An improved DBSCAN Algorithm for hazard recognition of obstacles in unmanned scenes

The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned vehicles. The obstacle hazard identification technology is the core of the environment perception system, and it is also the basic condition...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 27; číslo 24; s. 18585 - 18604
Hlavní autor: Zhang, Wenying
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2023
Springer Nature B.V
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned vehicles. The obstacle hazard identification technology is the core of the environment perception system, and it is also the basic condition for the autonomous driving of unmanned vehicles. In view of the complexity of obstacle danger identification, this research paper designs an improved Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm for hazard recognition of obstacles in unmanned scenes through a systematic approach. First, it highlights the significance of morphological component analysis in identifying non-smooth regions within images where obstacles are likely to be present. Second, it introduces a novel approach for core point definition by identifying an optimal MinDensity value based on the curvature of the density distribution curve. Third, it addresses variations in density sequences through smoothing and normalization. Finally, it constructs an improved DBSCAN Algorithm for hazard recognition of obstacles in unmanned scenes. It addresses limitations in the traditional DBSCAN by refining the core point definition using an adaptive density threshold. It identifies the “elbow point” in density distribution, enhancing its ability to distinguish density states. Additionally, it incorporates density curve smoothing, normalization, and a merger step for handling stationary objects. The results show that it has high accuracy (95.6%), precision (96.3%), recall (94.5%), and F-Score (95.4%), as well as increased consistency (92.5%) and dependability (93.2%). It also has fast real-time data processing, lasting only 0.12 s, making it an excellent choice for obstacle detection and unmanned hazard avoidance.
AbstractList The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned vehicles. The obstacle hazard identification technology is the core of the environment perception system, and it is also the basic condition for the autonomous driving of unmanned vehicles. In view of the complexity of obstacle danger identification, this research paper designs an improved Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm for hazard recognition of obstacles in unmanned scenes through a systematic approach. First, it highlights the significance of morphological component analysis in identifying non-smooth regions within images where obstacles are likely to be present. Second, it introduces a novel approach for core point definition by identifying an optimal MinDensity value based on the curvature of the density distribution curve. Third, it addresses variations in density sequences through smoothing and normalization. Finally, it constructs an improved DBSCAN Algorithm for hazard recognition of obstacles in unmanned scenes. It addresses limitations in the traditional DBSCAN by refining the core point definition using an adaptive density threshold. It identifies the “elbow point” in density distribution, enhancing its ability to distinguish density states. Additionally, it incorporates density curve smoothing, normalization, and a merger step for handling stationary objects. The results show that it has high accuracy (95.6%), precision (96.3%), recall (94.5%), and F-Score (95.4%), as well as increased consistency (92.5%) and dependability (93.2%). It also has fast real-time data processing, lasting only 0.12 s, making it an excellent choice for obstacle detection and unmanned hazard avoidance.
The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned vehicles. The obstacle hazard identification technology is the core of the environment perception system, and it is also the basic condition for the autonomous driving of unmanned vehicles. In view of the complexity of obstacle danger identification, this research paper designs an improved Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algorithm for hazard recognition of obstacles in unmanned scenes through a systematic approach. First, it highlights the significance of morphological component analysis in identifying non-smooth regions within images where obstacles are likely to be present. Second, it introduces a novel approach for core point definition by identifying an optimal MinDensity value based on the curvature of the density distribution curve. Third, it addresses variations in density sequences through smoothing and normalization. Finally, it constructs an improved DBSCAN Algorithm for hazard recognition of obstacles in unmanned scenes. It addresses limitations in the traditional DBSCAN by refining the core point definition using an adaptive density threshold. It identifies the “elbow point” in density distribution, enhancing its ability to distinguish density states. Additionally, it incorporates density curve smoothing, normalization, and a merger step for handling stationary objects. The results show that it has high accuracy (95.6%), precision (96.3%), recall (94.5%), and F-Score (95.4%), as well as increased consistency (92.5%) and dependability (93.2%). It also has fast real-time data processing, lasting only 0.12 s, making it an excellent choice for obstacle detection and unmanned hazard avoidance.
Author Zhang, Wenying
Author_xml – sequence: 1
  givenname: Wenying
  surname: Zhang
  fullname: Zhang, Wenying
  email: wyzhangzzu@163.com
  organization: School of Electrical and Information Engineering, Zhengzhou University
BookMark eNp9kEtPwzAQhC1UJNrCH-BkiXPAjySOj6E8pQoOhbOVOJvWVWIXO0WFX0_aICFx6Gn3MN_s7EzQyDoLCF1Sck0JETeBkISQiDAeEcmpjHYnaExjziMRCzk67CwSaczP0CSENSGMioSP0SK32LQb7z6hwne3i1n-gvNm6bzpVi2uncer4rvwFfag3dKazjiLXY1dGbpCNxCwsXhr28La3iBosBDO0WldNAEufucUvT_cv82eovnr4_Msn0e6T9hFkte6iivBWM01Aw2ZLnVKWClFxYSUZZJWZQac1EQKoCnoWGuRJCkVOgUQfIquBt8-_scWQqfWbuttf1IxSYUkIqFZr8oGlfYuBA-10qYr9n90vjCNokTtK1RDhaqvUB0qVLseZf_QjTdt4b-OQ3yAQi-2S_B_qY5QP8WQhqs
CitedBy_id crossref_primary_10_1007_s11760_024_03810_0
crossref_primary_10_3390_app15063138
crossref_primary_10_3390_a18050273
crossref_primary_10_3390_electronics13071205
Cites_doi 10.1109/TNSM.2016.2541171
10.1016/j.nanoen.2022.108013
10.1007/s00500-023-07923-5
10.1109/TCSVT.2022.3182426
10.23919/CCC50068.2020.9188843
10.1109/TITS.2021.3115823
10.1117/12.2540362
10.1007/s00500-023-09037-4
10.1109/TCSVT.2022.3194169
10.23919/ChiCC.2019.8866334
10.1049/cth2.12136
10.1016/j.ymssp.2022.109930
10.1049/iet-cta.2018.5469
10.1109/TKDE.2020.2970044
10.7717/peerj-cs.1400
10.1002/rnc.4839
10.1109/JSEN.2022.3201015
10.1109/TCSVT.2021.3069838
10.1109/TNET.2017.2705239
10.1109/TMM.2023.3282465
10.3390/jmse10081153
10.1007/s11071-018-4732-x
10.1038/s41377-022-00815-7
10.1007/s00500-023-08026-x
10.1109/JOE.2021.3126090
10.1093/comjnl/bxac085
10.1109/TITS.2023.3269794
10.3390/jmse10101399
10.1007/s44196-023-00233-6
10.23919/ChiCC.2017.8028015
10.1155/2022/3815306
10.1007/s10489-020-01894-y
10.1016/j.tre.2016.01.011
10.1002/asjc.2762
10.1145/3230644
10.1145/3511603
10.1109/TCSVT.2021.3107035
10.3389/fnbot.2022.928863
10.1109/TIP.2021.3096060
10.1109/TITS.2022.3161977
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-023-09319-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database (ProQuest)
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 18604
ExternalDocumentID 10_1007_s00500_023_09319_x
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c319t-93fcd4d722f3c2ece8cbc602b97d2799b56db8e30f097e16ec4cc755617c6ee73
IEDL.DBID P5Z
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001085279500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 03:05:30 EST 2025
Sat Nov 29 03:36:33 EST 2025
Tue Nov 18 20:31:52 EST 2025
Fri Feb 21 02:41:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords AI image processing
Unmanned
Obstacles
Bounding box
Hazard identification
DBSCAN Algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-93fcd4d722f3c2ece8cbc602b97d2799b56db8e30f097e16ec4cc755617c6ee73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2917907518
PQPubID 2043697
PageCount 20
ParticipantIDs proquest_journals_2917907518
crossref_citationtrail_10_1007_s00500_023_09319_x
crossref_primary_10_1007_s00500_023_09319_x
springer_journals_10_1007_s00500_023_09319_x
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References AslamXDHouJLiQUllahRNiZLiuYReliable control design for composite-driven scheme based on delay networked T-S fuzzy systemInt J Robust Nonlinear Control202030416221642408539310.1002/rnc.48391465.93103
ChenPLiuHXinRCarvalTZhaoJXiaYEffectively detecting operational anomalies in large-scale IoT Data infrastructures by using a GAN-based predictive modelComput J202265112909292510.1093/comjnl/bxac085
LuSBanYZhangXYangBLiuSYinLZhengWAdaptive control of time delay teleoperation system with uncertain dynamicsFront Neurorobot20221610.3389/fnbot.2022.928863
ZhangHLuoGLiJWangF-YC2FDA: coarse-to-fine domain adaptation for traffic object detectionIEEE Trans Intell Transport Syst2022238126331264710.1109/TITS.2021.3115823
LiuQYuanHHamzaouiRSuHHouJReduced reference perceptual quality model with application to rate control for video-based point cloud compressionIEEE Trans Image Process2021306623663610.1109/TIP.2021.3096060
XuHSunZCaoYA data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of ThingsSoft Comput202310.1007/s00500-023-09037-4
UllahRDaiXShengAEvent-triggered scheme for fault detection and isolation of non-linear system with time-varying delayIET Control Theory Appl2020141624292438441797310.1049/iet-cta.2018.5469
LiuAZhaiYXuNNieWLiWRegion-aware image captioning via interaction learningIEEE Trans Circ Syst Video Technol20223263685369610.1109/TCSVT.2021.3107035
ZhengYLvXQianLLiuXAn optimal BP neural network track prediction method based on a GA–ACO hybrid algorithmJ Mar Sci Eng20221010139910.3390/jmse10101399
LiJHanLZhangCLiQLiuZSpherical convolution empowered viewport prediction in 360 video multicast with limited FoV feedbackACM Trans Multimed Comput Commun Appl202310.1145/3511603
YangSLiQLiWLiXLiuADual-level representation enhancement on characteristic and context for image-text retrievalIEEE Trans Circuits Syst Video Technol202232118037805010.1109/TCSVT.2022.3182426
CongRShengHYangDCuiZChenRExploiting spatial and angular correlations with deep efficient transformers for light field image super-resolutionIEEE Trans Multimed202310.1109/TMM.2023.3282465
ChengBZhuDZhaoSChenJSituation-aware IoT service coordination using the event-driven SOA paradigmIEEE Trans Netw Serv Manage201613234936110.1109/TNSM.2016.2541171
ZhengYLiuPQianLQinSLiuXMaYRecognition and depth estimation of ships based on binocular stereo visionJ Mar Sci Eng202210115310.3390/jmse10081153
ChengBWangMZhaoSZhaiZZhuDSituation-aware dynamic service coordination in an IoT environmentIEEE/ACM Trans Netw20172542082209510.1109/TNET.2017.2705239
LuSLiuMYinLYinZLiuXZhengWThe multi-modal fusion in visual question answering: a review of attention mechanismsPeerJ Comput Sci2023910.7717/peerj-cs.1400
WangFWangHZhouXFuRA driving fatigue feature detection method based on multifractal theoryIEEE Sens J20222219190461905910.1109/JSEN.2022.3201015
KumarAShaikhAMLiYPruning filters with L1-norm and capped L1-norm for CNN compressionAppl Intell2021511152116010.1007/s10489-020-01894-y
LuSDingYLiuMYinZYinLMultiscale feature extraction and fusion of image and text in VQAInt J Comput Intell Syst20231615410.1007/s44196-023-00233-6
Yin B, Khan J, Wang L, Zhang J and Kumar A (2019) Real-time lane detection and tracking for advanced driver assistance systems. In: 2019 Chinese Control Conference (CCC) (pp 6772–6777). IEEE. https://doi.org/10.23919/ChiCC.2019.8866334
JiangSZhaoCZhuYWangCDuYLeiWA practical and economical ultra-wideband base station placement approach for indoor autonomous driving systemsJ Adv Transp2022202211210.1155/2022/3815306
LiuHYuanHLiuQHouJZengHA hybrid compression framework for color attributes of static 3D point cloudsIEEE Trans Circ Syst Video Technol20223231564157710.1109/TCSVT.2021.3069838
LiangXHuangZYangSQiuLDevice-free motion and trajectory detection via RFIDACM Trans Embed Comput Syst20181747810.1145/3230644
Ali M, Yin B, Kumar A, Sheikh AM et al (2020) Reduction of multiplications in convolutional neural networks. In: 2020 39th Chinese Control Conference (CCC) (pp 7406–7411). IEEE. https://doi.org/10.23919/CCC50068.2020.9188843
ChenZObserver-based dissipative output feedback control for network T-S fuzzy systems under time delays with mismatch premiseNonlinear Dyn2019952923294110.1007/s11071-018-4732-x1437.93063
Wang L, Zhai Q, Yin B et al (2019) Second-order convolutional network for crowd counting. In: Proceeding of SPIE 11198, Fourth International Workshop on Pattern Recognition, 111980T. https://doi.org/10.1117/12.2540362
XiaoYKonakAThe heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestionTransport Res Part E20168814616610.1016/j.tre.2016.01.011
ChenJXuMXuWLiDPengWA flow feedback traffic prediction based on visual quantified featuresIEEE Trans Intell Transp Syst202310.1109/TITS.2023.3269794
HouXZhangLSuYGaoGLiuYNaZA space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identificationNano Energy202310510.1016/j.nanoen.2022.108013
YangMWangHHuKYinGWeiZIA-net $: $ an inception–attention-module-based network for classifying underwater images from othersIEEE J Oceanic Eng202247370471710.1109/JOE.2021.3126090
ShamroozMLiQHouJFault detection for asynchronous T-S fuzzy networked Markov jump systems with new event-triggered schemeIET Control Theory Appl2021151114611473458335110.1049/cth2.12136
LiJZhouNSunJZhouSBaiZLuLTransport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopyLight Sci Appl202211115410.1038/s41377-022-00815-7
ShenYDingNZhengH-TLiYYangMModeling relation paths for knowledge graph completionIEEE Trans Knowl Data Eng202133113607361710.1109/TKDE.2020.2970044
YinBAslamMSA practical study of active disturbance rejection control for rotary flexible joint robot manipulatorSoft Comput2023274987500110.1007/s00500-023-08026-x
ChenJWangQPengWXuHLiXDisparity-based multiscale fusion network for transportation detectionIEEE Trans Intell Transp Syst20222310188551886310.1109/TITS.2022.3161977
MuhammadIQMajidAShamroozSAdaptive event-triggered robust H∞ control for Takagi-Sugeno fuzzy networked Markov jump systems with time-varying delayAsian J Control2023251213228456232910.1002/asjc.2762
Yao W, Guo Y, Wu Y and Guo J (2017) Experimental validation of fuzzy PID control of flexible joint system in presence of uncertainties. In: 2017 36th Chinese Control Conference (CCC) (pp 4192–4197). IEEE. https://doi.org/10.23919/ChiCC.2017.8028015
MaXDongZQuanWDongYTanYReal-time assessment of asphalt pavement moduli and traffic loads using monitoring data from Built-in Sensors: optimal sensor placement and identification algorithmMech Syst Signal Process202318710.1016/j.ymssp.2022.109930
ChengDChenLLvCGuoLKouQLight-guided and cross-fusion U-net for anti-illumination image super-resolutionIEEE Trans Circ Syst Video Technol202232128436844910.1109/TCSVT.2022.3194169
HazratBYinBKumarAAliMZhangJYaoJJerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approachSoft Comput20232774029403910.1007/s00500-023-07923-5
X Hou (9319_CR12) 2023; 105
IQ Muhammad (9319_CR25) 2023; 25
D Cheng (9319_CR9) 2022; 32
F Wang (9319_CR29) 2022; 22
R Cong (9319_CR10) 2023
9319_CR1
B Cheng (9319_CR7) 2016; 13
S Lu (9319_CR21) 2022; 16
B Cheng (9319_CR8) 2017; 25
S Lu (9319_CR23) 2023; 9
A Kumar (9319_CR14) 2021; 51
Z Chen (9319_CR3) 2019; 95
Y Zheng (9319_CR40) 2022; 10
XD Aslam (9319_CR2) 2020; 30
H Zhang (9319_CR38) 2022; 23
J Li (9319_CR15) 2022; 11
X Liang (9319_CR17) 2018; 17
J Li (9319_CR16) 2023
A Liu (9319_CR19) 2022; 32
Y Zheng (9319_CR39) 2022; 10
9319_CR30
X Ma (9319_CR24) 2023; 187
P Chen (9319_CR5) 2022; 65
9319_CR35
S Jiang (9319_CR13) 2022; 2022
R Ullah (9319_CR28) 2020; 14
B Hazrat (9319_CR11) 2023; 27
S Yang (9319_CR33) 2022; 32
Y Shen (9319_CR27) 2021; 33
M Yang (9319_CR34) 2022; 47
J Chen (9319_CR6) 2023
H Xu (9319_CR32) 2023
B Yin (9319_CR36) 2023; 27
Q Liu (9319_CR18) 2021; 30
S Lu (9319_CR22) 2023; 16
9319_CR37
Y Xiao (9319_CR31) 2016; 88
J Chen (9319_CR4) 2022; 23
M Shamrooz (9319_CR26) 2021; 15
H Liu (9319_CR20) 2022; 32
References_xml – reference: ShamroozMLiQHouJFault detection for asynchronous T-S fuzzy networked Markov jump systems with new event-triggered schemeIET Control Theory Appl2021151114611473458335110.1049/cth2.12136
– reference: ChengDChenLLvCGuoLKouQLight-guided and cross-fusion U-net for anti-illumination image super-resolutionIEEE Trans Circ Syst Video Technol202232128436844910.1109/TCSVT.2022.3194169
– reference: JiangSZhaoCZhuYWangCDuYLeiWA practical and economical ultra-wideband base station placement approach for indoor autonomous driving systemsJ Adv Transp2022202211210.1155/2022/3815306
– reference: LuSDingYLiuMYinZYinLMultiscale feature extraction and fusion of image and text in VQAInt J Comput Intell Syst20231615410.1007/s44196-023-00233-6
– reference: YinBAslamMSA practical study of active disturbance rejection control for rotary flexible joint robot manipulatorSoft Comput2023274987500110.1007/s00500-023-08026-x
– reference: XiaoYKonakAThe heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestionTransport Res Part E20168814616610.1016/j.tre.2016.01.011
– reference: XuHSunZCaoYA data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of ThingsSoft Comput202310.1007/s00500-023-09037-4
– reference: Yao W, Guo Y, Wu Y and Guo J (2017) Experimental validation of fuzzy PID control of flexible joint system in presence of uncertainties. In: 2017 36th Chinese Control Conference (CCC) (pp 4192–4197). IEEE. https://doi.org/10.23919/ChiCC.2017.8028015
– reference: MaXDongZQuanWDongYTanYReal-time assessment of asphalt pavement moduli and traffic loads using monitoring data from Built-in Sensors: optimal sensor placement and identification algorithmMech Syst Signal Process202318710.1016/j.ymssp.2022.109930
– reference: Yin B, Khan J, Wang L, Zhang J and Kumar A (2019) Real-time lane detection and tracking for advanced driver assistance systems. In: 2019 Chinese Control Conference (CCC) (pp 6772–6777). IEEE. https://doi.org/10.23919/ChiCC.2019.8866334
– reference: CongRShengHYangDCuiZChenRExploiting spatial and angular correlations with deep efficient transformers for light field image super-resolutionIEEE Trans Multimed202310.1109/TMM.2023.3282465
– reference: ShenYDingNZhengH-TLiYYangMModeling relation paths for knowledge graph completionIEEE Trans Knowl Data Eng202133113607361710.1109/TKDE.2020.2970044
– reference: ChengBWangMZhaoSZhaiZZhuDSituation-aware dynamic service coordination in an IoT environmentIEEE/ACM Trans Netw20172542082209510.1109/TNET.2017.2705239
– reference: ZhengYLiuPQianLQinSLiuXMaYRecognition and depth estimation of ships based on binocular stereo visionJ Mar Sci Eng202210115310.3390/jmse10081153
– reference: LiuAZhaiYXuNNieWLiWRegion-aware image captioning via interaction learningIEEE Trans Circ Syst Video Technol20223263685369610.1109/TCSVT.2021.3107035
– reference: LuSBanYZhangXYangBLiuSYinLZhengWAdaptive control of time delay teleoperation system with uncertain dynamicsFront Neurorobot20221610.3389/fnbot.2022.928863
– reference: LiJHanLZhangCLiQLiuZSpherical convolution empowered viewport prediction in 360 video multicast with limited FoV feedbackACM Trans Multimed Comput Commun Appl202310.1145/3511603
– reference: AslamXDHouJLiQUllahRNiZLiuYReliable control design for composite-driven scheme based on delay networked T-S fuzzy systemInt J Robust Nonlinear Control202030416221642408539310.1002/rnc.48391465.93103
– reference: ChenJXuMXuWLiDPengWA flow feedback traffic prediction based on visual quantified featuresIEEE Trans Intell Transp Syst202310.1109/TITS.2023.3269794
– reference: WangFWangHZhouXFuRA driving fatigue feature detection method based on multifractal theoryIEEE Sens J20222219190461905910.1109/JSEN.2022.3201015
– reference: Ali M, Yin B, Kumar A, Sheikh AM et al (2020) Reduction of multiplications in convolutional neural networks. In: 2020 39th Chinese Control Conference (CCC) (pp 7406–7411). IEEE. https://doi.org/10.23919/CCC50068.2020.9188843
– reference: LiJZhouNSunJZhouSBaiZLuLTransport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopyLight Sci Appl202211115410.1038/s41377-022-00815-7
– reference: YangSLiQLiWLiXLiuADual-level representation enhancement on characteristic and context for image-text retrievalIEEE Trans Circuits Syst Video Technol202232118037805010.1109/TCSVT.2022.3182426
– reference: HazratBYinBKumarAAliMZhangJYaoJJerk-bounded trajectory planning for rotary flexible joint manipulator: an experimental approachSoft Comput20232774029403910.1007/s00500-023-07923-5
– reference: MuhammadIQMajidAShamroozSAdaptive event-triggered robust H∞ control for Takagi-Sugeno fuzzy networked Markov jump systems with time-varying delayAsian J Control2023251213228456232910.1002/asjc.2762
– reference: LiuQYuanHHamzaouiRSuHHouJReduced reference perceptual quality model with application to rate control for video-based point cloud compressionIEEE Trans Image Process2021306623663610.1109/TIP.2021.3096060
– reference: ZhangHLuoGLiJWangF-YC2FDA: coarse-to-fine domain adaptation for traffic object detectionIEEE Trans Intell Transport Syst2022238126331264710.1109/TITS.2021.3115823
– reference: LiuHYuanHLiuQHouJZengHA hybrid compression framework for color attributes of static 3D point cloudsIEEE Trans Circ Syst Video Technol20223231564157710.1109/TCSVT.2021.3069838
– reference: LuSLiuMYinLYinZLiuXZhengWThe multi-modal fusion in visual question answering: a review of attention mechanismsPeerJ Comput Sci2023910.7717/peerj-cs.1400
– reference: UllahRDaiXShengAEvent-triggered scheme for fault detection and isolation of non-linear system with time-varying delayIET Control Theory Appl2020141624292438441797310.1049/iet-cta.2018.5469
– reference: ChenJWangQPengWXuHLiXDisparity-based multiscale fusion network for transportation detectionIEEE Trans Intell Transp Syst20222310188551886310.1109/TITS.2022.3161977
– reference: Wang L, Zhai Q, Yin B et al (2019) Second-order convolutional network for crowd counting. In: Proceeding of SPIE 11198, Fourth International Workshop on Pattern Recognition, 111980T. https://doi.org/10.1117/12.2540362
– reference: LiangXHuangZYangSQiuLDevice-free motion and trajectory detection via RFIDACM Trans Embed Comput Syst20181747810.1145/3230644
– reference: ChenPLiuHXinRCarvalTZhaoJXiaYEffectively detecting operational anomalies in large-scale IoT Data infrastructures by using a GAN-based predictive modelComput J202265112909292510.1093/comjnl/bxac085
– reference: ZhengYLvXQianLLiuXAn optimal BP neural network track prediction method based on a GA–ACO hybrid algorithmJ Mar Sci Eng20221010139910.3390/jmse10101399
– reference: ChengBZhuDZhaoSChenJSituation-aware IoT service coordination using the event-driven SOA paradigmIEEE Trans Netw Serv Manage201613234936110.1109/TNSM.2016.2541171
– reference: ChenZObserver-based dissipative output feedback control for network T-S fuzzy systems under time delays with mismatch premiseNonlinear Dyn2019952923294110.1007/s11071-018-4732-x1437.93063
– reference: YangMWangHHuKYinGWeiZIA-net $: $ an inception–attention-module-based network for classifying underwater images from othersIEEE J Oceanic Eng202247370471710.1109/JOE.2021.3126090
– reference: HouXZhangLSuYGaoGLiuYNaZA space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identificationNano Energy202310510.1016/j.nanoen.2022.108013
– reference: KumarAShaikhAMLiYPruning filters with L1-norm and capped L1-norm for CNN compressionAppl Intell2021511152116010.1007/s10489-020-01894-y
– volume: 13
  start-page: 349
  issue: 2
  year: 2016
  ident: 9319_CR7
  publication-title: IEEE Trans Netw Serv Manage
  doi: 10.1109/TNSM.2016.2541171
– volume: 105
  year: 2023
  ident: 9319_CR12
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.108013
– volume: 27
  start-page: 4029
  issue: 7
  year: 2023
  ident: 9319_CR11
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-07923-5
– volume: 32
  start-page: 8037
  issue: 11
  year: 2022
  ident: 9319_CR33
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2022.3182426
– ident: 9319_CR1
  doi: 10.23919/CCC50068.2020.9188843
– volume: 23
  start-page: 12633
  issue: 8
  year: 2022
  ident: 9319_CR38
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2021.3115823
– ident: 9319_CR30
  doi: 10.1117/12.2540362
– year: 2023
  ident: 9319_CR32
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-09037-4
– volume: 32
  start-page: 8436
  issue: 12
  year: 2022
  ident: 9319_CR9
  publication-title: IEEE Trans Circ Syst Video Technol
  doi: 10.1109/TCSVT.2022.3194169
– ident: 9319_CR37
  doi: 10.23919/ChiCC.2019.8866334
– volume: 15
  start-page: 1461
  issue: 11
  year: 2021
  ident: 9319_CR26
  publication-title: IET Control Theory Appl
  doi: 10.1049/cth2.12136
– volume: 187
  year: 2023
  ident: 9319_CR24
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2022.109930
– volume: 14
  start-page: 2429
  issue: 16
  year: 2020
  ident: 9319_CR28
  publication-title: IET Control Theory Appl
  doi: 10.1049/iet-cta.2018.5469
– volume: 33
  start-page: 3607
  issue: 11
  year: 2021
  ident: 9319_CR27
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2020.2970044
– volume: 9
  year: 2023
  ident: 9319_CR23
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.1400
– volume: 30
  start-page: 1622
  issue: 4
  year: 2020
  ident: 9319_CR2
  publication-title: Int J Robust Nonlinear Control
  doi: 10.1002/rnc.4839
– volume: 22
  start-page: 19046
  issue: 19
  year: 2022
  ident: 9319_CR29
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2022.3201015
– volume: 32
  start-page: 1564
  issue: 3
  year: 2022
  ident: 9319_CR20
  publication-title: IEEE Trans Circ Syst Video Technol
  doi: 10.1109/TCSVT.2021.3069838
– volume: 25
  start-page: 2082
  issue: 4
  year: 2017
  ident: 9319_CR8
  publication-title: IEEE/ACM Trans Netw
  doi: 10.1109/TNET.2017.2705239
– year: 2023
  ident: 9319_CR10
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2023.3282465
– volume: 10
  start-page: 1153
  year: 2022
  ident: 9319_CR40
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse10081153
– volume: 95
  start-page: 2923
  year: 2019
  ident: 9319_CR3
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-018-4732-x
– volume: 11
  start-page: 154
  issue: 1
  year: 2022
  ident: 9319_CR15
  publication-title: Light Sci Appl
  doi: 10.1038/s41377-022-00815-7
– volume: 27
  start-page: 4987
  year: 2023
  ident: 9319_CR36
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08026-x
– volume: 47
  start-page: 704
  issue: 3
  year: 2022
  ident: 9319_CR34
  publication-title: IEEE J Oceanic Eng
  doi: 10.1109/JOE.2021.3126090
– volume: 65
  start-page: 2909
  issue: 11
  year: 2022
  ident: 9319_CR5
  publication-title: Comput J
  doi: 10.1093/comjnl/bxac085
– year: 2023
  ident: 9319_CR6
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2023.3269794
– volume: 10
  start-page: 1399
  issue: 10
  year: 2022
  ident: 9319_CR39
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse10101399
– volume: 16
  start-page: 54
  issue: 1
  year: 2023
  ident: 9319_CR22
  publication-title: Int J Comput Intell Syst
  doi: 10.1007/s44196-023-00233-6
– ident: 9319_CR35
  doi: 10.23919/ChiCC.2017.8028015
– volume: 2022
  start-page: 1
  year: 2022
  ident: 9319_CR13
  publication-title: J Adv Transp
  doi: 10.1155/2022/3815306
– volume: 51
  start-page: 1152
  year: 2021
  ident: 9319_CR14
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01894-y
– volume: 88
  start-page: 146
  year: 2016
  ident: 9319_CR31
  publication-title: Transport Res Part E
  doi: 10.1016/j.tre.2016.01.011
– volume: 25
  start-page: 213
  issue: 1
  year: 2023
  ident: 9319_CR25
  publication-title: Asian J Control
  doi: 10.1002/asjc.2762
– volume: 17
  start-page: 78
  issue: 4
  year: 2018
  ident: 9319_CR17
  publication-title: ACM Trans Embed Comput Syst
  doi: 10.1145/3230644
– year: 2023
  ident: 9319_CR16
  publication-title: ACM Trans Multimed Comput Commun Appl
  doi: 10.1145/3511603
– volume: 32
  start-page: 3685
  issue: 6
  year: 2022
  ident: 9319_CR19
  publication-title: IEEE Trans Circ Syst Video Technol
  doi: 10.1109/TCSVT.2021.3107035
– volume: 16
  year: 2022
  ident: 9319_CR21
  publication-title: Front Neurorobot
  doi: 10.3389/fnbot.2022.928863
– volume: 30
  start-page: 6623
  year: 2021
  ident: 9319_CR18
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2021.3096060
– volume: 23
  start-page: 18855
  issue: 10
  year: 2022
  ident: 9319_CR4
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2022.3161977
SSID ssj0021753
Score 2.3749747
Snippet The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18585
SubjectTerms Algorithms
Artificial Intelligence
Autonomous cars
Clustering
Computational Intelligence
Control
Cost analysis
Data processing
Decision making
Density distribution
Design
Efficiency
Embedded systems
Engineering
Hazard identification
Heat detection
Identification systems
Internet of Things
Lasers
Mathematical Logic and Foundations
Mechatronics
Obstacle avoidance
Optimization
Perception
Power
Recognition
Robotics
Sensors
Smoothing
Traffic accidents & safety
Trains
Unmanned vehicles
Vehicles
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA4yPejB6VScTsnBmwb6O82xToenIU5lt9L8qCtsraydiH-9L13bqaig56YhvJfkfcl7-T6EzgQVALypQWIV28RxbJv4gJoJ9aIYwmPMOZWl2AQdDv3xmN1Wj8Lyutq9TkmWO3Xz2E1TlRgEYgyBU7jJCCDHdQh3vhZsuBs9NsesinsSgABgRwi41VOZ7_v4HI5WGPNLWrSMNoP2_8a5g7YrdImD5XTYRWsq7aB2rdyAq4XcQVsfaAj30ChIcVJeLiiJry5H_WCIg-lTNk-KyQwDqsWT6A1mEm6qjbIUZzHOOEBLXVWHkxQv0lmk92ys6aFUvo8eBtf3_RtSiS0QAYMsCPhFSEdSy4ptYSmhfMGFZ1icUWlRxrjrSe4r24gNRpXpKeEIQbW4JhWeUtQ-QK00S9Uhwm7EHc9lsZQ8clxp-pEvlKkcCf3bcPzsIrO2eSgqJnItiDENGw7l0oYh2DAsbRi-dtF588_zkofj19a92pVhtSbz0GKajUynmbroonbd6vPPvR39rfkx2tSa9Mualx5qFfOFOkEb4qVI8vlpOVffARx-460
  priority: 102
  providerName: Springer Nature
Title An improved DBSCAN Algorithm for hazard recognition of obstacles in unmanned scenes
URI https://link.springer.com/article/10.1007/s00500-023-09319-x
https://www.proquest.com/docview/2917907518
Volume 27
WOSCitedRecordID wos001085279500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database (ProQuest)
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFL1odeHG-sRqLbNwp4N5T7KS-iiCUIpVKW5C5hEt2KT2IcWv9046aVHQjZtsklxCzszcMzN3zgE4EUwg8WYWTVXqUs9zXRoia6YsSFJMjynnTBZmE6zdDnu9qGMW3MamrLIcE4uBWuZCr5GfO5HWktKbBBfDd6pdo_TuqrHQWIU1rZKgrRs6_vNiwmVUKJESIIvE1GsOzRRH57TwiUUxY1Gc09sRnX1PTEu2-WODtMg7rep_v3gLNg3jJM15E9mGFZXtQLV0cyCmc-9Ct5mRfrHEoCS5vuxeNduk-faCESevA4Lclrwmn9ieyKLmKM9InpKcI8HUtXWkn5FpNkj0yE20SJQa78Fj6-bh6pYaywUq8CdMKKIjpCeZ46SucJRQoeAisBweMemwKOJ-IHmoXCu1IqbsQAlPCKYtNpkIlGLuPlSyPFMHQPyEe4EfpVLyxPOlHSahULbyJMZ3cRJaA7v837EweuTaFuMtXigpFxjFiFFcYBTPanC6eGc4V-P48-l6CUxseuY4XqJSg7MS2uXt36Md_h3tCDa0E_280qUOlcloqo5hXXxM-uNRA9Yub9qd-was3jHaKFopXu-7T18zbewk
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhR5TVBziBReqkcXJAqGwCFSokQOIW4iW0EiTQhe2j-EbGbtIKJLhx4JxkZMdvZp7tWQA2JJdIvLlDE5241PNclwbImin34wTdYyIEV7bZBK_Xg5ub8GIIPopcGBNWWdhEa6hVJs0Z-Q4LTS0pc0mw9_hETdcoc7tatNDowaKm315wy9bePT3E9d1k7Pjo6uCE5l0FqES4dSgOQCpPccYSVzItdSCF9B0mQq4YD0NR8ZUItOskTsh12dfSk5KbLpJc-lpzF-UOw6jnBtzoVY3T_gYvr3qJFARZK7r6PEnHpuqZQisORQ9JndAkDr1-dYQDdvvtQtb6ueOp__aHpmEyZ9Sk2lOBGRjS6SxMFd0qSG685uCympKmPULRihzuXx5U66R6f4cz6DQeCHJ30ojfUV9IP6YqS0mWkEwggTaxg6SZkm76EBvPREwRLN2eh-s_mdoCjKRZqheBVGLh-ZUwUUrEXkWVgziQuqw9hfJd3GSXoFysbyTzeuum7cd91K8UbTERISYii4notQRb_W8ee9VGfn17pQBClFuedjRAQQm2CygNHv8sbel3aeswfnJ1fhadndZryzDBDJJtVM8KjHRaXb0KY_K502y31qxOELj9a4h9Alw6Rvo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kiujBalWszz1406V5NZsca7UoShGq0lvIvrSgibRRxF_vbJrEByqI52yGZWY280125huAfcEEAm9mUa20Sz3PdWmAqJkyP9YYHjXnTObDJli_HwyH4eWHLv682r28kpz2NBiWpiRrPUrdqhrfDG2JRTHeUMzI7ZAiipz1TCG9ydcHN1XKVfBQIihAHInBt2ib-V7G59D0jje_XJHmkadX__-el2GpQJ2kM3WTFZhRSQPq5UQHUhzwBix-oCdchUEnIaP8p4OS5Pho0O30Sef-Nh2PsrsHgmiX3MWv6GGkqkJKE5JqknKEnKbajowS8pQ8xOZbTgxtlJqswXXv5Kp7SoshDFTgJjOK9hLSk8xxtCscJVQguPAth4dMOiwMeduXPFCupa2QKdtXwhOCmaGbTPhKMXcdakmaqA0g7Zh7fjvUUvLYa0s7iAOhbOVJlO9iWtoEu9R_JAqGcjMo4z6quJVzHUaowyjXYfTShIPqnccpP8evq7dLs0bFWZ1ETmhYysz1UxMOSzO-P_5Z2ubflu_B_OVxL7o4659vwYIZWz8ti9mGWjZ-UjswJ56z0WS8m7vwG9Pt73U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+DBSCAN+Algorithm+for+hazard+recognition+of+obstacles+in+unmanned+scenes&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Zhang%2C+Wenying&rft.date=2023-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=27&rft.issue=24&rft.spage=18585&rft.epage=18604&rft_id=info:doi/10.1007%2Fs00500-023-09319-x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon