
  start-page: 150
  year: 2019
  ident: 2653_CR37
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.05.037
– volume: 45
  start-page: 153
  year: 2019
  ident: 2653_CR5
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.02.004
– volume: 194
  start-page: 326
  year: 2016
  ident: 2653_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.047
– volume: 44
  start-page: 502
  issue: 1
  year: 2022
  ident: 2653_CR27
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3012548
– volume: 8
  start-page: 110214
  year: 2020
  ident: 2653_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001974
– volume: 508
  start-page: 64
  year: 2020
  ident: 2653_CR9
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.08.066
– volume: 33
  start-page: 100
  year: 2017
  ident: 2653_CR16
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.05.004
– volume: 7
  start-page: 1134
  year: 2021
  ident: 2653_CR26
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2021.3119954
– volume: 4
  start-page: 133
  year: 2015
  ident: 2653_CR32
  publication-title: Aquat. Procedia
  doi: 10.1016/j.aqpro.2015.02.019
– volume: 71
  start-page: 109
  year: 2021
  ident: 2653_CR13
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.008
– volume: 82
  start-page: 8
  year: 2017
  ident: 2653_CR22
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.02.005
– volume: 57
  start-page: 235
  issue: 3
  year: 1995
  ident: 2653_CR12
  publication-title: Graph. Models Image Process.
  doi: 10.1006/gmip.1995.1022
– ident: 2653_CR17
– volume-title: Multi-sensor image fusion and its applications
  year: 2018
  ident: 2653_CR34
  doi: 10.1201/9781315221069
– volume: 30
  start-page: 15
  year: 2016
  ident: 2653_CR7
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.11.003
– ident: 2653_CR11
– ident: 2653_CR28
  doi: 10.1609/aaai.v34i07.6975
– volume: 59
  start-page: 884
  issue: 4
  year: 2010
  ident: 2653_CR8
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2026612
SSID ssj0000327868
Score 2.294911
Snippet Image fusion technology has been widely used in analyzing fusion effect under various settings. This paper proposed the image fusion method suitable for both...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4209
SubjectTerms Computer Imaging
Computer Science
Computer vision
Decomposition
Dictionaries
Image Processing and Computer Vision
Infrared imagery
Multilayers
Multimedia Information Systems
Neural networks
Original Paper
Pattern Recognition and Graphics
Registration
Signal,Image and Speech Processing
Teaching methods
Vision
Visual perception
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYCBQgFRKMgDG1hKYjt2RlRRMaAKCai6RYljl0ptitKU34-djwYQIMGQKZdTdLbvzva9dwCXvpZCW4gyJ0piykWEzV7FJnLKJZpLHhdE2qN7PhyK8Th4qEBhy7ravb6SLDx1A3Zzue9gE2PM4zOC2SZsMcs2Y_foj6P1yYpDPC5KDJzwLf-mQyq0zPdqPkekJs38cjNaBJxB-3-_ug97VYKJbsoZcQAbKu1Au27egKq13IHdD0yEh9AvgLh4ZkuI0MK4kbnRoVf2KA1Fs8kim-Yvc2QSXGRmZGaL1lGUJsgi0-OZQkZ8oo7geXD71L_DVX8FLM3Cy3HAhMfdyCPMoSrwYxPuAy2loCwROhBxImhEiVSJZFIIKaRmyuJYuSVsiRNJjqGVLlJ1Asjh2o88o0MGEU08EceUOV7geNokZH7kdsGtbRzKinzc9sCYhQ1tsrVZaGwWFjYLWReu1t-8ltQbv0r36qELq2W4DIlJ6IyHoa7Xhet6qJrXP2s7_Zv4GezYNvQlRrEHrTxbqXPYlm_5dJldFNPzHfDA25s
  priority: 102
  providerName: Springer Nature
Title Multi-level optimal fusion algorithm for infrared and visible image
URI https://link.springer.com/article/10.1007/s11760-023-02653-5
https://www.proquest.com/docview/3256963412
Volume 17
WOSCitedRecordID wos001016160600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: P5Z
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: K7-
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1863-1711
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327868
  issn: 1863-1703
  databaseCode: RSV
  dateStart: 20070401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5RYICBN6I8Kg9sYJHEcexMCFAREqiqClSIJUocuyD1RVv4_ZwTlwISXRjiJfYp8p19l7O_7wCOI6OksRBlwbSioZApxX8VG8hpnxmhRFYQabfvRKMhn57ipku4jd21yumeWGzU-UDZHPkZQ9-MxhL6wfnwjdqqUfZ01ZXQqMCSZSpDO1-6rDeara8si8cCIUs8nIwsF6fHHHKmxM_5IvIoui18Is4o_-mdZiHnr1PSwvlcr__3szdgzYWd5KK0k01Y0P0tWP1GRrgNVwUWl3btLSIywJ2khwPMu82mkbTbQaGTlx7BGJegUY7svXWS9nNiwelZVxPs3tE78Hhdf7i6oa7EAlW49iY05jIQfhow7oU6jjL0-LFRSoY8lyaWWS7DNGRK54orKZVUhmsLZRWWsyXLFduFxf6gr_eAeMJEaYAyVJyGeSCzLOReEHuBwZgsSv0q-NOpTZTjH7dlMLrJjDnZqiNBdSSFOhJehZOvMcOSfWNu78OpDhK3EsfJTAFVOJ1qcfb6b2n786UdwIqtPF_CEg9hcTJ610ewrD4mr-NRzdlhDSq3gmLb5M_Ytu7bn1L_45M
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUolygAKtuhSoD3ACq4kfsXOoqvISiGWFEK24hcSxAWnZpbsLiD_Fb2ScB0uR4MaBQ062R3K-8cz48c0ArETOaOcpyopbQ4XSKcW9ig_kbMidMiorEmn_bal2W5-cxIdjcF9zYfyzytomFoY67xl_Rv6Do29GZREh-3X1j_qqUf52tS6hUarFvr27xS3b4OfeFuK7ytjO9vHmLq2qClCD6jaksdRMhSnjMhA2jjJ0crEzRguZaxfrLNciFdzY3EijtdHGSevZm8qnKclyw1HuOEwILiLZgImN7fbh0eOpTsCZ0iX_Tkc-92fAK6ZOydcLVRRQdJP4RZJT-b83HIW4z25lC2e3M_PeftMnmK7CavK7XAezMGa7czD1JNniPGwWXGPa8a-kSA8t5SUOcNf-tJCknTOcxPD8kmAMT3DR9f27fJJ2c-LJ91nHEux-Zj_DnzeZxRdodHtd-xVIoFyUMpRh4lTkTGeZkAGLA-Yw5ozSsAlhDWViqvzqvsxHJxllhvbwJwh_UsCfyCasPY65KrOLvNp7scY8qSzNIBkB3oT1WmtGzS9LW3hd2neY3D0-aCWtvfb-N_jIvNIWFMxFaAz713YJPpib4cWgv1ytAQKnb61PD0HIPSU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHp1NxXvPgm5a1TdKkjzIdimOIN3wrbZrMwdaNrfP3m_SyTVFBfOhT00M5OUm-JOf7DsCZpwRXhqLMsBQWYTy09F7FADnpYMUEizIh7Zc263T466t_v8Diz7LdyyvJnNNgVJqStDGKVWNOfHOYZ1t6vdGPR7FFl2GF6J2MSep6eHyZnbLY2GU858Nxz2hx2rhgznxv5vPqNIecX25Js8WnVf3_b2_BZgE80WUeKduwJJMaVMuiDqgY4zXYWFAo3IFmRtC1-ia1CA319DLQNtTUHLGhsN8djnvp2wBp4It0pI5NMjsKkxgZxnrUl0g378pdeG5dPzVvrKLugiX0gEwtn3KXOaGLqU2k70UaBvhKCE5ozJXPo5iTkGAhY0EF54ILRaXhtzIj5BLFAu9BJRkmch-QzZQXutqG8EMSuzyKCLVd33aVBmpe6NTBKf0diEKU3NTG6AdzOWXjs0D7LMh8FtA6nM--GeWSHL-2Piq7MSiG5yTAGujpmYc4bh0uym6bv_7Z2sHfmp_C2v1VK2jfdu4OYd1Uqs9pjEdQScdTeQyr4j3tTcYnWdR-AMkt52M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+optimal+fusion+algorithm+for+infrared+and+visible+image&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Jian%2C+Bo-Lin&rft.au=Tu%2C+Ching-Che&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=17&rft.issue=8&rft.spage=4209&rft.epage=4217&rft_id=info:doi/10.1007%2Fs11760-023-02653-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon