A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding
The multilevel image thresholding is one of the important steps in multimedia tools to understand and interpret the object in the real world. Nevertheless, 1-D Masi entropy is quite new in the thresholding application. However, the 1-D Masi entropy-based image thresholding fails to consider the cont...
Saved in:
| Published in: | Multimedia tools and applications Vol. 80; no. 28-29; pp. 35543 - 35583 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.11.2021
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1380-7501, 1573-7721 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The multilevel image thresholding is one of the important steps in multimedia tools to understand and interpret the object in the real world. Nevertheless, 1-D Masi entropy is quite new in the thresholding application. However, the 1-D Masi entropy-based image thresholding fails to consider the contextual information. To address this problem, we propose a 2-D Masi entropy-based multilevel image thresholding by utilizing a 2-D histogram, which ensures the contextual information during the thresholding process. The computational complexity in multilevel thresholding increases due to the exhaustive search process, which can be reduced by a nature-inspired optimizer. In this work, we propose a leader Harris hawks optimization (LHHO) for multilevel image thresholding, to enhance the exploration capability of Harris hawks optimization (HHO). The increased exploration can be achieved by an adaptive perching during the exploration phase together with a leader-based mutation-selection during each generation of Harris hawks. The performance of LHHO is evaluated using the standard classical 23 benchmark functions and found better than HHO. The LHHO is employed to obtain optimal threshold values using 2-D Masi entropy-based multilevel thresholding objective function. For the experiments, 500 images from the Berkeley segmentation dataset (BSDS 500) are considered. A comparative study on state-of-the-art algorithm-based thresholding methods, using segmentation metrics such as – peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and the feature similarity index (FSIM), is performed. The experimental results reveal a remarkable difference in the thresholding performance. For instance, the average
PSNR
values (computed over 500 images) for the level 5 are increased by 2% to 4% in case of 2-D Masi entropy over 1-D Masi entropy. |
|---|---|
| AbstractList | The multilevel image thresholding is one of the important steps in multimedia tools to understand and interpret the object in the real world. Nevertheless, 1-D Masi entropy is quite new in the thresholding application. However, the 1-D Masi entropy-based image thresholding fails to consider the contextual information. To address this problem, we propose a 2-D Masi entropy-based multilevel image thresholding by utilizing a 2-D histogram, which ensures the contextual information during the thresholding process. The computational complexity in multilevel thresholding increases due to the exhaustive search process, which can be reduced by a nature-inspired optimizer. In this work, we propose a leader Harris hawks optimization (LHHO) for multilevel image thresholding, to enhance the exploration capability of Harris hawks optimization (HHO). The increased exploration can be achieved by an adaptive perching during the exploration phase together with a leader-based mutation-selection during each generation of Harris hawks. The performance of LHHO is evaluated using the standard classical 23 benchmark functions and found better than HHO. The LHHO is employed to obtain optimal threshold values using 2-D Masi entropy-based multilevel thresholding objective function. For the experiments, 500 images from the Berkeley segmentation dataset (BSDS 500) are considered. A comparative study on state-of-the-art algorithm-based thresholding methods, using segmentation metrics such as – peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and the feature similarity index (FSIM), is performed. The experimental results reveal a remarkable difference in the thresholding performance. For instance, the average PSNR values (computed over 500 images) for the level 5 are increased by 2% to 4% in case of 2-D Masi entropy over 1-D Masi entropy. The multilevel image thresholding is one of the important steps in multimedia tools to understand and interpret the object in the real world. Nevertheless, 1-D Masi entropy is quite new in the thresholding application. However, the 1-D Masi entropy-based image thresholding fails to consider the contextual information. To address this problem, we propose a 2-D Masi entropy-based multilevel image thresholding by utilizing a 2-D histogram, which ensures the contextual information during the thresholding process. The computational complexity in multilevel thresholding increases due to the exhaustive search process, which can be reduced by a nature-inspired optimizer. In this work, we propose a leader Harris hawks optimization (LHHO) for multilevel image thresholding, to enhance the exploration capability of Harris hawks optimization (HHO). The increased exploration can be achieved by an adaptive perching during the exploration phase together with a leader-based mutation-selection during each generation of Harris hawks. The performance of LHHO is evaluated using the standard classical 23 benchmark functions and found better than HHO. The LHHO is employed to obtain optimal threshold values using 2-D Masi entropy-based multilevel thresholding objective function. For the experiments, 500 images from the Berkeley segmentation dataset (BSDS 500) are considered. A comparative study on state-of-the-art algorithm-based thresholding methods, using segmentation metrics such as – peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and the feature similarity index (FSIM), is performed. The experimental results reveal a remarkable difference in the thresholding performance. For instance, the average PSNR values (computed over 500 images) for the level 5 are increased by 2% to 4% in case of 2-D Masi entropy over 1-D Masi entropy. |
| Author | Naik, Manoj Kumar Jena, Bibekananda Panda, Rutuparna Wunnava, Aneesh Abraham, Ajith |
| Author_xml | – sequence: 1 givenname: Manoj Kumar orcidid: 0000-0002-8077-1811 surname: Naik fullname: Naik, Manoj Kumar email: naik.manoj.kumar@gmail.com organization: Faculty of Engineering and Technology, Siksha O Anusandhan – sequence: 2 givenname: Rutuparna surname: Panda fullname: Panda, Rutuparna organization: Dept. of Electronics and Telecommunication Engineering, Veer Surendra Sai University of Technology – sequence: 3 givenname: Aneesh surname: Wunnava fullname: Wunnava, Aneesh organization: Faculty of Engineering and Technology, Siksha O Anusandhan – sequence: 4 givenname: Bibekananda surname: Jena fullname: Jena, Bibekananda organization: Dept. of Electronics and Communication Engineering, Anil Neerukonda Institute of Technology & Science – sequence: 5 givenname: Ajith surname: Abraham fullname: Abraham, Ajith organization: Machine Intelligence Research Labs, Scientific Network for Innovation and Research Excellence |
| BookMark | eNp9kDtPwzAQgC1UJNrCH2CyxGywnYedsSqPIhWxwMRgOcmldUnjYLug8usxDRISA9OdTvfd45ugUWc7QOic0UtGqbjyjNGUE8opiUkuiDhCY5aJhAjB2SjmiaREZJSdoIn3G0pZnvF0jF5muAVdg8ML7ZzxeK0_Xj22fTBb86mDsR1urMOcXOMH7Q2GLjjb70mpPdR4u2uDaeEdWmy2egU4rB34tW1r061O0XGjWw9nP3GKnm9vnuYLsny8u5_PlqRKWBFIkUKdy4xntdRQNYXUJSuTPNWxmHOhZVnJJm1qqKGCtCwEL3KZZwWteHyK0WSKLoa5vbNvO_BBbezOdXGl4nm0kRWcJ7GLD12Vs947aFTv4s1urxhV3xLVIFFFieogUYkIyT9QZcLBSnDatP-jyYD6uKdbgfu96h_qC_mBiFM |
| CitedBy_id | crossref_primary_10_1155_2022_1796642 crossref_primary_10_1016_j_aei_2024_102516 crossref_primary_10_1016_j_engappai_2023_105958 crossref_primary_10_1016_j_apm_2022_11_016 crossref_primary_10_3390_electronics13142839 crossref_primary_10_1016_j_compeleceng_2025_110637 crossref_primary_10_3390_biomimetics9090552 crossref_primary_10_1016_j_cma_2023_115878 crossref_primary_10_1007_s10586_024_04441_3 crossref_primary_10_1007_s13198_024_02696_y crossref_primary_10_1007_s42235_024_00539_x crossref_primary_10_1109_ACCESS_2022_3215082 crossref_primary_10_1007_s00521_024_09612_2 crossref_primary_10_1007_s11042_023_15668_4 crossref_primary_10_3390_math13071212 crossref_primary_10_1007_s11071_024_10545_7 crossref_primary_10_1002_eng2_12974 crossref_primary_10_1007_s11042_023_18044_4 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_3390_electronics11121919 crossref_primary_10_1186_s40537_023_00864_8 crossref_primary_10_1016_j_renene_2024_120011 crossref_primary_10_1177_1088467X241301637 crossref_primary_10_1007_s11227_023_05628_y crossref_primary_10_1016_j_ijhydene_2025_04_301 crossref_primary_10_1080_21642583_2023_2249021 crossref_primary_10_1007_s13042_024_02273_6 crossref_primary_10_1016_j_est_2023_109891 crossref_primary_10_1016_j_ins_2023_01_065 crossref_primary_10_1007_s10586_025_05613_5 crossref_primary_10_1007_s10462_022_10233_1 crossref_primary_10_1016_j_advengsoft_2024_103862 crossref_primary_10_1007_s10586_024_04290_0 crossref_primary_10_1007_s10489_024_05537_4 crossref_primary_10_3390_app15179808 crossref_primary_10_1016_j_optlastec_2024_111294 crossref_primary_10_1016_j_ijleo_2022_168873 crossref_primary_10_1016_j_engappai_2021_104608 crossref_primary_10_1063_5_0262665 crossref_primary_10_1007_s11269_024_03893_x crossref_primary_10_1016_j_matpr_2023_11_097 crossref_primary_10_1007_s00521_025_10982_4 crossref_primary_10_1016_j_ijhydene_2024_09_027 crossref_primary_10_1016_j_eswa_2023_122026 crossref_primary_10_3233_MGS_230003 crossref_primary_10_1038_s41598_023_41608_1 crossref_primary_10_1371_journal_pone_0297284 crossref_primary_10_1016_j_advengsoft_2025_103866 crossref_primary_10_1007_s00521_023_08813_5 crossref_primary_10_1093_jcde_qwaf073 crossref_primary_10_1007_s11042_024_19461_9 crossref_primary_10_1016_j_advengsoft_2024_103793 crossref_primary_10_4018_IJSIR_378562 crossref_primary_10_1016_j_matcom_2023_06_021 crossref_primary_10_1007_s10586_024_05011_3 crossref_primary_10_1016_j_knosys_2023_110508 crossref_primary_10_1007_s00521_024_09526_z crossref_primary_10_1007_s10825_024_02204_2 crossref_primary_10_1007_s12065_025_01069_z crossref_primary_10_1016_j_aei_2024_102783 crossref_primary_10_1088_1361_6501_ad574b crossref_primary_10_3390_s21196654 crossref_primary_10_3390_e24010008 crossref_primary_10_1016_j_epsr_2022_108924 crossref_primary_10_1016_j_swevo_2024_101766 crossref_primary_10_1007_s10586_025_05259_3 crossref_primary_10_1093_jcde_qwae069 crossref_primary_10_1007_s10586_024_05027_9 crossref_primary_10_1016_j_ijepes_2023_109251 |
| Cites_doi | 10.1016/j.eswa.2013.10.059 10.1016/j.patcog.2003.10.008 10.1109/TIP.2003.819861 10.1016/0031-3203(93)90135-J 10.1016/j.future.2019.02.028 10.1016/j.asoc.2020.106335 10.1016/j.eswa.2009.12.050 10.1007/3-540-40919-X_1 10.1007/BF01016429 10.1155/2014/794574 10.1016/j.cviu.2007.09.001 10.1016/j.scient.2012.12.005 10.1117/1.1631315 10.1016/j.eswa.2017.04.029 10.1109/TIP.2011.2109730 10.1007/s11042-018-7034-x 10.22105/dmor.2019.88580 10.1016/S0165-1684(97)00080-7 10.1016/j.compstruc.2011.08.002 10.1016/0734-189X(88)90022-9 10.1007/978-3-642-32894-7_27 10.1016/0165-1684(89)90090-X 10.1109/4235.771163 10.1016/j.patrec.2005.09.017 10.1016/j.swevo.2020.100743 10.1016/j.asoc.2016.11.011 10.1109/TIP.2013.2277832 10.1016/j.swevo.2013.02.001 10.1108/02644401211235834 10.3233/ICA-200641 10.1016/j.eswa.2011.05.069 10.1109/TIM.2009.2030931 10.1007/s00034-018-0993-3 10.1016/j.physleta.2005.01.094 10.1016/j.eswa.2013.07.060 10.1016/j.procs.2015.09.027 10.1016/0734-189X(85)90125-2 10.1016/j.eswa.2011.04.180 10.1038/nature06948 10.3390/rs11080942 10.1007/s00366-012-0308-4 10.1016/j.patrec.2004.03.003 10.1016/j.asoc.2015.10.039 10.1007/s11042-019-08229-1 10.1007/s11042-019-08117-8 10.1016/j.amc.2006.06.057 10.1016/j.eswa.2014.09.043 10.1109/TEVC.2008.919004 10.1016/j.eswa.2017.04.023 10.1016/j.cviu.2007.08.003 10.1109/ICNNB.2005.1614730 10.1016/j.eswa.2015.07.025 10.1007/s11042-019-7515-6 10.1007/s00500-019-04324-5 10.1016/j.knosys.2015.07.006 10.1016/j.engappai.2010.12.001 10.1016/j.engappai.2019.03.021 10.1016/j.asoc.2020.106593 10.1016/j.eswa.2016.08.046 10.1007/978-81-322-2544-7_1 10.1016/S0031-3203(00)00092-3 10.1016/0031-3203(81)90028-5 10.1016/j.sigpro.2016.11.004 10.1016/j.advengsoft.2013.12.007 10.1016/j.jksuci.2018.04.007 10.1109/TSMC.2018.2859429 10.3390/e13040841 10.1109/TSMC.1979.4310076 10.1016/j.asoc.2019.105522 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s11042-020-10467-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ABI/INFORM Global (Corporate) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-7721 |
| EndPage | 35583 |
| ExternalDocumentID | 10_1007_s11042_020_10467_7 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c319t-94ed68525d8aecf98ab1b364a685627a8bc8f4fdedece4b9729686590c2380103 |
| IEDL.DBID | M0C |
| ISICitedReferencesCount | 84 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000615564900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1380-7501 |
| IngestDate | Tue Nov 04 23:13:52 EST 2025 Sat Nov 29 06:20:09 EST 2025 Tue Nov 18 21:53:50 EST 2025 Fri Feb 21 02:47:32 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 28-29 |
| Keywords | Multimedia applications Swarm intelligence Masi entropy Optimal multilevel image thresholding Harris hawks optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-94ed68525d8aecf98ab1b364a685627a8bc8f4fdedece4b9729686590c2380103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8077-1811 |
| PQID | 2604659223 |
| PQPubID | 54626 |
| PageCount | 41 |
| ParticipantIDs | proquest_journals_2604659223 crossref_primary_10_1007_s11042_020_10467_7 crossref_citationtrail_10_1007_s11042_020_10467_7 springer_journals_10_1007_s11042_020_10467_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20211100 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 20211100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Multimedia tools and applications |
| PublicationTitleAbbrev | Multimed Tools Appl |
| PublicationYear | 2021 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Hammouche, Diaf, Siarry (CR18) 2008; 109 Nie, Zhang, Li, Ding (CR42) 2017; 134 Song, Cong, Li (CR62) 2017; 8 Naik, Wunnava, Jena, Panda, Bisht, Ram (CR41) 2020 Horng (CR21) 2011; 38 Sahoo, Arora (CR53) 2004; 37 Sri Madhava Raja, Rajinikanth, Latha (CR63) 2014; 2014 Fu, Mui (CR14) 1981; 13 Pavesic, Ribaric (CR48) 2000; 2 Jia, Peng, Song (CR23) 2019; 11 Shubham, Bhandari (CR60) 2019; 78 Naik, Samantaray, Panda (CR40) 2016 CR75 Sezgin, Sankur (CR59) 2004; 13 Xing, Jia (CR67) 2020; 79 Yao, Yong, Guangming (CR71) 1999; 3 Agrawal, Panda, Bhuyan, Panigrahi (CR1) 2013; 11 Li, He, Chen (CR30) 2020; 96 Liang, He, Zeng (CR31) 2020; 27 Tsallis (CR64) 1988; 52 Liu, Li, Tian (CR33) 1991 Tsallis (CR65) 2001; 560 CR2 Panda, Agrawal, Bhuyan (CR46) 2013; 40 Sankur, Sezgin (CR56) 2001; 34 Zhang, Zhang, Mou (CR77) 2011; 20 Yang, Durand-Lose, Jonoska (CR69) 2012 Portes de Albuquerque, Esquef, Gesualdi Mello, Portes de Albuquerque (CR50) 2004; 25 CR5 CR49 Horng, Liou (CR22) 2011; 38 Rao, Patel (CR51) 2013; 20 Liao, Chen, Chung (CR32) 2001; 17 CR43 Zhou, Bovik, Sheikh, Simoncelli (CR79) 2004; 13 Sahoo, Soltani, Wong (CR55) 1988; 41 Masi (CR35) 2005; 338 Chen, He, Li, Zhang, Wu (CR9) 2020; 93 Li, He, Liang, Quan (CR28) 2020; 24 Yin (CR72) 2007; 184 Ayala, dos Santos, Mariani, dos Coelho (CR4) 2015; 42 Pal, Pal (CR44) 1989; 16 Zhiwei, Zhaobao, Xin, Xiaogang (CR78) 2005 Horng (CR20) 2010; 37 Dhiman, Kaur (CR10) 2019; 82 Martin, Fowlkes, Tal, Malik (CR34) 2001 Yin, Chen (CR73) 1997; 60 Kapur, Sahoo, Wong (CR25) 1985; 29 Gao, Xu, Sun, Tang (CR17) 2010; 59 Mlakar, Potočnik, Brest (CR38) 2016; 65 Bhandari, Singh, Kumar, Singh (CR8) 2014; 41 Zaitoun, Aqel (CR74) 2015; 65 Ahmadi, Kazemi, Aarabi, Niknam, Helfroush (CR3) 2019; 78 Kandhway, Bhandari (CR24) 2019; 38 Mirjalili, Mirjalili, Lewis (CR37) 2014; 69 Sarkar, Das (CR57) 2013; 22 Renyi (CR52) 1961 Barthelemy, Bertolotti, Wiersma (CR6) 2008; 453 Gandomi, Yang, Alavi (CR15) 2011; 89 Bhandari (CR7) 2015; 42 Khairuzzaman, Chaudhury (CR26) 2017; 86 Naik, Panda (CR39) 2016; 38 El Aziz, Ewees, Hassanien (CR12) 2017; 83 Education, Shahabi, Pourahangarian, Beheshti (CR11) 2019; 4 Freixenet, Muñoz, Raba (CR13) 2002 Gandomi, Yang, Alavi (CR16) 2013; 29 Simon (CR61) 2009; 12 CR68 Sahoo, Arora (CR54) 2006; 27 CR66 Khairuzzaman, Chaudhury (CR27) 2019; 78 Yang, Gandomi (CR70) 2012; 29 Zhang, Fritts, Goldman (CR76) 2008; 110 Panda, Agrawal, Samantaray, Abraham (CR47) 2017; 50 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (CR19) 2019; 97 Mirjalili (CR36) 2015; 89 Li, He, Chen, Luo (CR29) 2020; 58 Sathya, Kayalvizhi (CR58) 2011; 24 Pal, Pal (CR45) 1993; 26 X-S Yang (10467_CR69) 2012 M Sezgin (10467_CR59) 2004; 13 MHM-H Horng (10467_CR20) 2010; 37 X Yao (10467_CR71) 1999; 3 P-Y Yin (10467_CR72) 2007; 184 D Martin (10467_CR34) 2001 NR Pal (10467_CR44) 1989; 16 X-S Yang (10467_CR70) 2012; 29 C Tsallis (10467_CR65) 2001; 560 S Agrawal (10467_CR1) 2013; 11 KS Fu (10467_CR14) 1981; 13 JNN Kapur (10467_CR25) 1985; 29 AKM Khairuzzaman (10467_CR26) 2017; 86 S Mirjalili (10467_CR37) 2014; 69 M Masi (10467_CR35) 2005; 338 J Freixenet (10467_CR13) 2002 P Barthelemy (10467_CR6) 2008; 453 NR Pal (10467_CR45) 1993; 26 NM Zaitoun (10467_CR74) 2015; 65 MK Naik (10467_CR41) 2020 F Nie (10467_CR42) 2017; 134 H Zhang (10467_CR76) 2008; 110 A Renyi (10467_CR52) 1961 M Portes de Albuquerque (10467_CR50) 2004; 25 D Simon (10467_CR61) 2009; 12 H Li (10467_CR29) 2020; 58 10467_CR43 Y Liang (10467_CR31) 2020; 27 10467_CR5 10467_CR2 H Li (10467_CR28) 2020; 24 H Jia (10467_CR23) 2019; 11 MHM-H Horng (10467_CR21) 2011; 38 S Mirjalili (10467_CR36) 2015; 89 N Pavesic (10467_CR48) 2000; 2 10467_CR49 PD Sathya (10467_CR58) 2011; 24 U Mlakar (10467_CR38) 2016; 65 PK Sahoo (10467_CR54) 2006; 27 MA El Aziz (10467_CR12) 2017; 83 G Dhiman (10467_CR10) 2019; 82 Z Xing (10467_CR67) 2020; 79 P Kandhway (10467_CR24) 2019; 38 S Sarkar (10467_CR57) 2013; 22 H Education (10467_CR11) 2019; 4 P-S Liao (10467_CR32) 2001; 17 J Liu (10467_CR33) 1991 MHM-H Horng (10467_CR22) 2011; 38 10467_CR75 AK Bhandari (10467_CR8) 2014; 41 PK Sahoo (10467_CR53) 2004; 37 M Ahmadi (10467_CR3) 2019; 78 JH Song (10467_CR62) 2017; 8 Y Zhiwei (10467_CR78) 2005 C Tsallis (10467_CR64) 1988; 52 W Zhou (10467_CR79) 2004; 13 R Panda (10467_CR46) 2013; 40 HVH Ayala (10467_CR4) 2015; 42 RV Rao (10467_CR51) 2013; 20 AK Khairuzzaman (10467_CR27) 2019; 78 AA Heidari (10467_CR19) 2019; 97 H Li (10467_CR30) 2020; 96 MK Naik (10467_CR40) 2016 S Shubham (10467_CR60) 2019; 78 MK Naik (10467_CR39) 2016; 38 N Sri Madhava Raja (10467_CR63) 2014; 2014 R Panda (10467_CR47) 2017; 50 P-Y Yin (10467_CR73) 1997; 60 Y Chen (10467_CR9) 2020; 93 H Gao (10467_CR17) 2010; 59 PK Sahoo (10467_CR55) 1988; 41 B Sankur (10467_CR56) 2001; 34 L Zhang (10467_CR77) 2011; 20 A Gandomi (10467_CR16) 2013; 29 A Bhandari (10467_CR7) 2015; 42 AH Gandomi (10467_CR15) 2011; 89 10467_CR68 10467_CR66 K Hammouche (10467_CR18) 2008; 109 |
| References_xml | – volume: 41 start-page: 3538 year: 2014 end-page: 3560 ident: CR8 article-title: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.10.059 – start-page: 416 year: 2001 end-page: 423 ident: CR34 article-title: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics publication-title: Proceedings eighth IEEE international conference on computer vision – volume: 37 start-page: 1149 year: 2004 end-page: 1161 ident: CR53 article-title: A thresholding method based on two-dimensional Renyi’s entropy publication-title: Pattern Recogn doi: 10.1016/j.patcog.2003.10.008 – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: CR79 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – volume: 2 start-page: 631 year: 2000 end-page: 634 ident: CR48 article-title: Gray level thresholding using the Havrda and Charvat entropy. In: 2000 10th Mediterranean Electrotechnical conference. Information technology and Electrotechnology for the Mediterranean countries publication-title: Proceed MeleCon – ident: CR49 – ident: CR68 – volume: 26 start-page: 1277 year: 1993 end-page: 1294 ident: CR45 article-title: A review on image segmentation techniques publication-title: Pattern Recogn doi: 10.1016/0031-3203(93)90135-J – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: CR19 article-title: Harris hawks optimization: algorithm and applications publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 93 start-page: 106335 year: 2020 ident: CR9 article-title: A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106335 – volume: 37 start-page: 4580 year: 2010 end-page: 4592 ident: CR20 article-title: Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.12.050 – volume: 560 start-page: 3 year: 2001 end-page: 98 ident: CR65 article-title: Nonextensive statistical mechanics and its applications publication-title: Lect Notes Phys doi: 10.1007/3-540-40919-X_1 – volume: 52 start-page: 479 year: 1988 end-page: 487 ident: CR64 article-title: Possible generalization of Boltzmann-Gibbs statistics publication-title: J Stat Phys doi: 10.1007/BF01016429 – volume: 2014 start-page: 17 year: 2014 end-page: 17 ident: CR63 article-title: Otsu based optimal multilevel image Thresholding using firefly algorithm publication-title: J Model Simul Eng doi: 10.1155/2014/794574 – volume: 109 start-page: 163 year: 2008 end-page: 175 ident: CR18 article-title: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2007.09.001 – volume: 20 start-page: 710 year: 2013 end-page: 720 ident: CR51 article-title: An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems publication-title: Sci Iran doi: 10.1016/j.scient.2012.12.005 – volume: 13 start-page: 146 year: 2004 end-page: 168 ident: CR59 article-title: Survey over image thresholding techniques and quantitative performance evaluation publication-title: J Electron Imaging doi: 10.1117/1.1631315 – volume: 86 start-page: 64 year: 2017 end-page: 76 ident: CR26 article-title: Multilevel thresholding using grey wolf optimizer for image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.029 – volume: 20 start-page: 2378 year: 2011 end-page: 2386 ident: CR77 article-title: FSIM: a feature similarity index for image quality assessment publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2109730 – volume: 78 start-page: 17197 year: 2019 end-page: 17238 ident: CR60 article-title: A generalized Masi entropy based efficient multilevel thresholding method for color image segmentation publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7034-x – volume: 4 start-page: 33 year: 2019 end-page: 41 ident: CR11 article-title: A multilevel image thresholding approach based on crow search algorithm and Otsu method publication-title: J J Decis Oper Res doi: 10.22105/dmor.2019.88580 – volume: 60 start-page: 305 year: 1997 end-page: 313 ident: CR73 article-title: A fast iterative scheme for multilevel thresholding methods publication-title: Signal Process doi: 10.1016/S0165-1684(97)00080-7 – volume: 17 start-page: 713 year: 2001 end-page: 727 ident: CR32 article-title: A fast algorithm for multilevel Thresholding publication-title: J Inf Sci Eng – ident: CR75 – volume: 89 start-page: 2325 year: 2011 end-page: 2336 ident: CR15 article-title: Mixed variable structural optimization using firefly algorithm publication-title: Comput Struct doi: 10.1016/j.compstruc.2011.08.002 – volume: 41 start-page: 233 year: 1988 end-page: 260 ident: CR55 article-title: A survey of thresholding techniques publication-title: Comput Vision, Graph Image Process doi: 10.1016/0734-189X(88)90022-9 – start-page: 240 year: 2012 end-page: 249 ident: CR69 article-title: Flower pollination algorithm for global optimization publication-title: Unconventional computation and natural computation: 11th international conference, UCNC 2012, Orléan, France, September 3–7, 2012. Proceedings doi: 10.1007/978-3-642-32894-7_27 – volume: 16 start-page: 97 year: 1989 end-page: 108 ident: CR44 article-title: Entropic thresholding publication-title: Signal Process doi: 10.1016/0165-1684(89)90090-X – start-page: 547 year: 1961 end-page: 561 ident: CR52 article-title: On measures of entropy and information publication-title: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, volume 1: contributions to the theory of statistics – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: CR71 article-title: Evolutionary programming made faster publication-title: Evol Comput IEEE Trans doi: 10.1109/4235.771163 – volume: 27 start-page: 520 year: 2006 end-page: 528 ident: CR54 article-title: Image thresholding using two-dimensional Tsallis–Havrda–Charvát entropy publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.09.017 – volume: 58 start-page: 100743 year: 2020 ident: CR29 article-title: Multi-objective self-organizing optimization for constrained sparse array synthesis publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100743 – volume: 50 start-page: 94 year: 2017 end-page: 108 ident: CR47 article-title: An evolutionary gray gradient algorithm for multilevel thresholding of brain MR images using soft computing techniques publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.11.011 – volume: 22 start-page: 4788 year: 2013 end-page: 4797 ident: CR57 article-title: Multilevel image Thresholding based on 2D histogram and maximum Tsallis entropy— a differential evolution approach publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2277832 – volume: 11 start-page: 16 year: 2013 end-page: 30 ident: CR1 article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2013.02.001 – ident: CR5 – volume: 29 start-page: 464 year: 2012 end-page: 483 ident: CR70 article-title: Bat algorithm: a novel approach for global engineering optimization publication-title: Eng Comput doi: 10.1108/02644401211235834 – volume: 27 start-page: 417 year: 2020 end-page: 435 ident: CR31 article-title: 3D mesh simplification with feature preservation based on whale optimization algorithm and differential evolution publication-title: Integr Comput Aided Eng doi: 10.3233/ICA-200641 – volume: 38 start-page: 14805 year: 2011 end-page: 14811 ident: CR22 article-title: Multilevel minimum cross entropy threshold selection based on the firefly algorithm publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.05.069 – ident: CR43 – ident: CR66 – volume: 59 start-page: 934 year: 2010 end-page: 946 ident: CR17 article-title: Multilevel Thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2009.2030931 – volume: 38 start-page: 3058 year: 2019 end-page: 3106 ident: CR24 article-title: A water cycle algorithm-based multilevel Thresholding system for color image segmentation using Masi entropy publication-title: Circuits, Syst Signal Process doi: 10.1007/s00034-018-0993-3 – volume: 338 start-page: 217 year: 2005 end-page: 224 ident: CR35 article-title: A step beyond Tsallis and Renyi entropies publication-title: Phys Lett A doi: 10.1016/j.physleta.2005.01.094 – volume: 40 start-page: 7617 year: 2013 end-page: 7628 ident: CR46 article-title: Edge magnitude based multilevel thresholding using cuckoo search technique publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.07.060 – volume: 65 start-page: 797 year: 2015 end-page: 806 ident: CR74 article-title: Survey on image segmentation techniques publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.09.027 – ident: CR2 – volume: 29 start-page: 273 year: 1985 end-page: 285 ident: CR25 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Comput Vision, Graph Image Process doi: 10.1016/0734-189X(85)90125-2 – volume: 38 start-page: 13785 year: 2011 end-page: 13791 ident: CR21 article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.180 – volume: 453 start-page: 495 year: 2008 end-page: 498 ident: CR6 article-title: A levy flight for light publication-title: Nature doi: 10.1038/nature06948 – volume: 11 start-page: 942 year: 2019 ident: CR23 article-title: Masi entropy for satellite color image segmentation using tournament-based Lévy multiverse optimization algorithm publication-title: Remote Sens doi: 10.3390/rs11080942 – start-page: 1 year: 2020 end-page: 26 ident: CR41 article-title: 1. Nature-inspired optimization algorithm and benchmark functions: a literature survey publication-title: Computational Intelligence – volume: 29 start-page: 245 year: 2013 ident: CR16 article-title: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems publication-title: Eng Comput doi: 10.1007/s00366-012-0308-4 – volume: 25 start-page: 1059 year: 2004 end-page: 1065 ident: CR50 article-title: Image thresholding using Tsallis entropy publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2004.03.003 – volume: 38 start-page: 661 year: 2016 end-page: 675 ident: CR39 article-title: A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.10.039 – volume: 79 start-page: 1137 year: 2020 end-page: 1168 ident: CR67 article-title: Modified thermal exchange optimization based multilevel thresholding for color image segmentation publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08229-1 – volume: 78 start-page: 33573 year: 2019 end-page: 33591 ident: CR27 article-title: Masi entropy based multilevel thresholding for image segmentation publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08117-8 – volume: 184 start-page: 503 year: 2007 end-page: 513 ident: CR72 article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.06.057 – volume: 42 start-page: 2136 year: 2015 end-page: 2142 ident: CR4 article-title: Image thresholding segmentation based on a novel beta differential evolution approach publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.09.043 – start-page: 325 year: 1991 end-page: 327 ident: CR33 article-title: Automatic thresholding of gray-level pictures using two-dimension Otsu method publication-title: China., 1991 international conference on circuits and systems – volume: 8 start-page: 578 year: 2017 end-page: 588 ident: CR62 article-title: A fuzzy C-means clustering algorithm for image segmentation using nonlinear weighted local information publication-title: J Inf Hiding Multimed Signal Process – volume: 12 start-page: 702 year: 2009 end-page: 713 ident: CR61 article-title: Biogeography-based optimization publication-title: Evol Comput IEEE Trans doi: 10.1109/TEVC.2008.919004 – volume: 83 start-page: 242 year: 2017 end-page: 256 ident: CR12 article-title: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.023 – start-page: 408 year: 2002 end-page: 422 ident: CR13 publication-title: Yet another survey on image segmentation: region and boundary information integration – volume: 110 start-page: 260 year: 2008 end-page: 280 ident: CR76 article-title: Image segmentation evaluation: a survey of unsupervised methods publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2007.08.003 – start-page: 728 year: 2005 end-page: 732 ident: CR78 article-title: Automatic threshold selection based on ant colony optimization algorithm publication-title: 2005 international conference on neural networks and brain doi: 10.1109/ICNNB.2005.1614730 – volume: 42 start-page: 8707 year: 2015 end-page: 8730 ident: CR7 article-title: Tsallis entropy based multilevel Thresholding for colored satellite image segmentation using evolutionary algorithms publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.07.025 – volume: 78 start-page: 23003 year: 2019 end-page: 23027 ident: CR3 article-title: Image segmentation using multilevel thresholding based on modified bird mating optimization publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7515-6 – volume: 24 start-page: 6851 year: 2020 end-page: 6870 ident: CR28 article-title: A dividing-based many-objective evolutionary algorithm for large-scale feature selection publication-title: Soft Comput doi: 10.1007/s00500-019-04324-5 – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: CR36 article-title: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 24 start-page: 595 year: 2011 end-page: 615 ident: CR58 article-title: Modified bacterial foraging algorithm based multilevel thresholding for image segmentation publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.12.001 – volume: 82 start-page: 148 year: 2019 end-page: 174 ident: CR10 article-title: STOA: a bio-inspired based optimization algorithm for industrial engineering problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.03.021 – volume: 96 start-page: 106593 year: 2020 ident: CR30 article-title: Learning dynamic simultaneous clustering and classification via automatic differential evolution and firework algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106593 – volume: 65 start-page: 221 year: 2016 end-page: 232 ident: CR38 article-title: A hybrid differential evolution for optimal multilevel image thresholding publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.08.046 – start-page: 3 year: 2016 end-page: 35 ident: CR40 article-title: A hybrid CS–GSA algorithm for optimization publication-title: Hybrid soft computing approaches: research and applications doi: 10.1007/978-81-322-2544-7_1 – volume: 34 start-page: 1573 year: 2001 end-page: 1583 ident: CR56 article-title: Image thresholding techniques: a survey over categories publication-title: Pattern Recogn doi: 10.1016/S0031-3203(00)00092-3 – volume: 13 start-page: 3 year: 1981 end-page: 16 ident: CR14 article-title: A survey on image segmentation publication-title: Pattern Recogn doi: 10.1016/0031-3203(81)90028-5 – volume: 134 start-page: 23 year: 2017 end-page: 34 ident: CR42 article-title: A novel generalized entropy and its application in image thresholding publication-title: Signal Process doi: 10.1016/j.sigpro.2016.11.004 – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: CR37 article-title: Grey wolf optimizer publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 93 start-page: 106335 year: 2020 ident: 10467_CR9 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106335 – ident: 10467_CR5 doi: 10.1016/j.jksuci.2018.04.007 – volume: 13 start-page: 146 year: 2004 ident: 10467_CR59 publication-title: J Electron Imaging doi: 10.1117/1.1631315 – volume: 338 start-page: 217 year: 2005 ident: 10467_CR35 publication-title: Phys Lett A doi: 10.1016/j.physleta.2005.01.094 – volume: 83 start-page: 242 year: 2017 ident: 10467_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.023 – volume: 110 start-page: 260 year: 2008 ident: 10467_CR76 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2007.08.003 – volume: 38 start-page: 661 year: 2016 ident: 10467_CR39 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.10.039 – start-page: 240 volume-title: Unconventional computation and natural computation: 11th international conference, UCNC 2012, Orléan, France, September 3–7, 2012. Proceedings year: 2012 ident: 10467_CR69 doi: 10.1007/978-3-642-32894-7_27 – start-page: 728 volume-title: 2005 international conference on neural networks and brain year: 2005 ident: 10467_CR78 doi: 10.1109/ICNNB.2005.1614730 – volume: 16 start-page: 97 year: 1989 ident: 10467_CR44 publication-title: Signal Process doi: 10.1016/0165-1684(89)90090-X – volume: 41 start-page: 3538 year: 2014 ident: 10467_CR8 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.10.059 – volume: 78 start-page: 17197 year: 2019 ident: 10467_CR60 publication-title: Multimed Tools Appl doi: 10.1007/s11042-018-7034-x – volume: 97 start-page: 849 year: 2019 ident: 10467_CR19 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – start-page: 547 volume-title: Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, volume 1: contributions to the theory of statistics year: 1961 ident: 10467_CR52 – volume: 184 start-page: 503 year: 2007 ident: 10467_CR72 publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.06.057 – volume: 60 start-page: 305 year: 1997 ident: 10467_CR73 publication-title: Signal Process doi: 10.1016/S0165-1684(97)00080-7 – volume: 11 start-page: 942 year: 2019 ident: 10467_CR23 publication-title: Remote Sens doi: 10.3390/rs11080942 – volume: 29 start-page: 464 year: 2012 ident: 10467_CR70 publication-title: Eng Comput doi: 10.1108/02644401211235834 – volume: 38 start-page: 3058 year: 2019 ident: 10467_CR24 publication-title: Circuits, Syst Signal Process doi: 10.1007/s00034-018-0993-3 – volume: 20 start-page: 710 year: 2013 ident: 10467_CR51 publication-title: Sci Iran doi: 10.1016/j.scient.2012.12.005 – start-page: 408 volume-title: Yet another survey on image segmentation: region and boundary information integration year: 2002 ident: 10467_CR13 – volume: 65 start-page: 221 year: 2016 ident: 10467_CR38 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.08.046 – volume: 41 start-page: 233 year: 1988 ident: 10467_CR55 publication-title: Comput Vision, Graph Image Process doi: 10.1016/0734-189X(88)90022-9 – volume: 29 start-page: 273 year: 1985 ident: 10467_CR25 publication-title: Comput Vision, Graph Image Process doi: 10.1016/0734-189X(85)90125-2 – volume: 38 start-page: 13785 year: 2011 ident: 10467_CR21 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.04.180 – volume: 26 start-page: 1277 year: 1993 ident: 10467_CR45 publication-title: Pattern Recogn doi: 10.1016/0031-3203(93)90135-J – volume: 82 start-page: 148 year: 2019 ident: 10467_CR10 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.03.021 – start-page: 1 volume-title: Computational Intelligence year: 2020 ident: 10467_CR41 – ident: 10467_CR68 – volume: 3 start-page: 82 year: 1999 ident: 10467_CR71 publication-title: Evol Comput IEEE Trans doi: 10.1109/4235.771163 – ident: 10467_CR2 doi: 10.1109/TSMC.2018.2859429 – volume: 27 start-page: 417 year: 2020 ident: 10467_CR31 publication-title: Integr Comput Aided Eng doi: 10.3233/ICA-200641 – volume: 34 start-page: 1573 year: 2001 ident: 10467_CR56 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(00)00092-3 – volume: 560 start-page: 3 year: 2001 ident: 10467_CR65 publication-title: Lect Notes Phys doi: 10.1007/3-540-40919-X_1 – volume: 59 start-page: 934 year: 2010 ident: 10467_CR17 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2009.2030931 – volume: 52 start-page: 479 year: 1988 ident: 10467_CR64 publication-title: J Stat Phys doi: 10.1007/BF01016429 – volume: 22 start-page: 4788 year: 2013 ident: 10467_CR57 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2277832 – volume: 38 start-page: 14805 year: 2011 ident: 10467_CR22 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.05.069 – volume: 24 start-page: 6851 year: 2020 ident: 10467_CR28 publication-title: Soft Comput doi: 10.1007/s00500-019-04324-5 – volume: 96 start-page: 106593 year: 2020 ident: 10467_CR30 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106593 – start-page: 3 volume-title: Hybrid soft computing approaches: research and applications year: 2016 ident: 10467_CR40 doi: 10.1007/978-81-322-2544-7_1 – volume: 40 start-page: 7617 year: 2013 ident: 10467_CR46 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2013.07.060 – volume: 2 start-page: 631 year: 2000 ident: 10467_CR48 publication-title: Proceed MeleCon – volume: 78 start-page: 23003 year: 2019 ident: 10467_CR3 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-7515-6 – volume: 13 start-page: 3 year: 1981 ident: 10467_CR14 publication-title: Pattern Recogn doi: 10.1016/0031-3203(81)90028-5 – volume: 42 start-page: 2136 year: 2015 ident: 10467_CR4 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.09.043 – volume: 29 start-page: 245 year: 2013 ident: 10467_CR16 publication-title: Eng Comput doi: 10.1007/s00366-012-0308-4 – volume: 25 start-page: 1059 year: 2004 ident: 10467_CR50 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2004.03.003 – ident: 10467_CR75 doi: 10.3390/e13040841 – volume: 42 start-page: 8707 year: 2015 ident: 10467_CR7 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.07.025 – volume: 89 start-page: 2325 year: 2011 ident: 10467_CR15 publication-title: Comput Struct doi: 10.1016/j.compstruc.2011.08.002 – volume: 24 start-page: 595 year: 2011 ident: 10467_CR58 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.12.001 – volume: 13 start-page: 600 year: 2004 ident: 10467_CR79 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – volume: 50 start-page: 94 year: 2017 ident: 10467_CR47 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2016.11.011 – volume: 37 start-page: 1149 year: 2004 ident: 10467_CR53 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2003.10.008 – volume: 109 start-page: 163 year: 2008 ident: 10467_CR18 publication-title: Comput Vis Image Underst doi: 10.1016/j.cviu.2007.09.001 – volume: 134 start-page: 23 year: 2017 ident: 10467_CR42 publication-title: Signal Process doi: 10.1016/j.sigpro.2016.11.004 – start-page: 325 volume-title: China., 1991 international conference on circuits and systems year: 1991 ident: 10467_CR33 – volume: 12 start-page: 702 year: 2009 ident: 10467_CR61 publication-title: Evol Comput IEEE Trans doi: 10.1109/TEVC.2008.919004 – volume: 37 start-page: 4580 year: 2010 ident: 10467_CR20 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.12.050 – volume: 78 start-page: 33573 year: 2019 ident: 10467_CR27 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08117-8 – volume: 79 start-page: 1137 year: 2020 ident: 10467_CR67 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-08229-1 – volume: 11 start-page: 16 year: 2013 ident: 10467_CR1 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2013.02.001 – volume: 65 start-page: 797 year: 2015 ident: 10467_CR74 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.09.027 – volume: 89 start-page: 228 year: 2015 ident: 10467_CR36 publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2015.07.006 – ident: 10467_CR49 – start-page: 416 volume-title: Proceedings eighth IEEE international conference on computer vision year: 2001 ident: 10467_CR34 – volume: 86 start-page: 64 year: 2017 ident: 10467_CR26 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.04.029 – volume: 27 start-page: 520 year: 2006 ident: 10467_CR54 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.09.017 – volume: 17 start-page: 713 year: 2001 ident: 10467_CR32 publication-title: J Inf Sci Eng – volume: 20 start-page: 2378 year: 2011 ident: 10467_CR77 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2109730 – ident: 10467_CR43 doi: 10.1109/TSMC.1979.4310076 – volume: 2014 start-page: 17 year: 2014 ident: 10467_CR63 publication-title: J Model Simul Eng doi: 10.1155/2014/794574 – volume: 58 start-page: 100743 year: 2020 ident: 10467_CR29 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100743 – volume: 4 start-page: 33 year: 2019 ident: 10467_CR11 publication-title: J J Decis Oper Res doi: 10.22105/dmor.2019.88580 – volume: 69 start-page: 46 year: 2014 ident: 10467_CR37 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – ident: 10467_CR66 doi: 10.1016/j.asoc.2019.105522 – volume: 8 start-page: 578 year: 2017 ident: 10467_CR62 publication-title: J Inf Hiding Multimed Signal Process – volume: 453 start-page: 495 year: 2008 ident: 10467_CR6 publication-title: Nature doi: 10.1038/nature06948 |
| SSID | ssj0016524 |
| Score | 2.540666 |
| Snippet | The multilevel image thresholding is one of the important steps in multimedia tools to understand and interpret the object in the real world. Nevertheless, 1-D... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35543 |
| SubjectTerms | 1166: Advances of machine learning in data analytics and visual information processing Algorithms Comparative studies Computer Communication Networks Computer Science Data Structures and Information Theory Entropy Exploration Histograms Image enhancement Image segmentation Multilevel Multimedia Multimedia Information Systems Mutation Optimization Performance evaluation Search process Signal to noise ratio Similarity Special Purpose and Application-Based Systems State-of-the-art reviews |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAO3CBS16ZpcpyAaRcmxEuTOFRJmoqJvbQWEP-epEs3QIAE1zaJKseOnX62P4BjopVtQxVi2x0MEyqMSWkpcOBpHjCqCEllQTYRdbus1-NXrigsK7PdS0iyOKkXxW5NW0pirzsWl4xwtAwrxt0xS9hwfXM_xw5o6KhsmYeNP2y6Upnv1_jsjhYx5hdYtPA27er_vnMTNlx0iVozddiCJT2qQbVkbkDOkGuw_qEN4TY8tNCgyGhGHTE1Ro8exetThsbmNBm6Mk1kYlvk43N0KbI-sn-Ex5M3bF1ggoqcxIFNPkL9oTmeUG70I3Ow1g7ctS9uzzrYkS5gZawxx5zohLLQDxMmtEo5E7IpA0qEeUj9SDCpWErSRCdaaSK5Cc4poyH3lHH-ljRiFyqj8UjvAVLcS2UgSRR5jKS-5GHAdSSpmRxykaR1aJayj5XrSG6JMQbxopeylWVsZBkXsoyjOpzM50xm_Th-Hd0otzR2tpnF5gZHLJjsB3U4Lbdw8frn1fb_NvwA1nybAFMULjagkk-f9SGsqpe8n02PCp19B_2j5EA priority: 102 providerName: Springer Nature |
| Title | A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding |
| URI | https://link.springer.com/article/10.1007/s11042-020-10467-7 https://www.proquest.com/docview/2604659223 |
| Volume | 80 |
| WOSCitedRecordID | wos000615564900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iy6EcKJRWDJSRD71Ri0zixPYJldKqEup01B04RLbjqKPO1skA4t_zXsbpUCR64WIpi6NEn98Sv-UD2BHeURuqlFN3MC4ygyLlreFJ5HWiMidEaWuyCdntqutr3QsbblVIq2x0Yq2oi7GjPfL36HcLCgHGyYfJHSfWKIquBgqNJVghz4ZS-o6j_fsoQpYGUlsVcbSMnVA0My-d61BhCv08UZRTcvnQMC28zb8CpLXdOVz_3zd-Ds-Cx8n25kvkBTzxow1Yb9gcWBDuDXj6R2vCl_Btjw3qLGd2ZKaoCNiN-XlbsTFqmGEo3WTo77KYf2LHpuoz2iUeT35xMosFq_MUB5SQxPpDVFlshmumCqGuTbg4PDjfP-KBiIE7lNAZ18IXmUrjtFDGu1IrYzs2yYTBk1ksjbJOlaIsfOGdF1ajw54p_PTIoUNARBJbsDwaj_wrYE5HpU2skDJSooytThPtpc1wcqpNUbag06CQu9ClnMgyBvmivzIhlyNyeY1cLlvw7n7OZN6j49G7txu48iCvVb7AqgW7DeCLy_9-2uvHn_YG1mJKgqmLF7dheTb97t_Cqvsx61fTNizJqy9tWPl40O2d4tFnydv1CqYxPsGxl37F8fTs8jcpufSt |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9swFH9iMGnsMDbGRBlsPmynzSJNnNg-IIT4UFGh2oFJSDtktuOIaqXtmm6If4q_kfdSh7JJ48Zh1yR2lPj3Puz38QP4ILyjNlQpp-5gXGQGRcpbw5PI60RlTojS1mQTstdT5-f6ywLcNLUwlFbZ6MRaURcjR2fk2-h3CwoBxsnu-Ccn1iiKrjYUGjNYdP31FW7Zqp3jA1zfj3F8dHi23-GBVYA7hNuUa-GLTKVxWijjXamVsW2bZMLgxSyWRlmnSlEWvvDOC6vR-8wUvjlyaN2IFQHnfQJLIlGS5Kor-V3UIksDia6KOFridijSmZXqtakQhjZrFFWVXP5pCOfe7V8B2drOHa38b3_oJbwIHjXbm4nAK1jww1VYadgqWFBeq_D8XuvF1_Btjw3qLG7WMRNUdOzCXP2o2Ag16GUoTWXoz7OYH7BTU_UZnYKPxteczH7B6jzMASVcsf4lqmQ2RZmoQihvDb4-yge_gcXhaOjXgTkdlTaxQspIiTK2Ok20lzbDwak2RdmCdrPquQtd2IkMZJDP-0cTUnJESl4jJZct-HQ3ZjzrQfLg05sNPPKgj6p8jo0WfG4ANr_979k2Hp7tPTzrnJ2e5CfHve5bWI4p4acu1NyExenkl9-Cp-73tF9N3tWSwuD7YwPvFneESyk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aG0LswMbYRNkAH8YJrKWJE9uHCU101aZtVQ8gTXAItuNoFV1bmo5p_xp_He-lzgpI7LYD1yS2Euf3Puz38QPYFd5RG6qUU3cwLjKDIuWt4UnkdaIyJ0Rpa7IJ2eup83PdX4KfTS0MpVU2OrFW1MXY0Rn5HvrdgkKAcbJXhrSIfqf7fvKdE4MURVobOo05RE78zTVu36r94w7-6zdx3D38-OGIB4YB7hB6M66FLzKVxmmhjHelVsa2bZIJgxezWBplnSpFWfjCOy-sRk80U_gWkUNLRwwJOO8DWJG4x6R0wn76-TaCkaWBUFdFHK1yOxTszMv22lQUQxs3irBKLv80igtP96_gbG3zumv_82qtw5PgabODuWg8hSU_2oC1hsWCBaW2Aau_tWR8Bl8O2LDO7mZHZooKkF2Y628VG6NmvQwlqwz9fBbzDjsz1YDR6fh4csPJHShYnZ85pEQsNrhEVc1mKCtVCPFtwqd7-eAtWB6NR_45MKej0iZWSBkpUcZWp4n20mY4ONWmKFvQbhCQu9CdnUhChvmirzShJkfU5DVqctmCt7djJvPeJHc-vdNAJQ96qsoXOGnBuwZsi9v_nu3F3bO9hkeIt_z0uHeyDY9jygOq6zd3YHk2vfIv4aH7MRtU01e10DD4et-4-wXuJ1RN |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+leader+Harris+hawks+optimization+for+2-D+Masi+entropy-based+multilevel+image+thresholding&rft.jtitle=Multimedia+tools+and+applications&rft.au=Naik%2C+Manoj+Kumar&rft.au=Panda+Rutuparna&rft.au=Wunnava+Aneesh&rft.au=Jena+Bibekananda&rft.date=2021-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=80&rft.issue=28-29&rft.spage=35543&rft.epage=35583&rft_id=info:doi/10.1007%2Fs11042-020-10467-7&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |