An improved DBSCAN Algorithm for hazard recognition of obstacles in unmanned scenes
The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned vehicles. The obstacle hazard identification technology is the core of the environment perception system, and it is also the basic condition...
Uloženo v:
| Vydáno v: | Soft computing (Berlin, Germany) Ročník 27; číslo 24; s. 18585 - 18604 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1432-7643, 1433-7479 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned vehicles. The obstacle hazard identification technology is the core of the environment perception system, and it is also the basic condition for the autonomous driving of unmanned vehicles. In view of the complexity of obstacle danger identification, this research paper designs an improved Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm for hazard recognition of obstacles in unmanned scenes through a systematic approach. First, it highlights the significance of morphological component analysis in identifying non-smooth regions within images where obstacles are likely to be present. Second, it introduces a novel approach for core point definition by identifying an optimal MinDensity value based on the curvature of the density distribution curve. Third, it addresses variations in density sequences through smoothing and normalization. Finally, it constructs an improved DBSCAN Algorithm for hazard recognition of obstacles in unmanned scenes. It addresses limitations in the traditional DBSCAN by refining the core point definition using an adaptive density threshold. It identifies the “elbow point” in density distribution, enhancing its ability to distinguish density states. Additionally, it incorporates density curve smoothing, normalization, and a merger step for handling stationary objects. The results show that it has high accuracy (95.6%), precision (96.3%), recall (94.5%), and F-Score (95.4%), as well as increased consistency (92.5%) and dependability (93.2%). It also has fast real-time data processing, lasting only 0.12 s, making it an excellent choice for obstacle detection and unmanned hazard avoidance. |
|---|---|
| AbstractList | The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned vehicles. The obstacle hazard identification technology is the core of the environment perception system, and it is also the basic condition for the autonomous driving of unmanned vehicles. In view of the complexity of obstacle danger identification, this research paper designs an improved Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm for hazard recognition of obstacles in unmanned scenes through a systematic approach. First, it highlights the significance of morphological component analysis in identifying non-smooth regions within images where obstacles are likely to be present. Second, it introduces a novel approach for core point definition by identifying an optimal MinDensity value based on the curvature of the density distribution curve. Third, it addresses variations in density sequences through smoothing and normalization. Finally, it constructs an improved DBSCAN Algorithm for hazard recognition of obstacles in unmanned scenes. It addresses limitations in the traditional DBSCAN by refining the core point definition using an adaptive density threshold. It identifies the “elbow point” in density distribution, enhancing its ability to distinguish density states. Additionally, it incorporates density curve smoothing, normalization, and a merger step for handling stationary objects. The results show that it has high accuracy (95.6%), precision (96.3%), recall (94.5%), and F-Score (95.4%), as well as increased consistency (92.5%) and dependability (93.2%). It also has fast real-time data processing, lasting only 0.12 s, making it an excellent choice for obstacle detection and unmanned hazard avoidance. The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned vehicles. The obstacle hazard identification technology is the core of the environment perception system, and it is also the basic condition for the autonomous driving of unmanned vehicles. In view of the complexity of obstacle danger identification, this research paper designs an improved Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm for hazard recognition of obstacles in unmanned scenes through a systematic approach. First, it highlights the significance of morphological component analysis in identifying non-smooth regions within images where obstacles are likely to be present. Second, it introduces a novel approach for core point definition by identifying an optimal MinDensity value based on the curvature of the density distribution curve. Third, it addresses variations in density sequences through smoothing and normalization. Finally, it constructs an improved DBSCAN Algorithm for hazard recognition of obstacles in unmanned scenes. It addresses limitations in the traditional DBSCAN by refining the core point definition using an adaptive density threshold. It identifies the “elbow point” in density distribution, enhancing its ability to distinguish density states. Additionally, it incorporates density curve smoothing, normalization, and a merger step for handling stationary objects. The results show that it has high accuracy (95.6%), precision (96.3%), recall (94.5%), and F-Score (95.4%), as well as increased consistency (92.5%) and dependability (93.2%). It also has fast real-time data processing, lasting only 0.12 s, making it an excellent choice for obstacle detection and unmanned hazard avoidance. |
| Author | Zhang, Wenying |
| Author_xml | – sequence: 1 givenname: Wenying surname: Zhang fullname: Zhang, Wenying email: wyzhangzzu@163.com organization: School of Electrical and Information Engineering, Zhengzhou University |
| BookMark | eNp9kEtPwzAQhC1UJNrCH-BkiXPAjySOj6E8pQoOhbOVOJvWVWIXO0WFX0_aICFx6Gn3MN_s7EzQyDoLCF1Sck0JETeBkISQiDAeEcmpjHYnaExjziMRCzk67CwSaczP0CSENSGMioSP0SK32LQb7z6hwne3i1n-gvNm6bzpVi2uncer4rvwFfag3dKazjiLXY1dGbpCNxCwsXhr28La3iBosBDO0WldNAEufucUvT_cv82eovnr4_Msn0e6T9hFkte6iivBWM01Aw2ZLnVKWClFxYSUZZJWZQac1EQKoCnoWGuRJCkVOgUQfIquBt8-_scWQqfWbuttf1IxSYUkIqFZr8oGlfYuBA-10qYr9n90vjCNokTtK1RDhaqvUB0qVLseZf_QjTdt4b-OQ3yAQi-2S_B_qY5QP8WQhqs |
| CitedBy_id | crossref_primary_10_1007_s11760_024_03810_0 crossref_primary_10_3390_app15063138 crossref_primary_10_3390_a18050273 crossref_primary_10_3390_electronics13071205 |
| Cites_doi | 10.1109/TNSM.2016.2541171 10.1016/j.nanoen.2022.108013 10.1007/s00500-023-07923-5 10.1109/TCSVT.2022.3182426 10.23919/CCC50068.2020.9188843 10.1109/TITS.2021.3115823 10.1117/12.2540362 10.1007/s00500-023-09037-4 10.1109/TCSVT.2022.3194169 10.23919/ChiCC.2019.8866334 10.1049/cth2.12136 10.1016/j.ymssp.2022.109930 10.1049/iet-cta.2018.5469 10.1109/TKDE.2020.2970044 10.7717/peerj-cs.1400 10.1002/rnc.4839 10.1109/JSEN.2022.3201015 10.1109/TCSVT.2021.3069838 10.1109/TNET.2017.2705239 10.1109/TMM.2023.3282465 10.3390/jmse10081153 10.1007/s11071-018-4732-x 10.1038/s41377-022-00815-7 10.1007/s00500-023-08026-x 10.1109/JOE.2021.3126090 10.1093/comjnl/bxac085 10.1109/TITS.2023.3269794 10.3390/jmse10101399 10.1007/s44196-023-00233-6 10.23919/ChiCC.2017.8028015 10.1155/2022/3815306 10.1007/s10489-020-01894-y 10.1016/j.tre.2016.01.011 10.1002/asjc.2762 10.1145/3230644 10.1145/3511603 10.1109/TCSVT.2021.3107035 10.3389/fnbot.2022.928863 10.1109/TIP.2021.3096060 10.1109/TITS.2022.3161977 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-023-09319-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (subscription) Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database (ProQuest) url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1433-7479 |
| EndPage | 18604 |
| ExternalDocumentID | 10_1007_s00500_023_09319_x |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c319t-93fcd4d722f3c2ece8cbc602b97d2799b56db8e30f097e16ec4cc755617c6ee73 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001085279500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Wed Nov 05 03:05:30 EST 2025 Sat Nov 29 03:36:33 EST 2025 Tue Nov 18 20:31:52 EST 2025 Fri Feb 21 02:41:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | AI image processing Unmanned Obstacles Bounding box Hazard identification DBSCAN Algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-93fcd4d722f3c2ece8cbc602b97d2799b56db8e30f097e16ec4cc755617c6ee73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2917907518 |
| PQPubID | 2043697 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2917907518 crossref_citationtrail_10_1007_s00500_023_09319_x crossref_primary_10_1007_s00500_023_09319_x springer_journals_10_1007_s00500_023_09319_x |
| PublicationCentury | 2000 |
| PublicationDate | 20231200 2023-12-00 20231201 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | AslamXDHouJLiQUllahRNiZLiuYReliable control design for composite-driven scheme based on delay networked T-S fuzzy systemInt J Robust Nonlinear Control202030416221642408539310.1002/rnc.48391465.93103 ChenPLiuHXinRCarvalTZhaoJXiaYEffectively detecting operational anomalies in large-scale IoT Data infrastructures by using a GAN-based predictive modelComput J202265112909292510.1093/comjnl/bxac085 LuSBanYZhangXYangBLiuSYinLZhengWAdaptive control of time delay teleoperation system with uncertain dynamicsFront Neurorobot20221610.3389/fnbot.2022.928863 ZhangHLuoGLiJWangF-YC2FDA: coarse-to-fine domain adaptation for traffic object detectionIEEE Trans Intell Transport Syst2022238126331264710.1109/TITS.2021.3115823 LiuQYuanHHamzaouiRSuHHouJReduced reference perceptual quality model with application to rate control for video-based point cloud compressionIEEE Trans Image Process2021306623663610.1109/TIP.2021.3096060 XuHSunZCaoYA data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of ThingsSoft Comput202310.1007/s00500-023-09037-4 UllahRDaiXShengAEvent-triggered scheme for fault detection and isolation of non-linear system with time-varying delayIET Control Theory Appl2020141624292438441797310.1049/iet-cta.2018.5469 LiuAZhaiYXuNNieWLiWRegion-aware image captioning via interaction learningIEEE Trans Circ Syst Video Technol20223263685369610.1109/TCSVT.2021.3107035 ZhengYLvXQianLLiuXAn optimal BP neural network track prediction method based on a GA–ACO hybrid algorithmJ Mar Sci Eng20221010139910.3390/jmse10101399 LiJHanLZhangCLiQLiuZSpherical convolution empowered viewport prediction in 360 video multicast with limited FoV feedbackACM Trans Multimed Comput Commun Appl202310.1145/3511603 YangSLiQLiWLiXLiuADual-level representation enhancement on characteristic and context for image-text retrievalIEEE Trans Circuits Syst Video Technol202232118037805010.1109/TCSVT.2022.3182426 CongRShengHYangDCuiZChenRExploiting spatial and angular correlations with deep efficient transformers for light field image super-resolutionIEEE Trans Multimed202310.1109/TMM.2023.3282465 ChengBZhuDZhaoSChenJSituation-aware IoT service coordination using the event-driven SOA paradigmIEEE Trans Netw Serv Manage201613234936110.1109/TNSM.2016.2541171 ZhengYLiuPQianLQinSLiuXMaYRecognition and depth estimation of ships based on binocular stereo visionJ Mar Sci Eng202210115310.3390/jmse10081153 ChengBWangMZhaoSZhaiZZhuDSituation-aware dynamic service coordination in an IoT environmentIEEE/ACM Trans Netw20172542082209510.1109/TNET.2017.2705239 LuSLiuMYinLYinZLiuXZhengWThe multi-modal fusion in visual question answering: a review of attention mechanismsPeerJ Comput Sci2023910.7717/peerj-cs.1400 WangFWangHZhouXFuRA driving fatigue feature detection method based on multifractal theoryIEEE Sens J20222219190461905910.1109/JSEN.2022.3201015 KumarAShaikhAMLiYPruning filters with L1-norm and capped L1-norm for CNN compressionAppl Intell2021511152116010.1007/s10489-020-01894-y LuSDingYLiuMYinZYinLMultiscale feature extraction and fusion of image and text in VQAInt J Comput Intell Syst20231615410.1007/s44196-023-00233-6 Yin B, Khan J, Wang L, Zhang J and Kumar A (2019) Real-time lane detection and tracking for advanced driver assistance systems. In: 2019 Chinese Control Conference (CCC) (pp 6772–6777). IEEE. https://doi.org/10.23919/ChiCC.2019.8866334 JiangSZhaoCZhuYWangCDuYLeiWA practical and economical ultra-wideband base station placement approach for indoor autonomous driving systemsJ Adv Transp2022202211210.1155/2022/3815306 LiuHYuanHLiuQHouJZengHA hybrid compression framework for color attributes of static 3D point cloudsIEEE Trans Circ Syst Video Technol20223231564157710.1109/TCSVT.2021.3069838 LiangXHuangZYangSQiuLDevice-free motion and trajectory detection via RFIDACM Trans Embed Comput Syst20181747810.1145/3230644 Ali M, Yin B, Kumar A, Sheikh AM et al (2020) Reduction of multiplications in convolutional neural networks. In: 2020 39th Chinese Control Conference (CCC) (pp 7406–7411). IEEE. https://doi.org/10.23919/CCC50068.2020.9188843 ChenZObserver-based dissipative output feedback control for network T-S fuzzy systems under time delays with mismatch premiseNonlinear Dyn2019952923294110.1007/s11071-018-4732-x1437.93063 Wang L, Zhai Q, Yin B et al (2019) Second-order convolutional network for crowd counting. In: Proceeding of SPIE 11198, Fourth International Workshop on Pattern Recognition, 111980T. https://doi.org/10.1117/12.2540362 XiaoYKonakAThe heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestionTransport Res Part E20168814616610.1016/j.tre.2016.01.011 ChenJXuMXuWLiDPengWA flow feedback traffic prediction based on visual quantified featuresIEEE Trans Intell Transp Syst202310.1109/TITS.2023.3269794 HouXZhangLSuYGaoGLiuYNaZA space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identificationNano Energy202310510.1016/j.nanoen.2022.108013 YangMWangHHuKYinGWeiZIA-net $: $ an inception–attention-module-based network for classifying underwater images from othersIEEE J Oceanic Eng202247370471710.1109/JOE.2021.3126090 ShamroozMLiQHouJFault detection for asynchronous T-S fuzzy networked Markov jump systems with new event-triggered schemeIET Control Theory Appl2021151114611473458335110.1049/cth2.12136 LiJZhouNSunJZhouSBaiZLuLTransport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopyLight Sci Appl202211115410.1038/s41377-022-00815-7 ShenYDingNZhengH-TLiYYangMModeling relation paths for knowledge graph completionIEEE Trans Knowl Data Eng202133113607361710.1109/TKDE.2020.2970044 YinBAslamMSA practical study of active disturbance rejection control for rotary flexible joint robot manipulatorSoft Comput2023274987500110.1007/s00500-023-08026-x ChenJWangQPengWXuHLiXDisparity-based multiscale fusion network for transportation detectionIEEE Trans Intell Transp Syst20222310188551886310.1109/TITS.2022.3161977 MuhammadIQMajidAShamroozSAdaptive event-triggered robust H∞ control for Takagi-Sugeno fuzzy networked Markov jump systems with time-varying delayAsian J Control2023251213228456232910.1002/asjc.2762 Yao W, Guo Y, Wu Y and Guo J (2017) Experimental validation of fuzzy PID control of flexible joint system in presence of uncertainties. In: 2017 36th Chinese Control Conference (CCC) (pp 4192–4197). IEEE. https://doi.org/10.23919/ChiCC.2017.8028015 MaXDongZQuanWDongYTanYReal-time assessment of asphalt pavement moduli and traffic loads using monitoring data from Built-in Sensors: optimal sensor placement and identification algorithmMech Syst Signal Process202318710.1016/j.ymssp.2022.109930 ChengDChenLLvCGuoLKouQLight-guided and cross-fusion U-net for anti-illumination image super-resolutionIEEE Trans Circ Syst Video Technol202232128436844910.1109/TCSVT.2022.3194169 HazratBYinBKumarAAliMZhangJYaoJJerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approachSoft Comput20232774029403910.1007/s00500-023-07923-5 X Hou (9319_CR12) 2023; 105 IQ Muhammad (9319_CR25) 2023; 25 D Cheng (9319_CR9) 2022; 32 F Wang (9319_CR29) 2022; 22 R Cong (9319_CR10) 2023 9319_CR1 B Cheng (9319_CR7) 2016; 13 S Lu (9319_CR21) 2022; 16 B Cheng (9319_CR8) 2017; 25 S Lu (9319_CR23) 2023; 9 A Kumar (9319_CR14) 2021; 51 Z Chen (9319_CR3) 2019; 95 Y Zheng (9319_CR40) 2022; 10 XD Aslam (9319_CR2) 2020; 30 H Zhang (9319_CR38) 2022; 23 J Li (9319_CR15) 2022; 11 X Liang (9319_CR17) 2018; 17 J Li (9319_CR16) 2023 A Liu (9319_CR19) 2022; 32 Y Zheng (9319_CR39) 2022; 10 9319_CR30 X Ma (9319_CR24) 2023; 187 P Chen (9319_CR5) 2022; 65 9319_CR35 S Jiang (9319_CR13) 2022; 2022 R Ullah (9319_CR28) 2020; 14 B Hazrat (9319_CR11) 2023; 27 S Yang (9319_CR33) 2022; 32 Y Shen (9319_CR27) 2021; 33 M Yang (9319_CR34) 2022; 47 J Chen (9319_CR6) 2023 H Xu (9319_CR32) 2023 B Yin (9319_CR36) 2023; 27 Q Liu (9319_CR18) 2021; 30 S Lu (9319_CR22) 2023; 16 9319_CR37 Y Xiao (9319_CR31) 2016; 88 J Chen (9319_CR4) 2022; 23 M Shamrooz (9319_CR26) 2021; 15 H Liu (9319_CR20) 2022; 32 |
| References_xml | – reference: ShamroozMLiQHouJFault detection for asynchronous T-S fuzzy networked Markov jump systems with new event-triggered schemeIET Control Theory Appl2021151114611473458335110.1049/cth2.12136 – reference: ChengDChenLLvCGuoLKouQLight-guided and cross-fusion U-net for anti-illumination image super-resolutionIEEE Trans Circ Syst Video Technol202232128436844910.1109/TCSVT.2022.3194169 – reference: JiangSZhaoCZhuYWangCDuYLeiWA practical and economical ultra-wideband base station placement approach for indoor autonomous driving systemsJ Adv Transp2022202211210.1155/2022/3815306 – reference: LuSDingYLiuMYinZYinLMultiscale feature extraction and fusion of image and text in VQAInt J Comput Intell Syst20231615410.1007/s44196-023-00233-6 – reference: YinBAslamMSA practical study of active disturbance rejection control for rotary flexible joint robot manipulatorSoft Comput2023274987500110.1007/s00500-023-08026-x – reference: XiaoYKonakAThe heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestionTransport Res Part E20168814616610.1016/j.tre.2016.01.011 – reference: XuHSunZCaoYA data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of ThingsSoft Comput202310.1007/s00500-023-09037-4 – reference: Yao W, Guo Y, Wu Y and Guo J (2017) Experimental validation of fuzzy PID control of flexible joint system in presence of uncertainties. In: 2017 36th Chinese Control Conference (CCC) (pp 4192–4197). IEEE. https://doi.org/10.23919/ChiCC.2017.8028015 – reference: MaXDongZQuanWDongYTanYReal-time assessment of asphalt pavement moduli and traffic loads using monitoring data from Built-in Sensors: optimal sensor placement and identification algorithmMech Syst Signal Process202318710.1016/j.ymssp.2022.109930 – reference: Yin B, Khan J, Wang L, Zhang J and Kumar A (2019) Real-time lane detection and tracking for advanced driver assistance systems. In: 2019 Chinese Control Conference (CCC) (pp 6772–6777). IEEE. https://doi.org/10.23919/ChiCC.2019.8866334 – reference: CongRShengHYangDCuiZChenRExploiting spatial and angular correlations with deep efficient transformers for light field image super-resolutionIEEE Trans Multimed202310.1109/TMM.2023.3282465 – reference: ShenYDingNZhengH-TLiYYangMModeling relation paths for knowledge graph completionIEEE Trans Knowl Data Eng202133113607361710.1109/TKDE.2020.2970044 – reference: ChengBWangMZhaoSZhaiZZhuDSituation-aware dynamic service coordination in an IoT environmentIEEE/ACM Trans Netw20172542082209510.1109/TNET.2017.2705239 – reference: ZhengYLiuPQianLQinSLiuXMaYRecognition and depth estimation of ships based on binocular stereo visionJ Mar Sci Eng202210115310.3390/jmse10081153 – reference: LiuAZhaiYXuNNieWLiWRegion-aware image captioning via interaction learningIEEE Trans Circ Syst Video Technol20223263685369610.1109/TCSVT.2021.3107035 – reference: LuSBanYZhangXYangBLiuSYinLZhengWAdaptive control of time delay teleoperation system with uncertain dynamicsFront Neurorobot20221610.3389/fnbot.2022.928863 – reference: LiJHanLZhangCLiQLiuZSpherical convolution empowered viewport prediction in 360 video multicast with limited FoV feedbackACM Trans Multimed Comput Commun Appl202310.1145/3511603 – reference: AslamXDHouJLiQUllahRNiZLiuYReliable control design for composite-driven scheme based on delay networked T-S fuzzy systemInt J Robust Nonlinear Control202030416221642408539310.1002/rnc.48391465.93103 – reference: ChenJXuMXuWLiDPengWA flow feedback traffic prediction based on visual quantified featuresIEEE Trans Intell Transp Syst202310.1109/TITS.2023.3269794 – reference: WangFWangHZhouXFuRA driving fatigue feature detection method based on multifractal theoryIEEE Sens J20222219190461905910.1109/JSEN.2022.3201015 – reference: Ali M, Yin B, Kumar A, Sheikh AM et al (2020) Reduction of multiplications in convolutional neural networks. In: 2020 39th Chinese Control Conference (CCC) (pp 7406–7411). IEEE. https://doi.org/10.23919/CCC50068.2020.9188843 – reference: LiJZhouNSunJZhouSBaiZLuLTransport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopyLight Sci Appl202211115410.1038/s41377-022-00815-7 – reference: YangSLiQLiWLiXLiuADual-level representation enhancement on characteristic and context for image-text retrievalIEEE Trans Circuits Syst Video Technol202232118037805010.1109/TCSVT.2022.3182426 – reference: HazratBYinBKumarAAliMZhangJYaoJJerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approachSoft Comput20232774029403910.1007/s00500-023-07923-5 – reference: MuhammadIQMajidAShamroozSAdaptive event-triggered robust H∞ control for Takagi-Sugeno fuzzy networked Markov jump systems with time-varying delayAsian J Control2023251213228456232910.1002/asjc.2762 – reference: LiuQYuanHHamzaouiRSuHHouJReduced reference perceptual quality model with application to rate control for video-based point cloud compressionIEEE Trans Image Process2021306623663610.1109/TIP.2021.3096060 – reference: ZhangHLuoGLiJWangF-YC2FDA: coarse-to-fine domain adaptation for traffic object detectionIEEE Trans Intell Transport Syst2022238126331264710.1109/TITS.2021.3115823 – reference: LiuHYuanHLiuQHouJZengHA hybrid compression framework for color attributes of static 3D point cloudsIEEE Trans Circ Syst Video Technol20223231564157710.1109/TCSVT.2021.3069838 – reference: LuSLiuMYinLYinZLiuXZhengWThe multi-modal fusion in visual question answering: a review of attention mechanismsPeerJ Comput Sci2023910.7717/peerj-cs.1400 – reference: UllahRDaiXShengAEvent-triggered scheme for fault detection and isolation of non-linear system with time-varying delayIET Control Theory Appl2020141624292438441797310.1049/iet-cta.2018.5469 – reference: ChenJWangQPengWXuHLiXDisparity-based multiscale fusion network for transportation detectionIEEE Trans Intell Transp Syst20222310188551886310.1109/TITS.2022.3161977 – reference: Wang L, Zhai Q, Yin B et al (2019) Second-order convolutional network for crowd counting. In: Proceeding of SPIE 11198, Fourth International Workshop on Pattern Recognition, 111980T. https://doi.org/10.1117/12.2540362 – reference: LiangXHuangZYangSQiuLDevice-free motion and trajectory detection via RFIDACM Trans Embed Comput Syst20181747810.1145/3230644 – reference: ChenPLiuHXinRCarvalTZhaoJXiaYEffectively detecting operational anomalies in large-scale IoT Data infrastructures by using a GAN-based predictive modelComput J202265112909292510.1093/comjnl/bxac085 – reference: ZhengYLvXQianLLiuXAn optimal BP neural network track prediction method based on a GA–ACO hybrid algorithmJ Mar Sci Eng20221010139910.3390/jmse10101399 – reference: ChengBZhuDZhaoSChenJSituation-aware IoT service coordination using the event-driven SOA paradigmIEEE Trans Netw Serv Manage201613234936110.1109/TNSM.2016.2541171 – reference: ChenZObserver-based dissipative output feedback control for network T-S fuzzy systems under time delays with mismatch premiseNonlinear Dyn2019952923294110.1007/s11071-018-4732-x1437.93063 – reference: YangMWangHHuKYinGWeiZIA-net $: $ an inception–attention-module-based network for classifying underwater images from othersIEEE J Oceanic Eng202247370471710.1109/JOE.2021.3126090 – reference: HouXZhangLSuYGaoGLiuYNaZA space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identificationNano Energy202310510.1016/j.nanoen.2022.108013 – reference: KumarAShaikhAMLiYPruning filters with L1-norm and capped L1-norm for CNN compressionAppl Intell2021511152116010.1007/s10489-020-01894-y – volume: 13 start-page: 349 issue: 2 year: 2016 ident: 9319_CR7 publication-title: IEEE Trans Netw Serv Manage doi: 10.1109/TNSM.2016.2541171 – volume: 105 year: 2023 ident: 9319_CR12 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.108013 – volume: 27 start-page: 4029 issue: 7 year: 2023 ident: 9319_CR11 publication-title: Soft Comput doi: 10.1007/s00500-023-07923-5 – volume: 32 start-page: 8037 issue: 11 year: 2022 ident: 9319_CR33 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2022.3182426 – ident: 9319_CR1 doi: 10.23919/CCC50068.2020.9188843 – volume: 23 start-page: 12633 issue: 8 year: 2022 ident: 9319_CR38 publication-title: IEEE Trans Intell Transport Syst doi: 10.1109/TITS.2021.3115823 – ident: 9319_CR30 doi: 10.1117/12.2540362 – year: 2023 ident: 9319_CR32 publication-title: Soft Comput doi: 10.1007/s00500-023-09037-4 – volume: 32 start-page: 8436 issue: 12 year: 2022 ident: 9319_CR9 publication-title: IEEE Trans Circ Syst Video Technol doi: 10.1109/TCSVT.2022.3194169 – ident: 9319_CR37 doi: 10.23919/ChiCC.2019.8866334 – volume: 15 start-page: 1461 issue: 11 year: 2021 ident: 9319_CR26 publication-title: IET Control Theory Appl doi: 10.1049/cth2.12136 – volume: 187 year: 2023 ident: 9319_CR24 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2022.109930 – volume: 14 start-page: 2429 issue: 16 year: 2020 ident: 9319_CR28 publication-title: IET Control Theory Appl doi: 10.1049/iet-cta.2018.5469 – volume: 33 start-page: 3607 issue: 11 year: 2021 ident: 9319_CR27 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2020.2970044 – volume: 9 year: 2023 ident: 9319_CR23 publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.1400 – volume: 30 start-page: 1622 issue: 4 year: 2020 ident: 9319_CR2 publication-title: Int J Robust Nonlinear Control doi: 10.1002/rnc.4839 – volume: 22 start-page: 19046 issue: 19 year: 2022 ident: 9319_CR29 publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3201015 – volume: 32 start-page: 1564 issue: 3 year: 2022 ident: 9319_CR20 publication-title: IEEE Trans Circ Syst Video Technol doi: 10.1109/TCSVT.2021.3069838 – volume: 25 start-page: 2082 issue: 4 year: 2017 ident: 9319_CR8 publication-title: IEEE/ACM Trans Netw doi: 10.1109/TNET.2017.2705239 – year: 2023 ident: 9319_CR10 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2023.3282465 – volume: 10 start-page: 1153 year: 2022 ident: 9319_CR40 publication-title: J Mar Sci Eng doi: 10.3390/jmse10081153 – volume: 95 start-page: 2923 year: 2019 ident: 9319_CR3 publication-title: Nonlinear Dyn doi: 10.1007/s11071-018-4732-x – volume: 11 start-page: 154 issue: 1 year: 2022 ident: 9319_CR15 publication-title: Light Sci Appl doi: 10.1038/s41377-022-00815-7 – volume: 27 start-page: 4987 year: 2023 ident: 9319_CR36 publication-title: Soft Comput doi: 10.1007/s00500-023-08026-x – volume: 47 start-page: 704 issue: 3 year: 2022 ident: 9319_CR34 publication-title: IEEE J Oceanic Eng doi: 10.1109/JOE.2021.3126090 – volume: 65 start-page: 2909 issue: 11 year: 2022 ident: 9319_CR5 publication-title: Comput J doi: 10.1093/comjnl/bxac085 – year: 2023 ident: 9319_CR6 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2023.3269794 – volume: 10 start-page: 1399 issue: 10 year: 2022 ident: 9319_CR39 publication-title: J Mar Sci Eng doi: 10.3390/jmse10101399 – volume: 16 start-page: 54 issue: 1 year: 2023 ident: 9319_CR22 publication-title: Int J Comput Intell Syst doi: 10.1007/s44196-023-00233-6 – ident: 9319_CR35 doi: 10.23919/ChiCC.2017.8028015 – volume: 2022 start-page: 1 year: 2022 ident: 9319_CR13 publication-title: J Adv Transp doi: 10.1155/2022/3815306 – volume: 51 start-page: 1152 year: 2021 ident: 9319_CR14 publication-title: Appl Intell doi: 10.1007/s10489-020-01894-y – volume: 88 start-page: 146 year: 2016 ident: 9319_CR31 publication-title: Transport Res Part E doi: 10.1016/j.tre.2016.01.011 – volume: 25 start-page: 213 issue: 1 year: 2023 ident: 9319_CR25 publication-title: Asian J Control doi: 10.1002/asjc.2762 – volume: 17 start-page: 78 issue: 4 year: 2018 ident: 9319_CR17 publication-title: ACM Trans Embed Comput Syst doi: 10.1145/3230644 – year: 2023 ident: 9319_CR16 publication-title: ACM Trans Multimed Comput Commun Appl doi: 10.1145/3511603 – volume: 32 start-page: 3685 issue: 6 year: 2022 ident: 9319_CR19 publication-title: IEEE Trans Circ Syst Video Technol doi: 10.1109/TCSVT.2021.3107035 – volume: 16 year: 2022 ident: 9319_CR21 publication-title: Front Neurorobot doi: 10.3389/fnbot.2022.928863 – volume: 30 start-page: 6623 year: 2021 ident: 9319_CR18 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2021.3096060 – volume: 23 start-page: 18855 issue: 10 year: 2022 ident: 9319_CR4 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2022.3161977 |
| SSID | ssj0021753 |
| Score | 2.3749747 |
| Snippet | The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 18585 |
| SubjectTerms | Algorithms Artificial Intelligence Autonomous cars Clustering Computational Intelligence Control Cost analysis Data processing Decision making Density distribution Design Efficiency Embedded systems Engineering Hazard identification Heat detection Identification systems Internet of Things Lasers Mathematical Logic and Foundations Mechatronics Obstacle avoidance Optimization Perception Power Recognition Robotics Sensors Smoothing Traffic accidents & safety Trains Unmanned vehicles Vehicles |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yPejB6VScTsnBmwb6O82xToenIU5lt9L8qCtsraydiH-9L13bqaig56YhvJfkfcl7-T6EzgQVALypQWIV28RxbJv4gJoJ9aIYwmPMOZWl2AQdDv3xmN1Wj8Lyutq9TkmWO3Xz2E1TlRgEYgyBU7jJCCDHdQh3vhZsuBs9NsesinsSgABgRwi41VOZ7_v4HI5WGPNLWrSMNoP2_8a5g7YrdImD5XTYRWsq7aB2rdyAq4XcQVsfaAj30ChIcVJeLiiJry5H_WCIg-lTNk-KyQwDqsWT6A1mEm6qjbIUZzHOOEBLXVWHkxQv0lmk92ys6aFUvo8eBtf3_RtSiS0QAYMsCPhFSEdSy4ptYSmhfMGFZ1icUWlRxrjrSe4r24gNRpXpKeEIQbW4JhWeUtQ-QK00S9Uhwm7EHc9lsZQ8clxp-pEvlKkcCf3bcPzsIrO2eSgqJnItiDENGw7l0oYh2DAsbRi-dtF588_zkofj19a92pVhtSbz0GKajUynmbroonbd6vPPvR39rfkx2tSa9Mualx5qFfOFOkEb4qVI8vlpOVffARx-460 priority: 102 providerName: Springer Nature |
| Title | An improved DBSCAN Algorithm for hazard recognition of obstacles in unmanned scenes |
| URI | https://link.springer.com/article/10.1007/s00500-023-09319-x https://www.proquest.com/docview/2917907518 |
| Volume | 27 |
| WOSCitedRecordID | wos001085279500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database (ProQuest) customDbUrl: eissn: 1433-7479 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-7479 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1odeHG-sRqLbNwp4N5T7KS-iiCUIpVKW5C5hEt2KT2IcWv9046aVHQjZtsklxCzszcMzN3zgE4EUwg8WYWTVXqUs9zXRoia6YsSFJMjynnTBZmE6zdDnu9qGMW3MamrLIcE4uBWuZCr5GfO5HWktKbBBfDd6pdo_TuqrHQWIU1rZKgrRs6_vNiwmVUKJESIIvE1GsOzRRH57TwiUUxY1Gc09sRnX1PTEu2-WODtMg7rep_v3gLNg3jJM15E9mGFZXtQLV0cyCmc-9Ct5mRfrHEoCS5vuxeNduk-faCESevA4Lclrwmn9ieyKLmKM9InpKcI8HUtXWkn5FpNkj0yE20SJQa78Fj6-bh6pYaywUq8CdMKKIjpCeZ46SucJRQoeAisBweMemwKOJ-IHmoXCu1IqbsQAlPCKYtNpkIlGLuPlSyPFMHQPyEe4EfpVLyxPOlHSahULbyJMZ3cRJaA7v837EweuTaFuMtXigpFxjFiFFcYBTPanC6eGc4V-P48-l6CUxseuY4XqJSg7MS2uXt36Md_h3tCDa0E_280qUOlcloqo5hXXxM-uNRA9Yub9qd-was3jHaKFopXu-7T18zbewk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhR5TVBziBReqkcXJAqGwCFSokQOIW4iW0EiTQhe2j-EbGbtIKJLhx4JxkZMdvZp7tWQA2JJdIvLlDE5241PNclwbImin34wTdYyIEV7bZBK_Xg5ub8GIIPopcGBNWWdhEa6hVJs0Z-Q4LTS0pc0mw9_hETdcoc7tatNDowaKm315wy9bePT3E9d1k7Pjo6uCE5l0FqES4dSgOQCpPccYSVzItdSCF9B0mQq4YD0NR8ZUItOskTsh12dfSk5KbLpJc-lpzF-UOw6jnBtzoVY3T_gYvr3qJFARZK7r6PEnHpuqZQisORQ9JndAkDr1-dYQDdvvtQtb6ueOp__aHpmEyZ9Sk2lOBGRjS6SxMFd0qSG685uCympKmPULRihzuXx5U66R6f4cz6DQeCHJ30ojfUV9IP6YqS0mWkEwggTaxg6SZkm76EBvPREwRLN2eh-s_mdoCjKRZqheBVGLh-ZUwUUrEXkWVgziQuqw9hfJd3GSXoFysbyTzeuum7cd91K8UbTERISYii4notQRb_W8ee9VGfn17pQBClFuedjRAQQm2CygNHv8sbel3aeswfnJ1fhadndZryzDBDJJtVM8KjHRaXb0KY_K502y31qxOELj9a4h9Alw6Rvo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kiujBalWszz1406V5NZsca7UoShGq0lvIvrSgibRRxF_vbJrEByqI52yGZWY280125huAfcEEAm9mUa20Sz3PdWmAqJkyP9YYHjXnTObDJli_HwyH4eWHLv682r28kpz2NBiWpiRrPUrdqhrfDG2JRTHeUMzI7ZAiipz1TCG9ydcHN1XKVfBQIihAHInBt2ib-V7G59D0jje_XJHmkadX__-el2GpQJ2kM3WTFZhRSQPq5UQHUhzwBix-oCdchUEnIaP8p4OS5Pho0O30Sef-Nh2PsrsHgmiX3MWv6GGkqkJKE5JqknKEnKbajowS8pQ8xOZbTgxtlJqswXXv5Kp7SoshDFTgJjOK9hLSk8xxtCscJVQguPAth4dMOiwMeduXPFCupa2QKdtXwhOCmaGbTPhKMXcdakmaqA0g7Zh7fjvUUvLYa0s7iAOhbOVJlO9iWtoEu9R_JAqGcjMo4z6quJVzHUaowyjXYfTShIPqnccpP8evq7dLs0bFWZ1ETmhYysz1UxMOSzO-P_5Z2ubflu_B_OVxL7o4659vwYIZWz8ti9mGWjZ-UjswJ56z0WS8m7vwG9Pt73U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+DBSCAN+Algorithm+for+hazard+recognition+of+obstacles+in+unmanned+scenes&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Zhang%2C+Wenying&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=27&rft.issue=24&rft.spage=18585&rft.epage=18604&rft_id=info:doi/10.1007%2Fs00500-023-09319-x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |