Multi-level optimal fusion algorithm for infrared and visible image
Image fusion technology has been widely used in analyzing fusion effect under various settings. This paper proposed the image fusion method suitable for both infrared and grayscale visible image. As a first step, the base and detail layers of the image are obtained through the multilayer image decom...
Uloženo v:
| Vydáno v: | Signal, image and video processing Ročník 17; číslo 8; s. 4209 - 4217 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Springer London
01.11.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1863-1703, 1863-1711 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Image fusion technology has been widely used in analyzing fusion effect under various settings. This paper proposed the image fusion method suitable for both infrared and grayscale visible image. As a first step, the base and detail layers of the image are obtained through the multilayer image decomposition method. For the base layer, we select a fusion method based on the gradient weight map to address the loss of feature details inherent in the average fusion strategy. For the detail layer analysis, we use a weighted least squares-based fusion strategy to mitigate the impact of noise. In this research, the database containing various settings is used to verify the robustness of this methodology. The result is also used to compare with other types of fusion methods in order to provide subjective kind of method and objective kind of image indicator for easier verification. The fusion result indicated that this research method not only reduces noise in the infrared images but also maintains the desired global contrast. As a result, the fusion process can retrieve more feature details while preserving the structure of the feature area. |
|---|---|
| AbstractList | Image fusion technology has been widely used in analyzing fusion effect under various settings. This paper proposed the image fusion method suitable for both infrared and grayscale visible image. As a first step, the base and detail layers of the image are obtained through the multilayer image decomposition method. For the base layer, we select a fusion method based on the gradient weight map to address the loss of feature details inherent in the average fusion strategy. For the detail layer analysis, we use a weighted least squares-based fusion strategy to mitigate the impact of noise. In this research, the database containing various settings is used to verify the robustness of this methodology. The result is also used to compare with other types of fusion methods in order to provide subjective kind of method and objective kind of image indicator for easier verification. The fusion result indicated that this research method not only reduces noise in the infrared images but also maintains the desired global contrast. As a result, the fusion process can retrieve more feature details while preserving the structure of the feature area. |
| Author | Tu, Ching-Che Jian, Bo-Lin |
| Author_xml | – sequence: 1 givenname: Bo-Lin orcidid: 0000-0003-3235-7429 surname: Jian fullname: Jian, Bo-Lin email: bo.lin.jian@gmail.com organization: Department of Electrical Engineering, National Chin-Yi University of Technology – sequence: 2 givenname: Ching-Che orcidid: 0000-0001-6610-1830 surname: Tu fullname: Tu, Ching-Che organization: Department of Electrical Engineering, National Chin-Yi University of Technology |
| BookMark | eNp9kE1LAzEQhoNUsNb-AU8Bz6v52GSzRyl-geJFzyGbTWpKuqlJtuC_N7qi4KGBIXN4n5nhOQWzIQwGgHOMLjFCzVXCuOGoQoSW4oxW7AjMseC0wg3Gs98e0ROwTGmDyqOkEVzMwepp9NlV3uyNh2GX3VZ5aMfkwgCVX4fo8tsW2hChG2xU0fRQDT3cu-Q6b2CJr80ZOLbKJ7P8-Rfg9fbmZXVfPT7fPayuHytNcZurlgnSYEUoQ7VpeYcIbq3Woma9sK3oelGrmmrTa6aF0EJbZgRnrCGU467XdAEuprm7GN5Hk7LchDEOZaWkhPGW0xqTkiJTSseQUjRW7mI5M35IjOSXLzn5ksWX_PYlWYHEP0i7rHKxkKNy_jBKJzSVPcPaxL-rDlCft1SAXg |
| CitedBy_id | crossref_primary_10_1007_s11760_025_04409_9 crossref_primary_10_1007_s00371_025_04120_3 |
| Cites_doi | 10.1201/9781315221069 10.1016/j.ins.2019.08.066 10.1016/j.inffus.2016.05.004 10.1109/TGRS.2011.2161320 10.1016/j.aqpro.2015.02.019 10.1109/TIP.2020.2977573 10.1109/TIP.2020.2975984 10.1109/LSP.2012.2227726 10.1016/j.infrared.2017.02.005 10.1016/j.neucom.2015.01.025 10.1109/ACCESS.2021.3090436 10.1109/TPAMI.2020.3012548 10.1016/j.inffus.2018.09.004 10.1006/gmip.1995.1022 10.1016/j.patcog.2006.11.010 10.1109/TCI.2021.3119954 10.1016/j.inffus.2018.02.004 10.1016/j.inffus.2021.02.008 10.1016/j.inffus.2019.07.011 10.1016/j.procs.2019.05.037 10.1016/j.imavis.2020.103955 10.1016/j.neucom.2016.02.047 10.1049/el:20000267 10.1109/36.739109 10.1016/j.inffus.2021.02.023 10.1109/TIM.2009.2026612 10.1109/ACCESS.2020.3001974 10.1016/j.inffus.2015.11.003 10.1016/j.sigpro.2022.108637 10.1016/j.optcom.2014.12.032 10.1109/ICCV.2011.6126422 10.1007/978-3-319-71607-7_59 10.1609/aaai.v34i07.6975 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s11760-023-02653-5 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1863-1711 |
| EndPage | 4217 |
| ExternalDocumentID | 10_1007_s11760_023_02653_5 |
| GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan grantid: NSTC 110-2221-E-167-017 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-958271a23504e96b0219fcc845d8f98bd84a43cedc5c88c8cf5e865572361bdc3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016160600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1863-1703 |
| IngestDate | Tue Oct 07 06:09:25 EDT 2025 Sat Nov 29 05:31:00 EST 2025 Tue Nov 18 22:13:14 EST 2025 Fri Feb 21 02:42:05 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Gradient weight map Multilayer image decomposition Weighted least squares Image fusion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-958271a23504e96b0219fcc845d8f98bd84a43cedc5c88c8cf5e865572361bdc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3235-7429 0000-0001-6610-1830 |
| PQID | 3256963412 |
| PQPubID | 2044169 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_3256963412 crossref_primary_10_1007_s11760_023_02653_5 crossref_citationtrail_10_1007_s11760_023_02653_5 springer_journals_10_1007_s11760_023_02653_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20231100 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Signal, image and video processing |
| PublicationTitleAbbrev | SIViP |
| PublicationYear | 2023 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | Xydeas, Petrovic (CR33) 2000; 36 Zhang (CR26) 2021; 7 Zhou (CR7) 2016; 30 CR18 CR17 Mittal, Soundararajan, Bovik (CR35) 2013; 20 Ma (CR29) 2019; 48 Park (CR2) 2020; 36 CR11 CR31 Li, Lin, Qu (CR13) 2021; 71 Li, Manjunath, Mitra (CR12) 1995; 57 Yokoya, Yairi, Iwasaki (CR15) 2012; 50 Ma (CR23) 2020; 29 Han, Bhanu (CR1) 2007; 40 Bhatnagar, Wu, Liu (CR4) 2015; 157 Veshki (CR25) 2022; 200 Jagalingam, Hegde (CR32) 2015; 4 Xiuping, Richards (CR14) 1999; 37 Li (CR16) 2017; 33 Yang, Li (CR8) 2010; 59 Zhang (CR30) 2020; 54 CR28 Yu, Chen (CR19) 2020; 8 Li, Wu, Kittler (CR20) 2020; 29 Li, Wu, Kittler (CR24) 2021; 73 Hong (CR3) 2020; 100 Gao (CR6) 2021; 9 CR21 Rajalingam, Priya, Bhavani (CR37) 2019; 152 Blum, Liu (CR34) 2018 Cui (CR36) 2015; 341 Chen (CR9) 2020; 508 Xu (CR27) 2022; 44 Ma, Ma, Li (CR5) 2019; 45 Du (CR10) 2016; 194 Ma (CR22) 2017; 82 2653_CR21 J Chen (2653_CR9) 2020; 508 G Bhatnagar (2653_CR4) 2015; 157 J Ma (2653_CR5) 2019; 45 DS Hong (2653_CR3) 2020; 100 S Park (2653_CR2) 2020; 36 A Mittal (2653_CR35) 2013; 20 G Li (2653_CR13) 2021; 71 J Ma (2653_CR23) 2020; 29 J Xiuping (2653_CR14) 1999; 37 J Han (2653_CR1) 2007; 40 2653_CR28 J Du (2653_CR10) 2016; 194 S Li (2653_CR16) 2017; 33 S Yu (2653_CR19) 2020; 8 2653_CR31 2653_CR11 Y Zhang (2653_CR30) 2020; 54 H Xu (2653_CR27) 2022; 44 J Ma (2653_CR22) 2017; 82 G Cui (2653_CR36) 2015; 341 ZQ Zhou (2653_CR7) 2016; 30 B Yang (2653_CR8) 2010; 59 J Ma (2653_CR29) 2019; 48 P Jagalingam (2653_CR32) 2015; 4 N Yokoya (2653_CR15) 2012; 50 B Rajalingam (2653_CR37) 2019; 152 H Li (2653_CR12) 1995; 57 H Li (2653_CR24) 2021; 73 FG Veshki (2653_CR25) 2022; 200 H Zhang (2653_CR26) 2021; 7 2653_CR17 H Li (2653_CR20) 2020; 29 2653_CR18 C Xydeas (2653_CR33) 2000; 36 C Gao (2653_CR6) 2021; 9 RS Blum (2653_CR34) 2018 |
| References_xml | – year: 2018 ident: CR34 publication-title: Multi-sensor image fusion and its applications doi: 10.1201/9781315221069 – volume: 508 start-page: 64 year: 2020 end-page: 78 ident: CR9 article-title: Infrared and visible image fusion based on target-enhanced multiscale transform decomposition publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.08.066 – volume: 33 start-page: 100 year: 2017 end-page: 112 ident: CR16 article-title: Pixel-level image fusion: a survey of the state of the art publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.05.004 – ident: CR18 – volume: 50 start-page: 528 issue: 2 year: 2012 end-page: 537 ident: CR15 article-title: Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2161320 – volume: 4 start-page: 133 year: 2015 end-page: 142 ident: CR32 article-title: A review of quality metrics for fused image publication-title: Aquat. Procedia doi: 10.1016/j.aqpro.2015.02.019 – volume: 29 start-page: 4980 year: 2020 end-page: 4995 ident: CR23 article-title: DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2977573 – volume: 29 start-page: 4733 year: 2020 end-page: 4746 ident: CR20 article-title: MDLatLRR: a novel decomposition method for infrared and visible image fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2975984 – volume: 20 start-page: 209 issue: 3 year: 2013 end-page: 212 ident: CR35 article-title: Making a “completely blind” image quality analyzer publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2227726 – volume: 82 start-page: 8 year: 2017 end-page: 17 ident: CR22 article-title: Infrared and visible image fusion based on visual saliency map and weighted least square optimization publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.02.005 – volume: 157 start-page: 143 year: 2015 end-page: 152 ident: CR4 article-title: A new contrast based multimodal medical image fusion framework publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.025 – volume: 36 start-page: 807 issue: 5 year: 2020 end-page: 821 ident: CR2 article-title: Evaluation of spatio-temporal fusion models of multi-sensor high-resolution satellite images for crop monitoring: an experiment on the fusion of Sentinel-2 and RapidEye images publication-title: Korean J. Remote Sens. – volume: 9 start-page: 91462 year: 2021 end-page: 91475 ident: CR6 article-title: Improving the performance of infrared and visible image fusion based on latent low-rank representation nested with rolling guided image filtering publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090436 – volume: 44 start-page: 502 issue: 1 year: 2022 end-page: 518 ident: CR27 article-title: U2Fusion: a unified unsupervised image fusion network publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3012548 – volume: 48 start-page: 11 year: 2019 end-page: 26 ident: CR29 article-title: FusionGAN: a generative adversarial network for infrared and visible image fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.004 – volume: 57 start-page: 235 issue: 3 year: 1995 end-page: 245 ident: CR12 article-title: Multisensor image fusion using the wavelet transform publication-title: Graph. Models Image Process. doi: 10.1006/gmip.1995.1022 – volume: 40 start-page: 1771 issue: 6 year: 2007 end-page: 1784 ident: CR1 article-title: Fusion of color and infrared video for moving human detection publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2006.11.010 – volume: 7 start-page: 1134 year: 2021 end-page: 1147 ident: CR26 article-title: GAN-FM: infrared and visible image fusion using GAN with full-scale skip connection and dual Markovian discriminators publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2021.3119954 – volume: 45 start-page: 153 year: 2019 end-page: 178 ident: CR5 article-title: Infrared and visible image fusion methods and applications: a survey publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.02.004 – volume: 71 start-page: 109 year: 2021 end-page: 129 ident: CR13 article-title: An infrared and visible image fusion method based on multi-scale transformation and norm optimization publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.02.008 – ident: CR21 – volume: 54 start-page: 99 year: 2020 end-page: 118 ident: CR30 article-title: IFCNN: a general image fusion framework based on convolutional neural network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.011 – volume: 152 start-page: 150 year: 2019 end-page: 157 ident: CR37 article-title: Hybrid multimodal medical image fusion using combination of transform techniques for disease analysis publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.05.037 – volume: 100 start-page: 103 year: 2020 ident: CR3 article-title: CrossFusion net: deep 3D object detection based on RGB images and point clouds in autonomous driving publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2020.103955 – volume: 194 start-page: 326 year: 2016 end-page: 339 ident: CR10 article-title: Union Laplacian pyramid with multiple features for medical image fusion publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.047 – volume: 36 start-page: 308 year: 2000 end-page: 309 ident: CR33 article-title: Objective image fusion performance measure publication-title: Electron. Lett. doi: 10.1049/el:20000267 – ident: CR17 – volume: 37 start-page: 538 issue: 1 year: 1999 end-page: 542 ident: CR14 article-title: Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.739109 – volume: 73 start-page: 72 year: 2021 end-page: 86 ident: CR24 article-title: RFN-Nest: an end-to-end residual fusion network for infrared and visible images publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.02.023 – ident: CR31 – volume: 59 start-page: 884 issue: 4 year: 2010 end-page: 892 ident: CR8 article-title: Multifocus image fusion and restoration with sparse representation publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2026612 – ident: CR11 – volume: 8 start-page: 110214 year: 2020 end-page: 110226 ident: CR19 article-title: Infrared and visible image fusion based on a latent low-rank representation nested with multiscale geometric transform publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001974 – volume: 30 start-page: 15 year: 2016 end-page: 26 ident: CR7 article-title: Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.11.003 – ident: CR28 – volume: 200 year: 2022 ident: CR25 article-title: Multimodal image fusion via coupled feature learning publication-title: Signal Process. doi: 10.1016/j.sigpro.2022.108637 – volume: 341 start-page: 199 year: 2015 end-page: 209 ident: CR36 article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition publication-title: Opt. Commun. doi: 10.1016/j.optcom.2014.12.032 – volume: 20 start-page: 209 issue: 3 year: 2013 ident: 2653_CR35 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2012.2227726 – volume: 36 start-page: 807 issue: 5 year: 2020 ident: 2653_CR2 publication-title: Korean J. Remote Sens. – volume: 73 start-page: 72 year: 2021 ident: 2653_CR24 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.02.023 – ident: 2653_CR31 – volume: 157 start-page: 143 year: 2015 ident: 2653_CR4 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.025 – ident: 2653_CR21 doi: 10.1109/ICCV.2011.6126422 – ident: 2653_CR18 doi: 10.1007/978-3-319-71607-7_59 – volume: 29 start-page: 4980 year: 2020 ident: 2653_CR23 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2977573 – volume: 48 start-page: 11 year: 2019 ident: 2653_CR29 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.004 – volume: 40 start-page: 1771 issue: 6 year: 2007 ident: 2653_CR1 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2006.11.010 – volume: 200 year: 2022 ident: 2653_CR25 publication-title: Signal Process. doi: 10.1016/j.sigpro.2022.108637 – volume: 36 start-page: 308 year: 2000 ident: 2653_CR33 publication-title: Electron. Lett. doi: 10.1049/el:20000267 – volume: 341 start-page: 199 year: 2015 ident: 2653_CR36 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2014.12.032 – volume: 37 start-page: 538 issue: 1 year: 1999 ident: 2653_CR14 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.739109 – volume: 9 start-page: 91462 year: 2021 ident: 2653_CR6 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3090436 – volume: 54 start-page: 99 year: 2020 ident: 2653_CR30 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.07.011 – volume: 50 start-page: 528 issue: 2 year: 2012 ident: 2653_CR15 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2161320 – volume: 100 start-page: 103 year: 2020 ident: 2653_CR3 publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2020.103955 – volume: 29 start-page: 4733 year: 2020 ident: 2653_CR20 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.2975984 – volume: 152 start-page: 150 year: 2019 ident: 2653_CR37 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.05.037 – volume: 45 start-page: 153 year: 2019 ident: 2653_CR5 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.02.004 – volume: 194 start-page: 326 year: 2016 ident: 2653_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.047 – volume: 44 start-page: 502 issue: 1 year: 2022 ident: 2653_CR27 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3012548 – volume: 8 start-page: 110214 year: 2020 ident: 2653_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001974 – volume: 508 start-page: 64 year: 2020 ident: 2653_CR9 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.08.066 – volume: 33 start-page: 100 year: 2017 ident: 2653_CR16 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.05.004 – volume: 7 start-page: 1134 year: 2021 ident: 2653_CR26 publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2021.3119954 – volume: 4 start-page: 133 year: 2015 ident: 2653_CR32 publication-title: Aquat. Procedia doi: 10.1016/j.aqpro.2015.02.019 – volume: 71 start-page: 109 year: 2021 ident: 2653_CR13 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.02.008 – volume: 82 start-page: 8 year: 2017 ident: 2653_CR22 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.02.005 – volume: 57 start-page: 235 issue: 3 year: 1995 ident: 2653_CR12 publication-title: Graph. Models Image Process. doi: 10.1006/gmip.1995.1022 – ident: 2653_CR17 – volume-title: Multi-sensor image fusion and its applications year: 2018 ident: 2653_CR34 doi: 10.1201/9781315221069 – volume: 30 start-page: 15 year: 2016 ident: 2653_CR7 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.11.003 – ident: 2653_CR11 – ident: 2653_CR28 doi: 10.1609/aaai.v34i07.6975 – volume: 59 start-page: 884 issue: 4 year: 2010 ident: 2653_CR8 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2026612 |
| SSID | ssj0000327868 |
| Score | 2.294911 |
| Snippet | Image fusion technology has been widely used in analyzing fusion effect under various settings. This paper proposed the image fusion method suitable for both... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4209 |
| SubjectTerms | Computer Imaging Computer Science Computer vision Decomposition Dictionaries Image Processing and Computer Vision Infrared imagery Multilayers Multimedia Information Systems Neural networks Original Paper Pattern Recognition and Graphics Registration Signal,Image and Speech Processing Teaching methods Vision Visual perception |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BYYCBQgFRKMgDG1hKYjt2RlRRMaAKCai6RYljl0ptitKU34-djwYQIMGQKZdTdLbvzva9dwCXvpZCW4gyJ0piykWEzV7FJnLKJZpLHhdE2qN7PhyK8Th4qEBhy7ravb6SLDx1A3Zzue9gE2PM4zOC2SZsMcs2Y_foj6P1yYpDPC5KDJzwLf-mQyq0zPdqPkekJs38cjNaBJxB-3-_ug97VYKJbsoZcQAbKu1Au27egKq13IHdD0yEh9AvgLh4ZkuI0MK4kbnRoVf2KA1Fs8kim-Yvc2QSXGRmZGaL1lGUJsgi0-OZQkZ8oo7geXD71L_DVX8FLM3Cy3HAhMfdyCPMoSrwYxPuAy2loCwROhBxImhEiVSJZFIIKaRmyuJYuSVsiRNJjqGVLlJ1Asjh2o88o0MGEU08EceUOV7geNokZH7kdsGtbRzKinzc9sCYhQ1tsrVZaGwWFjYLWReu1t-8ltQbv0r36qELq2W4DIlJ6IyHoa7Xhet6qJrXP2s7_Zv4GezYNvQlRrEHrTxbqXPYlm_5dJldFNPzHfDA25s priority: 102 providerName: Springer Nature |
| Title | Multi-level optimal fusion algorithm for infrared and visible image |
| URI | https://link.springer.com/article/10.1007/s11760-023-02653-5 https://www.proquest.com/docview/3256963412 |
| Volume | 17 |
| WOSCitedRecordID | wos001016160600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1863-1711 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: P5Z dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1863-1711 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: K7- dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1863-1711 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: RSV dateStart: 20070401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5RYICBN6I8Kg9sYJHEcexMCFAREqiqClSIJUocuyD1RVv4_ZwTlwISXRjiJfYp8p19l7O_7wCOI6OksRBlwbSioZApxX8VG8hpnxmhRFYQabfvRKMhn57ipku4jd21yumeWGzU-UDZHPkZQ9-MxhL6wfnwjdqqUfZ01ZXQqMCSZSpDO1-6rDeara8si8cCIUs8nIwsF6fHHHKmxM_5IvIoui18Is4o_-mdZiHnr1PSwvlcr__3szdgzYWd5KK0k01Y0P0tWP1GRrgNVwUWl3btLSIywJ2khwPMu82mkbTbQaGTlx7BGJegUY7svXWS9nNiwelZVxPs3tE78Hhdf7i6oa7EAlW49iY05jIQfhow7oU6jjL0-LFRSoY8lyaWWS7DNGRK54orKZVUhmsLZRWWsyXLFduFxf6gr_eAeMJEaYAyVJyGeSCzLOReEHuBwZgsSv0q-NOpTZTjH7dlMLrJjDnZqiNBdSSFOhJehZOvMcOSfWNu78OpDhK3EsfJTAFVOJ1qcfb6b2n786UdwIqtPF_CEg9hcTJ610ewrD4mr-NRzdlhDSq3gmLb5M_Ytu7bn1L_45M |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BUolygAKtuhSoD3ACq4kfsXOoqvISiGWFEK24hcSxAWnZpbsLiD_Fb2ScB0uR4MaBQ062R3K-8cz48c0ArETOaOcpyopbQ4XSKcW9ig_kbMidMiorEmn_bal2W5-cxIdjcF9zYfyzytomFoY67xl_Rv6Do29GZREh-3X1j_qqUf52tS6hUarFvr27xS3b4OfeFuK7ytjO9vHmLq2qClCD6jaksdRMhSnjMhA2jjJ0crEzRguZaxfrLNciFdzY3EijtdHGSevZm8qnKclyw1HuOEwILiLZgImN7fbh0eOpTsCZ0iX_Tkc-92fAK6ZOydcLVRRQdJP4RZJT-b83HIW4z25lC2e3M_PeftMnmK7CavK7XAezMGa7czD1JNniPGwWXGPa8a-kSA8t5SUOcNf-tJCknTOcxPD8kmAMT3DR9f27fJJ2c-LJ91nHEux-Zj_DnzeZxRdodHtd-xVIoFyUMpRh4lTkTGeZkAGLA-Yw5ozSsAlhDWViqvzqvsxHJxllhvbwJwh_UsCfyCasPY65KrOLvNp7scY8qSzNIBkB3oT1WmtGzS9LW3hd2neY3D0-aCWtvfb-N_jIvNIWFMxFaAz713YJPpib4cWgv1ytAQKnb61PD0HIPSU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEHp1NxXvPgm5a1TdKkjzIdimOIN3wrbZrMwdaNrfP3m_SyTVFBfOhT00M5OUm-JOf7DsCZpwRXhqLMsBQWYTy09F7FADnpYMUEizIh7Zc263T466t_v8Diz7LdyyvJnNNgVJqStDGKVWNOfHOYZ1t6vdGPR7FFl2GF6J2MSep6eHyZnbLY2GU858Nxz2hx2rhgznxv5vPqNIecX25Js8WnVf3_b2_BZgE80WUeKduwJJMaVMuiDqgY4zXYWFAo3IFmRtC1-ia1CA319DLQNtTUHLGhsN8djnvp2wBp4It0pI5NMjsKkxgZxnrUl0g378pdeG5dPzVvrKLugiX0gEwtn3KXOaGLqU2k70UaBvhKCE5ozJXPo5iTkGAhY0EF54ILRaXhtzIj5BLFAu9BJRkmch-QzZQXutqG8EMSuzyKCLVd33aVBmpe6NTBKf0diEKU3NTG6AdzOWXjs0D7LMh8FtA6nM--GeWSHL-2Piq7MSiG5yTAGujpmYc4bh0uym6bv_7Z2sHfmp_C2v1VK2jfdu4OYd1Uqs9pjEdQScdTeQyr4j3tTcYnWdR-AMkt52M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-level+optimal+fusion+algorithm+for+infrared+and+visible+image&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Jian%2C+Bo-Lin&rft.au=Tu%2C+Ching-Che&rft.date=2023-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=17&rft.issue=8&rft.spage=4209&rft.epage=4217&rft_id=info:doi/10.1007%2Fs11760-023-02653-5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |