A maximally robustness embedding algorithm in virtual data centers with multi-attribute node ranking based on TOPSIS

The virtualization of the data center network is one of the technologies that enable the performance guarantee and more flexibility and improve the utilization of infrastructure resources in cloud computing. One of the key issues in the management of virtual data center (VDC) is VDC embedding, which...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 75; no. 12; pp. 8059 - 8093
Main Authors: Shooshtarian, L., Safaei, F.
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2019
Springer Nature B.V
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The virtualization of the data center network is one of the technologies that enable the performance guarantee and more flexibility and improve the utilization of infrastructure resources in cloud computing. One of the key issues in the management of virtual data center (VDC) is VDC embedding, which deals with the efficient mapping of required virtual network resources from the shared resources of the infrastructure provider (InP). In this paper, we propose a new VDC embedding algorithm that is different from previous works in many aspects. First, the provision of robustness for data center infrastructure is one of the critical requirements of cloud technology; however, this challenge has not been considered in the related literature. In order to analyze and evaluate the robustness of the infrastructure network, the classical and spectral graph robustness metrics are employed. Second, in order to avoid imbalance mapping and increase the efficiency of infrastructure resources, besides the resource dynamic capacity, four node attributes are exploited to compute the nodes mapping potential. The TOPSIS technique for nodes ranking has been used to increase the compatibility with the ideal solution. Third, unlike previous works in which the mapping phases of nodes and links are getting used to being separated, in the proposed algorithm, the virtual network is mapped to a physical network in a single step. Fourth, we also consider resources for network nodes (switches or routers). For these purposes, a multi-objective mathematical optimization problem is extracted with two goals of maximizing infrastructure network robustness and minimizing the long-term average cost-to-revenue ratio mapping for InPs. Finally, a new single-stage (non-dominated sorting-based genetic algorithm) NSGAII-based online VDCE algorithm is presented, where node mapping is TOP-MANR based and edge mapping is based on the shortest path. The fat-tree topology is considered for the substrate and virtual networks, and these two networks are modeled as a weighted undirected graph.
AbstractList The virtualization of the data center network is one of the technologies that enable the performance guarantee and more flexibility and improve the utilization of infrastructure resources in cloud computing. One of the key issues in the management of virtual data center (VDC) is VDC embedding, which deals with the efficient mapping of required virtual network resources from the shared resources of the infrastructure provider (InP). In this paper, we propose a new VDC embedding algorithm that is different from previous works in many aspects. First, the provision of robustness for data center infrastructure is one of the critical requirements of cloud technology; however, this challenge has not been considered in the related literature. In order to analyze and evaluate the robustness of the infrastructure network, the classical and spectral graph robustness metrics are employed. Second, in order to avoid imbalance mapping and increase the efficiency of infrastructure resources, besides the resource dynamic capacity, four node attributes are exploited to compute the nodes mapping potential. The TOPSIS technique for nodes ranking has been used to increase the compatibility with the ideal solution. Third, unlike previous works in which the mapping phases of nodes and links are getting used to being separated, in the proposed algorithm, the virtual network is mapped to a physical network in a single step. Fourth, we also consider resources for network nodes (switches or routers). For these purposes, a multi-objective mathematical optimization problem is extracted with two goals of maximizing infrastructure network robustness and minimizing the long-term average cost-to-revenue ratio mapping for InPs. Finally, a new single-stage (non-dominated sorting-based genetic algorithm) NSGAII-based online VDCE algorithm is presented, where node mapping is TOP-MANR based and edge mapping is based on the shortest path. The fat-tree topology is considered for the substrate and virtual networks, and these two networks are modeled as a weighted undirected graph.
Author Shooshtarian, L.
Safaei, F.
Author_xml – sequence: 1
  givenname: L.
  surname: Shooshtarian
  fullname: Shooshtarian, L.
  organization: Faculty of Computer Science and Engineering, Shahid Beheshti University G.C
– sequence: 2
  givenname: F.
  surname: Safaei
  fullname: Safaei, F.
  email: f_safaei@sbu.ac.ir
  organization: Faculty of Computer Science and Engineering, Shahid Beheshti University G.C
BookMark eNp9kE1LJDEQhsOisKPrH_AU2HO08tGT5CjiqiAoOPeQ7q4e43YnmqRX_ffbOgsLHjzVod7nreI5IHsxRSTkmMMJB9CnhXMhNANuGQhrOLPfyIo3WjJQRu2RFVgBzDRKfCcHpTwCgJJarkg9o5N_DZMfxzeaUzuXGrEUilOLfR_ilvpxm3KoDxMNkf4Juc5-pL2vnnYYK-ZCX5YtneaxBuZrzaGdK9KYeqTZx9_vHa0v2NMU6eb27v76_gfZH_xY8OjfPCSbXxeb8yt2c3t5fX52wzrJbWW2gcabzqtBtFwB79R6EI21ndG2NcCVb1ujO92jUqiM6SVo0-Ma5QDDsJaH5Oeu9imn5xlLdY9pznG56ITka9U0QvMlZXapLqdSMg6uC9XXkGLNPoyOg3tX7HaK3aLYfSh2dkHFJ_QpLyrz29eQ3EFlCcct5v9ffUH9BalrkdE
CitedBy_id crossref_primary_10_1007_s40864_021_00155_6
crossref_primary_10_1007_s11227_022_04544_x
crossref_primary_10_1155_2020_5452397
crossref_primary_10_1038_s41598_022_23430_3
Cites_doi 10.1109/TLA.2015.7112029
10.1007/s00500-018-3152-7
10.1109/CloudNet.2015.7335299
10.1007/978-3-642-48318-9
10.1109/TNSM.2017.2782370
10.1145/1496091.1496103
10.2307/3033543
10.1145/3092819.3092827
10.1145/1610304.1610308
10.1109/PDCAT.2012.71
10.1145/1355734.1355737
10.1016/j.socnet.2004.11.008
10.1002/net.3230120406
10.1007/s11227-019-02849-y
10.1109/4235.996017
10.1109/INFOCOM.2014.6847950
10.1016/j.comcom.2017.02.011
10.1016/j.jnca.2017.05.013
10.1145/1807128.1807161
10.1145/2342356.2342439
10.1016/j.socnet.2004.11.009
10.1109/ICDCS.2017.127
10.1109/TCC.2013.5
10.3182/20110828-6-IT-1002.00486
10.1109/ICON.2007.4444099
10.1109/PDCAT.2016.031
10.21136/CMJ.1973.101168
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-019-02981-9
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 8093
ExternalDocumentID 10_1007_s11227_019_02981_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-9505a8ca4f2b1401c46f2599c879b8014abb87c7de44e488d3078de6e3f0ff63
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507498000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 01:05:56 EDT 2025
Tue Nov 18 22:10:21 EST 2025
Sat Nov 29 04:27:38 EST 2025
Fri Feb 21 02:27:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Network robustness
NSGAII
Virtual data center network (VDC)
Data center network virtualization
TOPSIS
Virtual network embedding algorithm (VNE)
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9505a8ca4f2b1401c46f2599c879b8014abb87c7de44e488d3078de6e3f0ff63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2316455271
PQPubID 2043774
PageCount 35
ParticipantIDs proquest_journals_2316455271
crossref_citationtrail_10_1007_s11227_019_02981_9
crossref_primary_10_1007_s11227_019_02981_9
springer_journals_10_1007_s11227_019_02981_9
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BorgattiSPCentrality and network flowSoc Netw2005271557195185810.1016/j.socnet.2004.11.008
Zhou Z, Chang X, Yang Y, Li L (2016) Resource-aware virtual network parallel embedding based on genetic algorithm. In: 2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Guangzhou, pp 81–86
Downtime Outages and failures-understanding their true costs. https://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html. Accessed July 2019
BianchiFPrestiFLA Markov reward based resource-latency aware heuristic for the virtual network embedding problemACM SIGMETRICS Perform Eval Rev2017444576810.1145/3092819.3092827
Herker S, Khan A, An X (2013) Survey on survivable virtual network embedding problem and solutions. In: The Ninth International Conference on Networking and Services, pp 99–104
Jamakovic A, Uhlig S (2007) Influence of the network structure on robustness. In: 2007 15th IEEE International Conference on Networks, Adelaide, SA, pp 278–283
KarBWuEH-KLinY-DEnergy cost optimization in dynamic placement of virtualized network function chainsIEEE Trans Netw Serv Manag201815137238610.1109/TNSM.2017.2782370
AmokraneAZhaniMFLangarRBoutabaRPujolleGGreenhead: virtual data center embedding across distributed infrastructuresIEEE Trans Cloud Comput201311364910.1109/TCC.2013.5
Tizghadam A, Leon-Garcia A (2008) On robust traffic engineering in core networks. In: IEEE GLOBECOM, December 2008
Mi X, Chang X, Liu J, Sun L, Xing B (2012) Embedding virtual infrastructure based on genetic algorithm. In: 2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies, Beijing, pp 239–244
MoharBAlaviYChartrandGOellermannORThe Laplacian spectrum of graphsGraph Theory Comb Appl199128718981170831
GongSChenJZhaoSZhuQVirtual network embedding with multi-attribute node ranking based on TOPSISKSII Trans Internet Inf Syst2016102522541
HwangCLYoonKPMultiple attribute decision making: methods and applications1981BerlinSpringer10.1007/978-3-642-48318-9
YiBWangXHuangMDesign and evaluation of schemes for provisioning service function chain with function scalabilityJ Netw Comput Appl201793119721410.1016/j.jnca.2017.05.013
Rost M, Schmid S (2018) NP-completeness and inapproximability of the virtual network embedding problem and its variants. arXiv:1801.03162 [CoRR]
ZhengXTianJXiaoXA heuristic survivable virtual network mapping algorithmSoft Comput20182351453146310.1007/s00500-018-3152-7
CorreaESFletscherLABoteroJFVirtual data center embedding: a surveyIEEE Latin Am Trans20151351661167010.1109/TLA.2015.7112029
Bigdeli A, Tizghadam A, Garcia AL (2009) Comparison of network criticality, algebraic connectivity, and other graphmetrics. In: Proceedings of the 1st Annual Workshop on Simplifying Complex Network for Practitioners
FreemanLCA set of measures of centrality based upon betweennessSociometry1977401354110.2307/3033543
Velocity and the bottom line. http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html. Accessed 17 Aug 2017
YuMYiYRexfordJChiangMRethinking virtual network embedding: substrate support for path splitting and migrationACM SIGCOMM Comput Commun Rev2008382172910.1145/1355734.1355737
FiedlerMAlgebraic connectivity of graphsCzechoslov Math J19732322983053180070265.05119
WeiPengSunDengfengWeighted Algebraic Connectivity: An Application to Airport Transportation NetworkIFAC Proceedings Volumes2011441138641386910.3182/20110828-6-IT-1002.00486
Gilesh MP, Kumar SDM, Jacob L, Bellur U (2017) Towards a complete virtual data center embedding algorithm using hybrid strategy. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, pp 2616–2617
BhamareDSamakaMErbadAJainRGuptaLChanHAOptimal virtual network function placement in multi-cloud service function chaining architectureComput Commun201710211610.1016/j.comcom.2017.02.011
KatohNIbarakiTMineHAn efficient algorithm for k-shortest simple-pathsNetworks19821241142768654210.1002/net.3230120406
GreenbergAThe cost of a cloud: research problems in data center networksACM SIGCOMM Comput Commun Rev20093916879121149710.1145/1496091.1496103
Zhang Q, Zhani MF, Jabri M, Boutaba R (2014) Venice: reliable virtual data center embedding in clouds. In: IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, pp 289–297
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
Vishwanath KV, Nagappan N (2010) Characterizing cloud computing hardware reliability. In: Proceedings of ACM Symposium on Cloud Computing (SoCC)
Tavakoli-SomehSRezvaniMHMulti-objective virtual network function placement using NSGA-II meta-heuristic approachJ Supercomput201910.1007/s11227-019-02849-y
NewmanMEJA measure of betweenness centrality based on random walksSocial Networks2005271395410.1016/j.socnet.2004.11.009
Zhani MF, Zhang Q, Simona G, Boutaba R (2013) VDC planner: dynamic migration-aware virtual data center embedding for clouds. In: 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), Ghent, pp 18–25
Bodík P, Menache I, Chowdhury M, Mani P, Maltz DA, Stoica I (2012) Surviving failures in bandwidth-constrained datacenters. In: Proceedings of Conference on Applications, Technologies, Architecture, and Protocols for Computer Communication, pp 431–442
RoszkowskaE“Multi-criteria decision making models by applying the TOPSIS method to crisp and interval dataMult Criteria Decis Mak Univ Econ Katow20116200230
Wang T, Qin B, Hamdi M (2015) An efficient framework for online virtual network embedding in virtualized cloud data centers. In: 2015 IEEE 4th International Conference on Cloud Networking (CloudNet), Niagara Falls, ON, pp 159–164
E Roszkowska (2981_CR31) 2011; 6
D Bhamare (2981_CR12) 2017; 102
CL Hwang (2981_CR30) 1981
Peng Wei (2981_CR34) 2011; 44
2981_CR6
2981_CR25
2981_CR8
F Bianchi (2981_CR9) 2017; 44
2981_CR26
2981_CR2
K Deb (2981_CR5) 2002; 6
2981_CR3
2981_CR4
X Zheng (2981_CR7) 2018; 23
S Tavakoli-Someh (2981_CR13) 2019
2981_CR1
B Mohar (2981_CR35) 1991; 2
A Greenberg (2981_CR20) 2009; 39
2981_CR21
S Gong (2981_CR24) 2016; 10
B Kar (2981_CR15) 2018; 15
2981_CR23
N Katoh (2981_CR36) 1982; 12
ES Correa (2981_CR19) 2015; 13
2981_CR18
2981_CR17
SP Borgatti (2981_CR29) 2005; 27
M Fiedler (2981_CR32) 1973; 23
2981_CR16
M Yu (2981_CR27) 2008; 38
MEJ Newman (2981_CR22) 2005; 27
B Yi (2981_CR14) 2017; 93
LC Freeman (2981_CR28) 1977; 40
A Amokrane (2981_CR10) 2013; 1
2981_CR11
2981_CR33
References_xml – reference: Zhang Q, Zhani MF, Jabri M, Boutaba R (2014) Venice: reliable virtual data center embedding in clouds. In: IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, pp 289–297
– reference: Bodík P, Menache I, Chowdhury M, Mani P, Maltz DA, Stoica I (2012) Surviving failures in bandwidth-constrained datacenters. In: Proceedings of Conference on Applications, Technologies, Architecture, and Protocols for Computer Communication, pp 431–442
– reference: Wang T, Qin B, Hamdi M (2015) An efficient framework for online virtual network embedding in virtualized cloud data centers. In: 2015 IEEE 4th International Conference on Cloud Networking (CloudNet), Niagara Falls, ON, pp 159–164
– reference: KarBWuEH-KLinY-DEnergy cost optimization in dynamic placement of virtualized network function chainsIEEE Trans Netw Serv Manag201815137238610.1109/TNSM.2017.2782370
– reference: FiedlerMAlgebraic connectivity of graphsCzechoslov Math J19732322983053180070265.05119
– reference: Vishwanath KV, Nagappan N (2010) Characterizing cloud computing hardware reliability. In: Proceedings of ACM Symposium on Cloud Computing (SoCC)
– reference: Mi X, Chang X, Liu J, Sun L, Xing B (2012) Embedding virtual infrastructure based on genetic algorithm. In: 2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies, Beijing, pp 239–244
– reference: Bigdeli A, Tizghadam A, Garcia AL (2009) Comparison of network criticality, algebraic connectivity, and other graphmetrics. In: Proceedings of the 1st Annual Workshop on Simplifying Complex Network for Practitioners
– reference: CorreaESFletscherLABoteroJFVirtual data center embedding: a surveyIEEE Latin Am Trans20151351661167010.1109/TLA.2015.7112029
– reference: Tizghadam A, Leon-Garcia A (2008) On robust traffic engineering in core networks. In: IEEE GLOBECOM, December 2008
– reference: GreenbergAThe cost of a cloud: research problems in data center networksACM SIGCOMM Comput Commun Rev20093916879121149710.1145/1496091.1496103
– reference: Herker S, Khan A, An X (2013) Survey on survivable virtual network embedding problem and solutions. In: The Ninth International Conference on Networking and Services, pp 99–104
– reference: Velocity and the bottom line. http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html. Accessed 17 Aug 2017
– reference: ZhengXTianJXiaoXA heuristic survivable virtual network mapping algorithmSoft Comput20182351453146310.1007/s00500-018-3152-7
– reference: AmokraneAZhaniMFLangarRBoutabaRPujolleGGreenhead: virtual data center embedding across distributed infrastructuresIEEE Trans Cloud Comput201311364910.1109/TCC.2013.5
– reference: Rost M, Schmid S (2018) NP-completeness and inapproximability of the virtual network embedding problem and its variants. arXiv:1801.03162 [CoRR]
– reference: KatohNIbarakiTMineHAn efficient algorithm for k-shortest simple-pathsNetworks19821241142768654210.1002/net.3230120406
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017
– reference: WeiPengSunDengfengWeighted Algebraic Connectivity: An Application to Airport Transportation NetworkIFAC Proceedings Volumes2011441138641386910.3182/20110828-6-IT-1002.00486
– reference: Tavakoli-SomehSRezvaniMHMulti-objective virtual network function placement using NSGA-II meta-heuristic approachJ Supercomput201910.1007/s11227-019-02849-y
– reference: Jamakovic A, Uhlig S (2007) Influence of the network structure on robustness. In: 2007 15th IEEE International Conference on Networks, Adelaide, SA, pp 278–283
– reference: Zhani MF, Zhang Q, Simona G, Boutaba R (2013) VDC planner: dynamic migration-aware virtual data center embedding for clouds. In: 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), Ghent, pp 18–25
– reference: BhamareDSamakaMErbadAJainRGuptaLChanHAOptimal virtual network function placement in multi-cloud service function chaining architectureComput Commun201710211610.1016/j.comcom.2017.02.011
– reference: BorgattiSPCentrality and network flowSoc Netw2005271557195185810.1016/j.socnet.2004.11.008
– reference: Gilesh MP, Kumar SDM, Jacob L, Bellur U (2017) Towards a complete virtual data center embedding algorithm using hybrid strategy. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, pp 2616–2617
– reference: BianchiFPrestiFLA Markov reward based resource-latency aware heuristic for the virtual network embedding problemACM SIGMETRICS Perform Eval Rev2017444576810.1145/3092819.3092827
– reference: NewmanMEJA measure of betweenness centrality based on random walksSocial Networks2005271395410.1016/j.socnet.2004.11.009
– reference: GongSChenJZhaoSZhuQVirtual network embedding with multi-attribute node ranking based on TOPSISKSII Trans Internet Inf Syst2016102522541
– reference: RoszkowskaE“Multi-criteria decision making models by applying the TOPSIS method to crisp and interval dataMult Criteria Decis Mak Univ Econ Katow20116200230
– reference: MoharBAlaviYChartrandGOellermannORThe Laplacian spectrum of graphsGraph Theory Comb Appl199128718981170831
– reference: YiBWangXHuangMDesign and evaluation of schemes for provisioning service function chain with function scalabilityJ Netw Comput Appl201793119721410.1016/j.jnca.2017.05.013
– reference: FreemanLCA set of measures of centrality based upon betweennessSociometry1977401354110.2307/3033543
– reference: Downtime Outages and failures-understanding their true costs. https://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html. Accessed July 2019
– reference: Zhou Z, Chang X, Yang Y, Li L (2016) Resource-aware virtual network parallel embedding based on genetic algorithm. In: 2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Guangzhou, pp 81–86
– reference: YuMYiYRexfordJChiangMRethinking virtual network embedding: substrate support for path splitting and migrationACM SIGCOMM Comput Commun Rev2008382172910.1145/1355734.1355737
– reference: HwangCLYoonKPMultiple attribute decision making: methods and applications1981BerlinSpringer10.1007/978-3-642-48318-9
– ident: 2981_CR8
– volume: 13
  start-page: 1661
  issue: 5
  year: 2015
  ident: 2981_CR19
  publication-title: IEEE Latin Am Trans
  doi: 10.1109/TLA.2015.7112029
– volume: 23
  start-page: 1453
  issue: 5
  year: 2018
  ident: 2981_CR7
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3152-7
– ident: 2981_CR11
  doi: 10.1109/CloudNet.2015.7335299
– ident: 2981_CR4
– ident: 2981_CR6
– volume-title: Multiple attribute decision making: methods and applications
  year: 1981
  ident: 2981_CR30
  doi: 10.1007/978-3-642-48318-9
– volume: 15
  start-page: 372386
  issue: 1
  year: 2018
  ident: 2981_CR15
  publication-title: IEEE Trans Netw Serv Manag
  doi: 10.1109/TNSM.2017.2782370
– ident: 2981_CR17
– volume: 39
  start-page: 68
  issue: 1
  year: 2009
  ident: 2981_CR20
  publication-title: ACM SIGCOMM Comput Commun Rev
  doi: 10.1145/1496091.1496103
– volume: 40
  start-page: 35
  issue: 1
  year: 1977
  ident: 2981_CR28
  publication-title: Sociometry
  doi: 10.2307/3033543
– volume: 44
  start-page: 57
  issue: 4
  year: 2017
  ident: 2981_CR9
  publication-title: ACM SIGMETRICS Perform Eval Rev
  doi: 10.1145/3092819.3092827
– ident: 2981_CR23
  doi: 10.1145/1610304.1610308
– ident: 2981_CR25
  doi: 10.1109/PDCAT.2012.71
– volume: 38
  start-page: 17
  issue: 2
  year: 2008
  ident: 2981_CR27
  publication-title: ACM SIGCOMM Comput Commun Rev
  doi: 10.1145/1355734.1355737
– volume: 27
  start-page: 55
  issue: 1
  year: 2005
  ident: 2981_CR29
  publication-title: Soc Netw
  doi: 10.1016/j.socnet.2004.11.008
– volume: 12
  start-page: 411
  year: 1982
  ident: 2981_CR36
  publication-title: Networks
  doi: 10.1002/net.3230120406
– volume: 6
  start-page: 200
  year: 2011
  ident: 2981_CR31
  publication-title: Mult Criteria Decis Mak Univ Econ Katow
– year: 2019
  ident: 2981_CR13
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-02849-y
– ident: 2981_CR3
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 2981_CR5
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.996017
– ident: 2981_CR21
– ident: 2981_CR1
  doi: 10.1109/INFOCOM.2014.6847950
– volume: 102
  start-page: 1
  year: 2017
  ident: 2981_CR12
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2017.02.011
– volume: 93
  start-page: 197
  issue: 1
  year: 2017
  ident: 2981_CR14
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2017.05.013
– ident: 2981_CR18
  doi: 10.1145/1807128.1807161
– ident: 2981_CR16
  doi: 10.1145/2342356.2342439
– volume: 27
  start-page: 39
  issue: 1
  year: 2005
  ident: 2981_CR22
  publication-title: Social Networks
  doi: 10.1016/j.socnet.2004.11.009
– ident: 2981_CR2
  doi: 10.1109/ICDCS.2017.127
– volume: 1
  start-page: 36
  issue: 1
  year: 2013
  ident: 2981_CR10
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2013.5
– volume: 44
  start-page: 13864
  issue: 1
  year: 2011
  ident: 2981_CR34
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20110828-6-IT-1002.00486
– volume: 10
  start-page: 522
  issue: 2
  year: 2016
  ident: 2981_CR24
  publication-title: KSII Trans Internet Inf Syst
– ident: 2981_CR33
  doi: 10.1109/ICON.2007.4444099
– volume: 2
  start-page: 871
  year: 1991
  ident: 2981_CR35
  publication-title: Graph Theory Comb Appl
– ident: 2981_CR26
  doi: 10.1109/PDCAT.2016.031
– volume: 23
  start-page: 298
  issue: 2
  year: 1973
  ident: 2981_CR32
  publication-title: Czechoslov Math J
  doi: 10.21136/CMJ.1973.101168
SSID ssj0004373
Score 2.2188644
Snippet The virtualization of the data center network is one of the technologies that enable the performance guarantee and more flexibility and improve the utilization...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8059
SubjectTerms Algorithms
Classification
Cloud computing
Compilers
Computer centers
Computer Science
Data centers
Embedding
Genetic algorithms
Infrastructure
Interpreters
Mapping
Multiple objective analysis
Nodes
Optimization
Processor Architectures
Programming Languages
Ranking
Robustness (mathematics)
Routers
Shortest-path problems
Sorting algorithms
Substrates
Switches
Switching theory
Topology
Virtual networks
Title A maximally robustness embedding algorithm in virtual data centers with multi-attribute node ranking based on TOPSIS
URI https://link.springer.com/article/10.1007/s11227-019-02981-9
https://www.proquest.com/docview/2316455271
Volume 75
WOSCitedRecordID wos000507498000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbo0kMvLFAQy6OaAzdqaZ14E_uIUBFcKOquELfIzxJpN0HZLGr_PZ5sQtSqINFzHCuaGc98E8_MR8gp82rsvbE0sT4kKC5WVI81o0mqudcT5bjQDdlEenMj7u_lbdsUtuyq3bsrycZT981uLIqwTFJSHBvOqPxANkO4E0jY8GN613dDxut7ZRkSIzHhUdsq8-89_gxHPcb861q0iTaXw__7zm2y1aJLOF-bww7ZcMUuGXbMDdAe5M-kPoeF-pUv1Hz-G6pSr5Y1ujxwC-0sRjNQ859lldcPC8gLeMorbDMBLCcFLOcMmBHwDy409YhU1WveLAdFaR0gDzzugRHSQlnA7Pvt9Hq6R2aX32YXV7TlX6AmHMyayoCOlDCK-0hjHmZ44kO2JI1IpcapM0prkZrUOs6DToUN_kJYl7jYB_0n8T4ZFGXhDgiYlGmnJ9aPheQBkKlEs9iFTI3FAb4lZkRYp4XMtLPJkSJjnvVTlVGqWZBq1kg1kyNy9vLO43oyx5urjzvlZu0pXWYB2yYcR9CxEfnaKbN__Ppuh-9bfkQ-RWgPTRXMMRnU1cqdkI_mqc6X1ZfGep8BmDzp-g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0CvrS-olXq86Db7pwm-wlu49FLC3Ws3iH9C3sZw3cJZJLi_737uQSg8UK-pzNEmZmZ36TnfkNwGse9DQE61jmQkxQfKqZmRrOstyIYGbaC2m6YRP5fC7Pz9VZ3xS2GardhyvJzlOPzW48SahMUjGiDedM3YY7IkYsYsz_vPgydkOm23tlFRMjORNJ3yrz5z1-D0cjxrx2LdpFm6O9__vOB7Dbo0s83JrDQ7jlq0ewN0xuwP4gP4b2ENf6e7nWq9UPbGpzuWnJ5aFfG-8omqFeXdRN2X5dY1nhVdlQmwlSOSlSOWfEjEh_cLGrR2S63c7N8ljVziPNgac9KEI6rCtcfjpbnCyewPLo_fLdMevnLzAbD2bLVERHWlotQmIoD7MiCzFbUlbmyhDrjDZG5jZ3XoioU-miv5DOZz4NUf9Z-hR2qrryzwBtzo03MxemUokIyHRmeOpjpsbTCN8yOwE-aKGwPTc5jchYFSOrMkm1iFItOqkWagJvfr3zbcvM8dfVB4Nyi_6UboqIbTNBFHR8Am8HZY6Pb95t_9-Wv4J7x8uPp8XpyfzDc7ifkG10FTEHsNM2l_4F3LVXbblpXnaW_BOX2uze
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiEutDyqLpTiQ29gdZ14E_tYQVdURctKu0K9RX5CpN2kyqYV_Hs8eZCCChLqOY4Vecaeb-JvvgE4Zl6NvTeWJtaHBMXFiuqxZjRJNfd6ohwXumk2kc5m4vJSzm9V8Tds9_5Ksq1pQJWmoj65sv5kKHxjUYSUSUlRQpxR-QB2OBLpMV9ffBkqI-P2jlmGJElMeNSVzdw9x--hacCbf1yRNpFnunv_b96DJx3qJKetmzyFLVc8g92-owPpNvhzqE_JWn3P12q1-kGqUl9vajwKiVtrZzHKEbX6WlZ5_W1N8oLc5BWWnxCkmRKkeQYsSfDPLml4ilTVbT8tR4rSOoL94XEOjJyWlAVZfp4vzhcvYDk9W77_SLu-DNSEDVtTGVCTEkZxH2nMzwxPfMiipBGp1KhGo7QWqUmt4zzYWthwjgjrEhf74BdJvA_bRVm4AyAmZdrpifVjIXkAairRLHYhg2NxgHWJGQHrLZKZTrMcW2esskFtGVc1C6uaNauayRG8_fXOVavY8c_Rh72hs273brKAeROO0nRsBO96ww6P_z7by_8b_gYezT9Ms0_ns4tX8DhC12iIMoewXVfX7jU8NDd1vqmOGqf-CVMx9cI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+maximally+robustness+embedding+algorithm+in+virtual+data+centers+with+multi-attribute+node+ranking+based+on+TOPSIS&rft.jtitle=The+Journal+of+supercomputing&rft.au=Shooshtarian%2C+L.&rft.au=Safaei%2C+F.&rft.date=2019-12-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=75&rft.issue=12&rft.spage=8059&rft.epage=8093&rft_id=info:doi/10.1007%2Fs11227-019-02981-9&rft.externalDocID=10_1007_s11227_019_02981_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon