A maximally robustness embedding algorithm in virtual data centers with multi-attribute node ranking based on TOPSIS
The virtualization of the data center network is one of the technologies that enable the performance guarantee and more flexibility and improve the utilization of infrastructure resources in cloud computing. One of the key issues in the management of virtual data center (VDC) is VDC embedding, which...
Saved in:
| Published in: | The Journal of supercomputing Vol. 75; no. 12; pp. 8059 - 8093 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2019
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The virtualization of the data center network is one of the technologies that enable the performance guarantee and more flexibility and improve the utilization of infrastructure resources in cloud computing. One of the key issues in the management of virtual data center (VDC) is VDC embedding, which deals with the efficient mapping of required virtual network resources from the shared resources of the infrastructure provider (InP). In this paper, we propose a new VDC embedding algorithm that is different from previous works in many aspects. First, the provision of robustness for data center infrastructure is one of the critical requirements of cloud technology; however, this challenge has not been considered in the related literature. In order to analyze and evaluate the robustness of the infrastructure network, the classical and spectral graph robustness metrics are employed. Second, in order to avoid imbalance mapping and increase the efficiency of infrastructure resources, besides the resource dynamic capacity, four node attributes are exploited to compute the nodes mapping potential. The TOPSIS technique for nodes ranking has been used to increase the compatibility with the ideal solution. Third, unlike previous works in which the mapping phases of nodes and links are getting used to being separated, in the proposed algorithm, the virtual network is mapped to a physical network in a single step. Fourth, we also consider resources for network nodes (switches or routers). For these purposes, a multi-objective mathematical optimization problem is extracted with two goals of maximizing infrastructure network robustness and minimizing the long-term average cost-to-revenue ratio mapping for InPs. Finally, a new single-stage (non-dominated sorting-based genetic algorithm) NSGAII-based online VDCE algorithm is presented, where node mapping is TOP-MANR based and edge mapping is based on the shortest path. The fat-tree topology is considered for the substrate and virtual networks, and these two networks are modeled as a weighted undirected graph. |
|---|---|
| AbstractList | The virtualization of the data center network is one of the technologies that enable the performance guarantee and more flexibility and improve the utilization of infrastructure resources in cloud computing. One of the key issues in the management of virtual data center (VDC) is VDC embedding, which deals with the efficient mapping of required virtual network resources from the shared resources of the infrastructure provider (InP). In this paper, we propose a new VDC embedding algorithm that is different from previous works in many aspects. First, the provision of robustness for data center infrastructure is one of the critical requirements of cloud technology; however, this challenge has not been considered in the related literature. In order to analyze and evaluate the robustness of the infrastructure network, the classical and spectral graph robustness metrics are employed. Second, in order to avoid imbalance mapping and increase the efficiency of infrastructure resources, besides the resource dynamic capacity, four node attributes are exploited to compute the nodes mapping potential. The TOPSIS technique for nodes ranking has been used to increase the compatibility with the ideal solution. Third, unlike previous works in which the mapping phases of nodes and links are getting used to being separated, in the proposed algorithm, the virtual network is mapped to a physical network in a single step. Fourth, we also consider resources for network nodes (switches or routers). For these purposes, a multi-objective mathematical optimization problem is extracted with two goals of maximizing infrastructure network robustness and minimizing the long-term average cost-to-revenue ratio mapping for InPs. Finally, a new single-stage (non-dominated sorting-based genetic algorithm) NSGAII-based online VDCE algorithm is presented, where node mapping is TOP-MANR based and edge mapping is based on the shortest path. The fat-tree topology is considered for the substrate and virtual networks, and these two networks are modeled as a weighted undirected graph. |
| Author | Shooshtarian, L. Safaei, F. |
| Author_xml | – sequence: 1 givenname: L. surname: Shooshtarian fullname: Shooshtarian, L. organization: Faculty of Computer Science and Engineering, Shahid Beheshti University G.C – sequence: 2 givenname: F. surname: Safaei fullname: Safaei, F. email: f_safaei@sbu.ac.ir organization: Faculty of Computer Science and Engineering, Shahid Beheshti University G.C |
| BookMark | eNp9kE1LJDEQhsOisKPrH_AU2HO08tGT5CjiqiAoOPeQ7q4e43YnmqRX_ffbOgsLHjzVod7nreI5IHsxRSTkmMMJB9CnhXMhNANuGQhrOLPfyIo3WjJQRu2RFVgBzDRKfCcHpTwCgJJarkg9o5N_DZMfxzeaUzuXGrEUilOLfR_ilvpxm3KoDxMNkf4Juc5-pL2vnnYYK-ZCX5YtneaxBuZrzaGdK9KYeqTZx9_vHa0v2NMU6eb27v76_gfZH_xY8OjfPCSbXxeb8yt2c3t5fX52wzrJbWW2gcabzqtBtFwB79R6EI21ndG2NcCVb1ujO92jUqiM6SVo0-Ma5QDDsJaH5Oeu9imn5xlLdY9pznG56ITka9U0QvMlZXapLqdSMg6uC9XXkGLNPoyOg3tX7HaK3aLYfSh2dkHFJ_QpLyrz29eQ3EFlCcct5v9ffUH9BalrkdE |
| CitedBy_id | crossref_primary_10_1007_s40864_021_00155_6 crossref_primary_10_1007_s11227_022_04544_x crossref_primary_10_1155_2020_5452397 crossref_primary_10_1038_s41598_022_23430_3 |
| Cites_doi | 10.1109/TLA.2015.7112029 10.1007/s00500-018-3152-7 10.1109/CloudNet.2015.7335299 10.1007/978-3-642-48318-9 10.1109/TNSM.2017.2782370 10.1145/1496091.1496103 10.2307/3033543 10.1145/3092819.3092827 10.1145/1610304.1610308 10.1109/PDCAT.2012.71 10.1145/1355734.1355737 10.1016/j.socnet.2004.11.008 10.1002/net.3230120406 10.1007/s11227-019-02849-y 10.1109/4235.996017 10.1109/INFOCOM.2014.6847950 10.1016/j.comcom.2017.02.011 10.1016/j.jnca.2017.05.013 10.1145/1807128.1807161 10.1145/2342356.2342439 10.1016/j.socnet.2004.11.009 10.1109/ICDCS.2017.127 10.1109/TCC.2013.5 10.3182/20110828-6-IT-1002.00486 10.1109/ICON.2007.4444099 10.1109/PDCAT.2016.031 10.21136/CMJ.1973.101168 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s11227-019-02981-9 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 8093 |
| ExternalDocumentID | 10_1007_s11227_019_02981_9 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-9505a8ca4f2b1401c46f2599c879b8014abb87c7de44e488d3078de6e3f0ff63 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000507498000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Thu Sep 25 01:05:56 EDT 2025 Tue Nov 18 22:10:21 EST 2025 Sat Nov 29 04:27:38 EST 2025 Fri Feb 21 02:27:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Network robustness NSGAII Virtual data center network (VDC) Data center network virtualization TOPSIS Virtual network embedding algorithm (VNE) Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-9505a8ca4f2b1401c46f2599c879b8014abb87c7de44e488d3078de6e3f0ff63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2316455271 |
| PQPubID | 2043774 |
| PageCount | 35 |
| ParticipantIDs | proquest_journals_2316455271 crossref_citationtrail_10_1007_s11227_019_02981_9 crossref_primary_10_1007_s11227_019_02981_9 springer_journals_10_1007_s11227_019_02981_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BorgattiSPCentrality and network flowSoc Netw2005271557195185810.1016/j.socnet.2004.11.008 Zhou Z, Chang X, Yang Y, Li L (2016) Resource-aware virtual network parallel embedding based on genetic algorithm. In: 2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Guangzhou, pp 81–86 Downtime Outages and failures-understanding their true costs. https://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html. Accessed July 2019 BianchiFPrestiFLA Markov reward based resource-latency aware heuristic for the virtual network embedding problemACM SIGMETRICS Perform Eval Rev2017444576810.1145/3092819.3092827 Herker S, Khan A, An X (2013) Survey on survivable virtual network embedding problem and solutions. In: The Ninth International Conference on Networking and Services, pp 99–104 Jamakovic A, Uhlig S (2007) Influence of the network structure on robustness. In: 2007 15th IEEE International Conference on Networks, Adelaide, SA, pp 278–283 KarBWuEH-KLinY-DEnergy cost optimization in dynamic placement of virtualized network function chainsIEEE Trans Netw Serv Manag201815137238610.1109/TNSM.2017.2782370 AmokraneAZhaniMFLangarRBoutabaRPujolleGGreenhead: virtual data center embedding across distributed infrastructuresIEEE Trans Cloud Comput201311364910.1109/TCC.2013.5 Tizghadam A, Leon-Garcia A (2008) On robust traffic engineering in core networks. In: IEEE GLOBECOM, December 2008 Mi X, Chang X, Liu J, Sun L, Xing B (2012) Embedding virtual infrastructure based on genetic algorithm. In: 2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies, Beijing, pp 239–244 MoharBAlaviYChartrandGOellermannORThe Laplacian spectrum of graphsGraph Theory Comb Appl199128718981170831 GongSChenJZhaoSZhuQVirtual network embedding with multi-attribute node ranking based on TOPSISKSII Trans Internet Inf Syst2016102522541 HwangCLYoonKPMultiple attribute decision making: methods and applications1981BerlinSpringer10.1007/978-3-642-48318-9 YiBWangXHuangMDesign and evaluation of schemes for provisioning service function chain with function scalabilityJ Netw Comput Appl201793119721410.1016/j.jnca.2017.05.013 Rost M, Schmid S (2018) NP-completeness and inapproximability of the virtual network embedding problem and its variants. arXiv:1801.03162 [CoRR] ZhengXTianJXiaoXA heuristic survivable virtual network mapping algorithmSoft Comput20182351453146310.1007/s00500-018-3152-7 CorreaESFletscherLABoteroJFVirtual data center embedding: a surveyIEEE Latin Am Trans20151351661167010.1109/TLA.2015.7112029 Bigdeli A, Tizghadam A, Garcia AL (2009) Comparison of network criticality, algebraic connectivity, and other graphmetrics. In: Proceedings of the 1st Annual Workshop on Simplifying Complex Network for Practitioners FreemanLCA set of measures of centrality based upon betweennessSociometry1977401354110.2307/3033543 Velocity and the bottom line. http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html. Accessed 17 Aug 2017 YuMYiYRexfordJChiangMRethinking virtual network embedding: substrate support for path splitting and migrationACM SIGCOMM Comput Commun Rev2008382172910.1145/1355734.1355737 FiedlerMAlgebraic connectivity of graphsCzechoslov Math J19732322983053180070265.05119 WeiPengSunDengfengWeighted Algebraic Connectivity: An Application to Airport Transportation NetworkIFAC Proceedings Volumes2011441138641386910.3182/20110828-6-IT-1002.00486 Gilesh MP, Kumar SDM, Jacob L, Bellur U (2017) Towards a complete virtual data center embedding algorithm using hybrid strategy. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, pp 2616–2617 BhamareDSamakaMErbadAJainRGuptaLChanHAOptimal virtual network function placement in multi-cloud service function chaining architectureComput Commun201710211610.1016/j.comcom.2017.02.011 KatohNIbarakiTMineHAn efficient algorithm for k-shortest simple-pathsNetworks19821241142768654210.1002/net.3230120406 GreenbergAThe cost of a cloud: research problems in data center networksACM SIGCOMM Comput Commun Rev20093916879121149710.1145/1496091.1496103 Zhang Q, Zhani MF, Jabri M, Boutaba R (2014) Venice: reliable virtual data center embedding in clouds. In: IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, pp 289–297 DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 Vishwanath KV, Nagappan N (2010) Characterizing cloud computing hardware reliability. In: Proceedings of ACM Symposium on Cloud Computing (SoCC) Tavakoli-SomehSRezvaniMHMulti-objective virtual network function placement using NSGA-II meta-heuristic approachJ Supercomput201910.1007/s11227-019-02849-y NewmanMEJA measure of betweenness centrality based on random walksSocial Networks2005271395410.1016/j.socnet.2004.11.009 Zhani MF, Zhang Q, Simona G, Boutaba R (2013) VDC planner: dynamic migration-aware virtual data center embedding for clouds. In: 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), Ghent, pp 18–25 Bodík P, Menache I, Chowdhury M, Mani P, Maltz DA, Stoica I (2012) Surviving failures in bandwidth-constrained datacenters. In: Proceedings of Conference on Applications, Technologies, Architecture, and Protocols for Computer Communication, pp 431–442 RoszkowskaE“Multi-criteria decision making models by applying the TOPSIS method to crisp and interval dataMult Criteria Decis Mak Univ Econ Katow20116200230 Wang T, Qin B, Hamdi M (2015) An efficient framework for online virtual network embedding in virtualized cloud data centers. In: 2015 IEEE 4th International Conference on Cloud Networking (CloudNet), Niagara Falls, ON, pp 159–164 E Roszkowska (2981_CR31) 2011; 6 D Bhamare (2981_CR12) 2017; 102 CL Hwang (2981_CR30) 1981 Peng Wei (2981_CR34) 2011; 44 2981_CR6 2981_CR25 2981_CR8 F Bianchi (2981_CR9) 2017; 44 2981_CR26 2981_CR2 K Deb (2981_CR5) 2002; 6 2981_CR3 2981_CR4 X Zheng (2981_CR7) 2018; 23 S Tavakoli-Someh (2981_CR13) 2019 2981_CR1 B Mohar (2981_CR35) 1991; 2 A Greenberg (2981_CR20) 2009; 39 2981_CR21 S Gong (2981_CR24) 2016; 10 B Kar (2981_CR15) 2018; 15 2981_CR23 N Katoh (2981_CR36) 1982; 12 ES Correa (2981_CR19) 2015; 13 2981_CR18 2981_CR17 SP Borgatti (2981_CR29) 2005; 27 M Fiedler (2981_CR32) 1973; 23 2981_CR16 M Yu (2981_CR27) 2008; 38 MEJ Newman (2981_CR22) 2005; 27 B Yi (2981_CR14) 2017; 93 LC Freeman (2981_CR28) 1977; 40 A Amokrane (2981_CR10) 2013; 1 2981_CR11 2981_CR33 |
| References_xml | – reference: Zhang Q, Zhani MF, Jabri M, Boutaba R (2014) Venice: reliable virtual data center embedding in clouds. In: IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, pp 289–297 – reference: Bodík P, Menache I, Chowdhury M, Mani P, Maltz DA, Stoica I (2012) Surviving failures in bandwidth-constrained datacenters. In: Proceedings of Conference on Applications, Technologies, Architecture, and Protocols for Computer Communication, pp 431–442 – reference: Wang T, Qin B, Hamdi M (2015) An efficient framework for online virtual network embedding in virtualized cloud data centers. In: 2015 IEEE 4th International Conference on Cloud Networking (CloudNet), Niagara Falls, ON, pp 159–164 – reference: KarBWuEH-KLinY-DEnergy cost optimization in dynamic placement of virtualized network function chainsIEEE Trans Netw Serv Manag201815137238610.1109/TNSM.2017.2782370 – reference: FiedlerMAlgebraic connectivity of graphsCzechoslov Math J19732322983053180070265.05119 – reference: Vishwanath KV, Nagappan N (2010) Characterizing cloud computing hardware reliability. In: Proceedings of ACM Symposium on Cloud Computing (SoCC) – reference: Mi X, Chang X, Liu J, Sun L, Xing B (2012) Embedding virtual infrastructure based on genetic algorithm. In: 2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies, Beijing, pp 239–244 – reference: Bigdeli A, Tizghadam A, Garcia AL (2009) Comparison of network criticality, algebraic connectivity, and other graphmetrics. In: Proceedings of the 1st Annual Workshop on Simplifying Complex Network for Practitioners – reference: CorreaESFletscherLABoteroJFVirtual data center embedding: a surveyIEEE Latin Am Trans20151351661167010.1109/TLA.2015.7112029 – reference: Tizghadam A, Leon-Garcia A (2008) On robust traffic engineering in core networks. In: IEEE GLOBECOM, December 2008 – reference: GreenbergAThe cost of a cloud: research problems in data center networksACM SIGCOMM Comput Commun Rev20093916879121149710.1145/1496091.1496103 – reference: Herker S, Khan A, An X (2013) Survey on survivable virtual network embedding problem and solutions. In: The Ninth International Conference on Networking and Services, pp 99–104 – reference: Velocity and the bottom line. http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html. Accessed 17 Aug 2017 – reference: ZhengXTianJXiaoXA heuristic survivable virtual network mapping algorithmSoft Comput20182351453146310.1007/s00500-018-3152-7 – reference: AmokraneAZhaniMFLangarRBoutabaRPujolleGGreenhead: virtual data center embedding across distributed infrastructuresIEEE Trans Cloud Comput201311364910.1109/TCC.2013.5 – reference: Rost M, Schmid S (2018) NP-completeness and inapproximability of the virtual network embedding problem and its variants. arXiv:1801.03162 [CoRR] – reference: KatohNIbarakiTMineHAn efficient algorithm for k-shortest simple-pathsNetworks19821241142768654210.1002/net.3230120406 – reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGA-IIIEEE Trans Evol Comput20026218219710.1109/4235.996017 – reference: WeiPengSunDengfengWeighted Algebraic Connectivity: An Application to Airport Transportation NetworkIFAC Proceedings Volumes2011441138641386910.3182/20110828-6-IT-1002.00486 – reference: Tavakoli-SomehSRezvaniMHMulti-objective virtual network function placement using NSGA-II meta-heuristic approachJ Supercomput201910.1007/s11227-019-02849-y – reference: Jamakovic A, Uhlig S (2007) Influence of the network structure on robustness. In: 2007 15th IEEE International Conference on Networks, Adelaide, SA, pp 278–283 – reference: Zhani MF, Zhang Q, Simona G, Boutaba R (2013) VDC planner: dynamic migration-aware virtual data center embedding for clouds. In: 2013 IFIP/IEEE International Symposium on Integrated Network Management (IM 2013), Ghent, pp 18–25 – reference: BhamareDSamakaMErbadAJainRGuptaLChanHAOptimal virtual network function placement in multi-cloud service function chaining architectureComput Commun201710211610.1016/j.comcom.2017.02.011 – reference: BorgattiSPCentrality and network flowSoc Netw2005271557195185810.1016/j.socnet.2004.11.008 – reference: Gilesh MP, Kumar SDM, Jacob L, Bellur U (2017) Towards a complete virtual data center embedding algorithm using hybrid strategy. In: 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, pp 2616–2617 – reference: BianchiFPrestiFLA Markov reward based resource-latency aware heuristic for the virtual network embedding problemACM SIGMETRICS Perform Eval Rev2017444576810.1145/3092819.3092827 – reference: NewmanMEJA measure of betweenness centrality based on random walksSocial Networks2005271395410.1016/j.socnet.2004.11.009 – reference: GongSChenJZhaoSZhuQVirtual network embedding with multi-attribute node ranking based on TOPSISKSII Trans Internet Inf Syst2016102522541 – reference: RoszkowskaE“Multi-criteria decision making models by applying the TOPSIS method to crisp and interval dataMult Criteria Decis Mak Univ Econ Katow20116200230 – reference: MoharBAlaviYChartrandGOellermannORThe Laplacian spectrum of graphsGraph Theory Comb Appl199128718981170831 – reference: YiBWangXHuangMDesign and evaluation of schemes for provisioning service function chain with function scalabilityJ Netw Comput Appl201793119721410.1016/j.jnca.2017.05.013 – reference: FreemanLCA set of measures of centrality based upon betweennessSociometry1977401354110.2307/3033543 – reference: Downtime Outages and failures-understanding their true costs. https://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html. Accessed July 2019 – reference: Zhou Z, Chang X, Yang Y, Li L (2016) Resource-aware virtual network parallel embedding based on genetic algorithm. In: 2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Guangzhou, pp 81–86 – reference: YuMYiYRexfordJChiangMRethinking virtual network embedding: substrate support for path splitting and migrationACM SIGCOMM Comput Commun Rev2008382172910.1145/1355734.1355737 – reference: HwangCLYoonKPMultiple attribute decision making: methods and applications1981BerlinSpringer10.1007/978-3-642-48318-9 – ident: 2981_CR8 – volume: 13 start-page: 1661 issue: 5 year: 2015 ident: 2981_CR19 publication-title: IEEE Latin Am Trans doi: 10.1109/TLA.2015.7112029 – volume: 23 start-page: 1453 issue: 5 year: 2018 ident: 2981_CR7 publication-title: Soft Comput doi: 10.1007/s00500-018-3152-7 – ident: 2981_CR11 doi: 10.1109/CloudNet.2015.7335299 – ident: 2981_CR4 – ident: 2981_CR6 – volume-title: Multiple attribute decision making: methods and applications year: 1981 ident: 2981_CR30 doi: 10.1007/978-3-642-48318-9 – volume: 15 start-page: 372386 issue: 1 year: 2018 ident: 2981_CR15 publication-title: IEEE Trans Netw Serv Manag doi: 10.1109/TNSM.2017.2782370 – ident: 2981_CR17 – volume: 39 start-page: 68 issue: 1 year: 2009 ident: 2981_CR20 publication-title: ACM SIGCOMM Comput Commun Rev doi: 10.1145/1496091.1496103 – volume: 40 start-page: 35 issue: 1 year: 1977 ident: 2981_CR28 publication-title: Sociometry doi: 10.2307/3033543 – volume: 44 start-page: 57 issue: 4 year: 2017 ident: 2981_CR9 publication-title: ACM SIGMETRICS Perform Eval Rev doi: 10.1145/3092819.3092827 – ident: 2981_CR23 doi: 10.1145/1610304.1610308 – ident: 2981_CR25 doi: 10.1109/PDCAT.2012.71 – volume: 38 start-page: 17 issue: 2 year: 2008 ident: 2981_CR27 publication-title: ACM SIGCOMM Comput Commun Rev doi: 10.1145/1355734.1355737 – volume: 27 start-page: 55 issue: 1 year: 2005 ident: 2981_CR29 publication-title: Soc Netw doi: 10.1016/j.socnet.2004.11.008 – volume: 12 start-page: 411 year: 1982 ident: 2981_CR36 publication-title: Networks doi: 10.1002/net.3230120406 – volume: 6 start-page: 200 year: 2011 ident: 2981_CR31 publication-title: Mult Criteria Decis Mak Univ Econ Katow – year: 2019 ident: 2981_CR13 publication-title: J Supercomput doi: 10.1007/s11227-019-02849-y – ident: 2981_CR3 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 2981_CR5 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.996017 – ident: 2981_CR21 – ident: 2981_CR1 doi: 10.1109/INFOCOM.2014.6847950 – volume: 102 start-page: 1 year: 2017 ident: 2981_CR12 publication-title: Comput Commun doi: 10.1016/j.comcom.2017.02.011 – volume: 93 start-page: 197 issue: 1 year: 2017 ident: 2981_CR14 publication-title: J Netw Comput Appl doi: 10.1016/j.jnca.2017.05.013 – ident: 2981_CR18 doi: 10.1145/1807128.1807161 – ident: 2981_CR16 doi: 10.1145/2342356.2342439 – volume: 27 start-page: 39 issue: 1 year: 2005 ident: 2981_CR22 publication-title: Social Networks doi: 10.1016/j.socnet.2004.11.009 – ident: 2981_CR2 doi: 10.1109/ICDCS.2017.127 – volume: 1 start-page: 36 issue: 1 year: 2013 ident: 2981_CR10 publication-title: IEEE Trans Cloud Comput doi: 10.1109/TCC.2013.5 – volume: 44 start-page: 13864 issue: 1 year: 2011 ident: 2981_CR34 publication-title: IFAC Proceedings Volumes doi: 10.3182/20110828-6-IT-1002.00486 – volume: 10 start-page: 522 issue: 2 year: 2016 ident: 2981_CR24 publication-title: KSII Trans Internet Inf Syst – ident: 2981_CR33 doi: 10.1109/ICON.2007.4444099 – volume: 2 start-page: 871 year: 1991 ident: 2981_CR35 publication-title: Graph Theory Comb Appl – ident: 2981_CR26 doi: 10.1109/PDCAT.2016.031 – volume: 23 start-page: 298 issue: 2 year: 1973 ident: 2981_CR32 publication-title: Czechoslov Math J doi: 10.21136/CMJ.1973.101168 |
| SSID | ssj0004373 |
| Score | 2.2188644 |
| Snippet | The virtualization of the data center network is one of the technologies that enable the performance guarantee and more flexibility and improve the utilization... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8059 |
| SubjectTerms | Algorithms Classification Cloud computing Compilers Computer centers Computer Science Data centers Embedding Genetic algorithms Infrastructure Interpreters Mapping Multiple objective analysis Nodes Optimization Processor Architectures Programming Languages Ranking Robustness (mathematics) Routers Shortest-path problems Sorting algorithms Substrates Switches Switching theory Topology Virtual networks |
| Title | A maximally robustness embedding algorithm in virtual data centers with multi-attribute node ranking based on TOPSIS |
| URI | https://link.springer.com/article/10.1007/s11227-019-02981-9 https://www.proquest.com/docview/2316455271 |
| Volume | 75 |
| WOSCitedRecordID | wos000507498000021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbo0kMvLFAQy6OaAzdqaZ14E_uIUBFcKOquELfIzxJpN0HZLGr_PZ5sQtSqINFzHCuaGc98E8_MR8gp82rsvbE0sT4kKC5WVI81o0mqudcT5bjQDdlEenMj7u_lbdsUtuyq3bsrycZT981uLIqwTFJSHBvOqPxANkO4E0jY8GN613dDxut7ZRkSIzHhUdsq8-89_gxHPcb861q0iTaXw__7zm2y1aJLOF-bww7ZcMUuGXbMDdAe5M-kPoeF-pUv1Hz-G6pSr5Y1ujxwC-0sRjNQ859lldcPC8gLeMorbDMBLCcFLOcMmBHwDy409YhU1WveLAdFaR0gDzzugRHSQlnA7Pvt9Hq6R2aX32YXV7TlX6AmHMyayoCOlDCK-0hjHmZ44kO2JI1IpcapM0prkZrUOs6DToUN_kJYl7jYB_0n8T4ZFGXhDgiYlGmnJ9aPheQBkKlEs9iFTI3FAb4lZkRYp4XMtLPJkSJjnvVTlVGqWZBq1kg1kyNy9vLO43oyx5urjzvlZu0pXWYB2yYcR9CxEfnaKbN__Ppuh-9bfkQ-RWgPTRXMMRnU1cqdkI_mqc6X1ZfGep8BmDzp-g |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0CvrS-olXq86Db7pwm-wlu49FLC3Ws3iH9C3sZw3cJZJLi_737uQSg8UK-pzNEmZmZ36TnfkNwGse9DQE61jmQkxQfKqZmRrOstyIYGbaC2m6YRP5fC7Pz9VZ3xS2GardhyvJzlOPzW48SahMUjGiDedM3YY7IkYsYsz_vPgydkOm23tlFRMjORNJ3yrz5z1-D0cjxrx2LdpFm6O9__vOB7Dbo0s83JrDQ7jlq0ewN0xuwP4gP4b2ENf6e7nWq9UPbGpzuWnJ5aFfG-8omqFeXdRN2X5dY1nhVdlQmwlSOSlSOWfEjEh_cLGrR2S63c7N8ljVziPNgac9KEI6rCtcfjpbnCyewPLo_fLdMevnLzAbD2bLVERHWlotQmIoD7MiCzFbUlbmyhDrjDZG5jZ3XoioU-miv5DOZz4NUf9Z-hR2qrryzwBtzo03MxemUokIyHRmeOpjpsbTCN8yOwE-aKGwPTc5jchYFSOrMkm1iFItOqkWagJvfr3zbcvM8dfVB4Nyi_6UboqIbTNBFHR8Am8HZY6Pb95t_9-Wv4J7x8uPp8XpyfzDc7ifkG10FTEHsNM2l_4F3LVXbblpXnaW_BOX2uze |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFiEutDyqLpTiQ29gdZ14E_tYQVdURctKu0K9RX5CpN2kyqYV_Hs8eZCCChLqOY4Vecaeb-JvvgE4Zl6NvTeWJtaHBMXFiuqxZjRJNfd6ohwXumk2kc5m4vJSzm9V8Tds9_5Ksq1pQJWmoj65sv5kKHxjUYSUSUlRQpxR-QB2OBLpMV9ffBkqI-P2jlmGJElMeNSVzdw9x--hacCbf1yRNpFnunv_b96DJx3qJKetmzyFLVc8g92-owPpNvhzqE_JWn3P12q1-kGqUl9vajwKiVtrZzHKEbX6WlZ5_W1N8oLc5BWWnxCkmRKkeQYsSfDPLml4ilTVbT8tR4rSOoL94XEOjJyWlAVZfp4vzhcvYDk9W77_SLu-DNSEDVtTGVCTEkZxH2nMzwxPfMiipBGp1KhGo7QWqUmt4zzYWthwjgjrEhf74BdJvA_bRVm4AyAmZdrpifVjIXkAairRLHYhg2NxgHWJGQHrLZKZTrMcW2esskFtGVc1C6uaNauayRG8_fXOVavY8c_Rh72hs273brKAeROO0nRsBO96ww6P_z7by_8b_gYezT9Ms0_ns4tX8DhC12iIMoewXVfX7jU8NDd1vqmOGqf-CVMx9cI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+maximally+robustness+embedding+algorithm+in+virtual+data+centers+with+multi-attribute+node+ranking+based+on+TOPSIS&rft.jtitle=The+Journal+of+supercomputing&rft.au=Shooshtarian%2C+L.&rft.au=Safaei%2C+F.&rft.date=2019-12-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=75&rft.issue=12&rft.spage=8059&rft.epage=8093&rft_id=info:doi/10.1007%2Fs11227-019-02981-9&rft.externalDocID=10_1007_s11227_019_02981_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |