Automatic lane marking prediction using convolutional neural network and S-Shaped Binary Butterfly Optimization

Lane detection is a technique that uses geometric features as an input to the autonomous vehicle to automatically distinguish lane markings. To process the intricate features present in the lane images, traditional computer vision (CV) techniques are typically time-consuming, need more computing res...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 78; no. 3; pp. 3715 - 3745
Main Authors: Alajlan, Abrar Mohammed, Almasri, Marwah Mohammad
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2022
Springer Nature B.V
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Lane detection is a technique that uses geometric features as an input to the autonomous vehicle to automatically distinguish lane markings. To process the intricate features present in the lane images, traditional computer vision (CV) techniques are typically time-consuming, need more computing resources, and use complex algorithms. To address this problem, this paper presents a deep convolutional neural network (CNN) architecture that prevents the complexities of traditional CV techniques. CNN is regarded as a reasonable method for lane marking prediction, while improved performance requires hyperparameter tuning. To enhance the initial parameter setting of the CNN, an S-Shaped Binary Butterfly Optimization Algorithm (SBBOA) is utilized in this paper. In this way, the relative parameters of CNN are selected for accurate lane marking. To evaluate the performance of the proposed SBBOA-CNN model, extensive experiments are conducted using the TUSimple and CULane datasets. The experimental results obtained show that the proposed approach outperforms other state-of-the-art techniques in terms of classification accuracy, precision, F 1-score, and recall. The proposed model also considerably outperforms the CNN in terms of classification accuracy, average elapsed time, and receiver operating characteristics curve measure. This result demonstrates that the SBBOA optimized CNN exhibits higher robustness and stability than CNN.
AbstractList Lane detection is a technique that uses geometric features as an input to the autonomous vehicle to automatically distinguish lane markings. To process the intricate features present in the lane images, traditional computer vision (CV) techniques are typically time-consuming, need more computing resources, and use complex algorithms. To address this problem, this paper presents a deep convolutional neural network (CNN) architecture that prevents the complexities of traditional CV techniques. CNN is regarded as a reasonable method for lane marking prediction, while improved performance requires hyperparameter tuning. To enhance the initial parameter setting of the CNN, an S-Shaped Binary Butterfly Optimization Algorithm (SBBOA) is utilized in this paper. In this way, the relative parameters of CNN are selected for accurate lane marking. To evaluate the performance of the proposed SBBOA-CNN model, extensive experiments are conducted using the TUSimple and CULane datasets. The experimental results obtained show that the proposed approach outperforms other state-of-the-art techniques in terms of classification accuracy, precision, F 1-score, and recall. The proposed model also considerably outperforms the CNN in terms of classification accuracy, average elapsed time, and receiver operating characteristics curve measure. This result demonstrates that the SBBOA optimized CNN exhibits higher robustness and stability than CNN.
Lane detection is a technique that uses geometric features as an input to the autonomous vehicle to automatically distinguish lane markings. To process the intricate features present in the lane images, traditional computer vision (CV) techniques are typically time-consuming, need more computing resources, and use complex algorithms. To address this problem, this paper presents a deep convolutional neural network (CNN) architecture that prevents the complexities of traditional CV techniques. CNN is regarded as a reasonable method for lane marking prediction, while improved performance requires hyperparameter tuning. To enhance the initial parameter setting of the CNN, an S-Shaped Binary Butterfly Optimization Algorithm (SBBOA) is utilized in this paper. In this way, the relative parameters of CNN are selected for accurate lane marking. To evaluate the performance of the proposed SBBOA-CNN model, extensive experiments are conducted using the TUSimple and CULane datasets. The experimental results obtained show that the proposed approach outperforms other state-of-the-art techniques in terms of classification accuracy, precision, F1-score, and recall. The proposed model also considerably outperforms the CNN in terms of classification accuracy, average elapsed time, and receiver operating characteristics curve measure. This result demonstrates that the SBBOA optimized CNN exhibits higher robustness and stability than CNN.
Author Alajlan, Abrar Mohammed
Almasri, Marwah Mohammad
Author_xml – sequence: 1
  givenname: Abrar Mohammed
  surname: Alajlan
  fullname: Alajlan, Abrar Mohammed
  email: aalajlan1@ksu.edu.sa
  organization: Self-Development Skills Department, Common First Year Deanship, King Saud University
– sequence: 2
  givenname: Marwah Mohammad
  surname: Almasri
  fullname: Almasri, Marwah Mohammad
  organization: College of Computing and Informatics, Saudi Electronic University
BookMark eNp9kM9LwzAYhoMoOKf_gKeA5-iXpGubo4q_QPCgnkOWpjNbl9QkVedfb7sKgoeRwwcv7xNeniO077wzCJ1SOKcAxUWklLGCAKMEuChL8rWHJnRWcAJZme2jCQgGpJxl7BAdxbgEgIwXfIL8ZZf8WiWrcaOcwWsVVtYtcBtMZXWy3uEuDoH27sM33ZCoBjvThe1Jnz6ssHIVfibPb6o1Fb6yToUNvupSMqFuNvipTXZtv9XAHqODWjXRnPzeKXq9vXm5viePT3cP15ePRHMqEhFc54xRXrFalzTXDCgoA2Ke1blgQvF5HzOV6xmDWhWqyjjXFc0qUQhgpeJTdDb-2wb_3pmY5NJ3oZ8eJcv7V-Y5LfpWObZ08DEGU0tt03ZnCso2koIc9MpRr-z1yq1e-dWj7B_aBtvb2-yG-AjFvuwWJvyt2kH9ADQMkbc
CitedBy_id crossref_primary_10_1007_s11227_023_05487_7
crossref_primary_10_1109_ACCESS_2023_3234442
Cites_doi 10.1016/j.eswa.2017.11.028
10.1007/s00500-018-3102-4
10.1016/j.cose.2018.04.009
10.1109/TVT.2019.2949603
10.1016/j.eswa.2018.12.005
10.1504/IJBET.2019.103242
10.1007/s10115-018-1263-1
10.1080/01441647.2018.1494640
10.1109/ACCESS.2020.3019245
10.1007/s00500-018-3124-y
10.1016/j.advengsoft.2015.01.010
10.1016/j.amc.2019.124919
10.1177/0361198120922210
10.1016/j.chemolab.2015.08.020
10.1007/s11042-019-7577-5
10.3390/s19071665
10.1016/j.knosys.2020.105584
10.1007/s00521-020-05474-6
10.1109/ICETETS.2016.7603013
10.1002/pip.3315
10.1007/s13369-020-04918-4
10.1002/ett.4132
10.1007/s11042-021-11123-4
10.1109/ICCV.2017.215
10.1016/j.engappai.2020.104079
10.1007/978-3-319-93025-1_4
10.1155/2018/8320207
10.1109/TITS.2021.3088488
10.1007/s12652-020-02424-x
10.1002/rob.22020
10.1007/s11042-020-10248-2
10.1016/j.dib.2019.105046
10.1109/CVPR46437.2021.00036
10.1109/ICCV.2019.00301
10.1109/TIE.2021.3066943
10.1016/j.isatra.2020.10.052
10.1016/j.matpr.2020.09.605
10.1007/s40747-021-00422-w
10.1016/j.compeleceng.2020.106653
10.1016/j.isprsjprs.2020.05.022
10.1016/j.renene.2020.08.125
10.1109/ICCSP.2019.8698065
10.1016/j.jvcir.2019.102675
10.1109/CVPR.2019.01185
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-021-03988-x
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 3745
ExternalDocumentID 10_1007_s11227_021_03988_x
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-93c62213d2fc816c2010ae09b4f6929a3bc812a6c520fa7ad433cd14d979028a3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000682413600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:45:13 EDT 2025
Tue Nov 18 22:32:52 EST 2025
Sat Nov 29 04:27:41 EST 2025
Fri Feb 21 02:47:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Hyperparameter optimization
Lane detection
Binary optimization
Autonomous cars
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-93c62213d2fc816c2010ae09b4f6929a3bc812a6c520fa7ad433cd14d979028a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2626286617
PQPubID 2043774
PageCount 31
ParticipantIDs proquest_journals_2626286617
crossref_citationtrail_10_1007_s11227_021_03988_x
crossref_primary_10_1007_s11227_021_03988_x
springer_journals_10_1007_s11227_021_03988_x
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Sundararaj, Muthukumar, Kumar (CR16) 2018; 77
Gowthul Alam, Baulkani (CR30) 2019; 23
Johnson, Valderrama, Valle, Crawford, Soto, Ñanculef (CR35) 2020; 8
CR39
CR38
CR37
CR33
Mirjalili (CR13) 2015; 83
CR32
Marini, Walczak (CR52) 2015; 149
Gowthul Alam, Baulkani (CR29) 2017; 12
Wang, Lin, Wang (CR14) 2020; 9
Arora, Singh (CR47) 2019; 23
CR3
CR5
CR8
CR7
Haseena, Anees, Madheswari (CR27) 2014; 6
CR9
CR49
CR48
CR45
CR44
CR43
CR42
CR41
CR40
Han, Liu, Fan (CR36) 2018; 95
CR19
Hassan, Rashid (CR34) 2020; 370
CR15
Gowthul Alam, Baulkani (CR28) 2019; 60
Sundararaj (CR18) 2019; 31
CR11
CR10
CR53
CR51
CR50
Rejeesh (CR22) 2019; 78
Taeihagh, Lim (CR1) 2019; 39
Nisha, Madheswari (CR31) 2016; 22
El Hajjouji, Mars, Asrih, El Mourabit (CR12) 2020; 23
Zhang, Zhu (CR4) 2019; 121
Sundararaj (CR17) 2016; 9
CR26
CR25
Zou, Jiang, Dai, Yue, Chen, Wang (CR2) 2019; 69
CR24
CR23
CR21
CR20
Kuo, Lu, Yang (CR6) 2019; 19
Mahajan, Katrakazas, Antoniou (CR46) 2020; 2674
V Sundararaj (3988_CR18) 2019; 31
3988_CR11
MM Gowthul Alam (3988_CR29) 2017; 12
S Nisha (3988_CR31) 2016; 22
3988_CR15
3988_CR50
3988_CR10
3988_CR53
3988_CR51
MM Gowthul Alam (3988_CR30) 2019; 23
Bryar A. Hassan (3988_CR34) 2020; 370
D Han (3988_CR36) 2018; 95
3988_CR19
S Mirjalili (3988_CR13) 2015; 83
3988_CR7
3988_CR25
3988_CR24
3988_CR5
3988_CR23
MM Gowthul Alam (3988_CR28) 2019; 60
3988_CR3
3988_CR26
W Wang (3988_CR14) 2020; 9
3988_CR21
3988_CR20
MR Rejeesh (3988_CR22) 2019; 78
X Zhang (3988_CR4) 2019; 121
3988_CR9
3988_CR8
3988_CR33
KS Haseena (3988_CR27) 2014; 6
3988_CR39
3988_CR38
3988_CR37
A Taeihagh (3988_CR1) 2019; 39
3988_CR32
V Sundararaj (3988_CR16) 2018; 77
I El Hajjouji (3988_CR12) 2020; 23
3988_CR45
3988_CR44
3988_CR49
Q Zou (3988_CR2) 2019; 69
3988_CR48
V Sundararaj (3988_CR17) 2016; 9
3988_CR43
V Mahajan (3988_CR46) 2020; 2674
3988_CR42
F Johnson (3988_CR35) 2020; 8
3988_CR41
S Arora (3988_CR47) 2019; 23
3988_CR40
CY Kuo (3988_CR6) 2019; 19
F Marini (3988_CR52) 2015; 149
References_xml – ident: CR45
– volume: 9
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR14
  article-title: CNN based lane detection with instance segmentation in edge-cloud computing
  publication-title: J Cloud Comput
– ident: CR49
– ident: CR39
– ident: CR51
– volume: 9
  start-page: 117
  issue: 3
  year: 2016
  end-page: 126
  ident: CR17
  article-title: An efficient threshold prediction scheme for wavelet based ECG signal noise reduction using variable step size firefly algorithm
  publication-title: Int J Intell Eng Syst
– ident: CR8
– volume: 95
  start-page: 43
  year: 2018
  end-page: 56
  ident: CR36
  article-title: A new image classification method using CNN transfer learning and web data augmentation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.11.028
– ident: CR25
– ident: CR42
– ident: CR21
– volume: 6
  start-page: 430
  year: 2014
  end-page: 436
  ident: CR27
  article-title: Power optimization using EPAR protocol in MANET
  publication-title: Int J Innov Sci Eng Technol
– ident: CR19
– volume: 23
  start-page: 274
  issue: 2
  year: 2020
  end-page: 280
  ident: CR12
  article-title: A novel FPGA implementation of Hough transform for straight lane detection
  publication-title: Eng Sci Technol Int J
– volume: 23
  start-page: 715
  issue: 3
  year: 2019
  end-page: 734
  ident: CR47
  article-title: Butterfly optimization algorithm: a novel approach for global optimization
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3102-4
– ident: CR15
– ident: CR50
– volume: 77
  start-page: 277
  year: 2018
  end-page: 288
  ident: CR16
  article-title: An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2018.04.009
– ident: CR11
– volume: 69
  start-page: 41
  issue: 1
  year: 2019
  end-page: 54
  ident: CR2
  article-title: Robust lane detection from continuous driving scenes using deep neural networks
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2019.2949603
– ident: CR9
– volume: 121
  start-page: 38
  year: 2019
  end-page: 48
  ident: CR4
  article-title: Autonomous path tracking control of intelligent electric vehicles based on lane detection and optimal preview method
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.12.005
– ident: CR32
– volume: 31
  start-page: 325
  issue: 4
  year: 2019
  ident: CR18
  article-title: Optimised denoising scheme via opposition-based self-adaptive learning PSO algorithm for wavelet-based ECG signal noise reduction
  publication-title: Int J Biomed Eng Technol
  doi: 10.1504/IJBET.2019.103242
– volume: 60
  start-page: 971
  issue: 2
  year: 2019
  end-page: 1000
  ident: CR28
  article-title: Local and global characteristics-based kernel hybridization to increase optimal support vector machine performance for stock market prediction
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-018-1263-1
– ident: CR5
– ident: CR26
– volume: 39
  start-page: 103
  issue: 1
  year: 2019
  end-page: 128
  ident: CR1
  article-title: Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks
  publication-title: Transp Rev
  doi: 10.1080/01441647.2018.1494640
– ident: CR43
– ident: CR37
– ident: CR53
– ident: CR10
– volume: 8
  start-page: 156139
  year: 2020
  end-page: 156152
  ident: CR35
  article-title: Automating configuration of convolutional neural network hyperparameters using genetic algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3019245
– ident: CR33
– volume: 23
  start-page: 1079
  issue: 4
  year: 2019
  end-page: 1098
  ident: CR30
  article-title: Geometric structure information based multi-objective function to increase fuzzy clustering performance with artificial and real-life data
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3124-y
– volume: 12
  start-page: 299
  issue: 3
  year: 2017
  ident: CR29
  article-title: Reformulated query-based document retrieval using optimised kernel fuzzy clustering algorithm
  publication-title: Int J Bus Intell Data Min
– ident: CR40
– volume: 83
  start-page: 80
  year: 2015
  end-page: 98
  ident: CR13
  article-title: The ant lion optimizer
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: CR23
– volume: 370
  start-page: 124919
  year: 2020
  ident: CR34
  article-title: Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2019.124919
– ident: CR44
– volume: 2674
  start-page: 336
  issue: 7
  year: 2020
  end-page: 347
  ident: CR46
  article-title: Prediction of lane-changing maneuvers with automatic labeling and deep learning
  publication-title: Transp Res Rec
  doi: 10.1177/0361198120922210
– ident: CR48
– ident: CR3
– ident: CR38
– volume: 149
  start-page: 153
  year: 2015
  end-page: 165
  ident: CR52
  article-title: Particle swarm optimization (PSO). A tutorial
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.08.020
– volume: 78
  start-page: 22691
  issue: 16
  year: 2019
  end-page: 22710
  ident: CR22
  article-title: Interest point based face recognition using adaptive neuro fuzzy inference system
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7577-5
– volume: 19
  start-page: 1665
  issue: 7
  year: 2019
  ident: CR6
  article-title: On the image sensor processing for lane detection and control in vehicle lane keeping systems
  publication-title: Sensors
  doi: 10.3390/s19071665
– volume: 22
  start-page: 45
  issue: 1
  year: 2016
  end-page: 49
  ident: CR31
  article-title: Secured authentication for internet voting in corporate companies to prevent phishing attacks
  publication-title: Int J Emerg Technol Comput Sci Electron (IJETCSE)
– ident: CR7
– ident: CR41
– ident: CR24
– ident: CR20
– ident: 3988_CR39
  doi: 10.1016/j.knosys.2020.105584
– ident: 3988_CR25
  doi: 10.1007/s00521-020-05474-6
– ident: 3988_CR33
  doi: 10.1109/ICETETS.2016.7603013
– volume: 121
  start-page: 38
  year: 2019
  ident: 3988_CR4
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.12.005
– volume: 19
  start-page: 1665
  issue: 7
  year: 2019
  ident: 3988_CR6
  publication-title: Sensors
  doi: 10.3390/s19071665
– ident: 3988_CR50
– volume: 12
  start-page: 299
  issue: 3
  year: 2017
  ident: 3988_CR29
  publication-title: Int J Bus Intell Data Min
– ident: 3988_CR19
  doi: 10.1002/pip.3315
– ident: 3988_CR40
  doi: 10.1007/s13369-020-04918-4
– volume: 78
  start-page: 22691
  issue: 16
  year: 2019
  ident: 3988_CR22
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-7577-5
– ident: 3988_CR23
  doi: 10.1002/ett.4132
– ident: 3988_CR32
  doi: 10.1007/s11042-021-11123-4
– volume: 6
  start-page: 430
  year: 2014
  ident: 3988_CR27
  publication-title: Int J Innov Sci Eng Technol
– volume: 8
  start-page: 156139
  year: 2020
  ident: 3988_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3019245
– ident: 3988_CR43
  doi: 10.1109/ICCV.2017.215
– volume: 23
  start-page: 274
  issue: 2
  year: 2020
  ident: 3988_CR12
  publication-title: Eng Sci Technol Int J
– ident: 3988_CR37
  doi: 10.1016/j.engappai.2020.104079
– ident: 3988_CR53
  doi: 10.1007/978-3-319-93025-1_4
– ident: 3988_CR9
  doi: 10.1155/2018/8320207
– ident: 3988_CR42
  doi: 10.1109/TITS.2021.3088488
– ident: 3988_CR7
– volume: 23
  start-page: 715
  issue: 3
  year: 2019
  ident: 3988_CR47
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3102-4
– ident: 3988_CR21
  doi: 10.1007/s12652-020-02424-x
– volume: 77
  start-page: 277
  year: 2018
  ident: 3988_CR16
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2018.04.009
– ident: 3988_CR20
  doi: 10.1002/rob.22020
– volume: 370
  start-page: 124919
  year: 2020
  ident: 3988_CR34
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2019.124919
– ident: 3988_CR44
  doi: 10.1007/s11042-020-10248-2
– ident: 3988_CR24
  doi: 10.1016/j.dib.2019.105046
– volume: 22
  start-page: 45
  issue: 1
  year: 2016
  ident: 3988_CR31
  publication-title: Int J Emerg Technol Comput Sci Electron (IJETCSE)
– ident: 3988_CR41
  doi: 10.1109/CVPR46437.2021.00036
– ident: 3988_CR3
  doi: 10.1109/ICCV.2019.00301
– volume: 149
  start-page: 153
  year: 2015
  ident: 3988_CR52
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2015.08.020
– volume: 69
  start-page: 41
  issue: 1
  year: 2019
  ident: 3988_CR2
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2019.2949603
– ident: 3988_CR45
  doi: 10.1109/TIE.2021.3066943
– ident: 3988_CR48
  doi: 10.1016/j.isatra.2020.10.052
– ident: 3988_CR10
  doi: 10.1016/j.matpr.2020.09.605
– volume: 31
  start-page: 325
  issue: 4
  year: 2019
  ident: 3988_CR18
  publication-title: Int J Biomed Eng Technol
  doi: 10.1504/IJBET.2019.103242
– volume: 23
  start-page: 1079
  issue: 4
  year: 2019
  ident: 3988_CR30
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3124-y
– ident: 3988_CR26
  doi: 10.1007/s40747-021-00422-w
– ident: 3988_CR8
  doi: 10.1016/j.compeleceng.2020.106653
– ident: 3988_CR49
  doi: 10.1016/j.isprsjprs.2020.05.022
– ident: 3988_CR15
  doi: 10.1016/j.renene.2020.08.125
– volume: 95
  start-page: 43
  year: 2018
  ident: 3988_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.11.028
– volume: 9
  start-page: 1
  year: 2020
  ident: 3988_CR14
  publication-title: J Cloud Comput
– volume: 83
  start-page: 80
  year: 2015
  ident: 3988_CR13
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: 3988_CR11
  doi: 10.1016/j.compeleceng.2020.106653
– ident: 3988_CR51
  doi: 10.1109/ICCSP.2019.8698065
– volume: 39
  start-page: 103
  issue: 1
  year: 2019
  ident: 3988_CR1
  publication-title: Transp Rev
  doi: 10.1080/01441647.2018.1494640
– volume: 60
  start-page: 971
  issue: 2
  year: 2019
  ident: 3988_CR28
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-018-1263-1
– volume: 9
  start-page: 117
  issue: 3
  year: 2016
  ident: 3988_CR17
  publication-title: Int J Intell Eng Syst
– ident: 3988_CR38
  doi: 10.1016/j.jvcir.2019.102675
– volume: 2674
  start-page: 336
  issue: 7
  year: 2020
  ident: 3988_CR46
  publication-title: Transp Res Rec
  doi: 10.1177/0361198120922210
– ident: 3988_CR5
  doi: 10.1109/CVPR.2019.01185
SSID ssj0004373
Score 2.2769625
Snippet Lane detection is a technique that uses geometric features as an input to the autonomous vehicle to automatically distinguish lane markings. To process the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3715
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Classification
Compilers
Computer Science
Computer vision
Interpreters
Marking
Mathematical models
Neural networks
Optimization
Parameters
Performance evaluation
Processor Architectures
Programming Languages
Title Automatic lane marking prediction using convolutional neural network and S-Shaped Binary Butterfly Optimization
URI https://link.springer.com/article/10.1007/s11227-021-03988-x
https://www.proquest.com/docview/2626286617
Volume 78
WOSCitedRecordID wos000682413600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYWChPEWhIA9sYCmx0zgeC6JiKogC6hY5dgxIbVq1KYJ_z9l1iECABFNejhXdne1z7vvuEDqJVIcqwQzRmgcErjjJAgVnQuVxrHOamcAVm-D9fjIcihtPCptXaPcqJOlm6prsFlLKiYUUBEyAfsFzXIXlLrEFG24HDzUbki3jygI2Rkknop4q830fn5ej2sf8EhZ1q02v-b_v3EQb3rvE3aU5bKGVvNhGzapyA_YDeQdNuoty4pK1Ygt2xWPpfpnj6czGbayusAXEP2ILSvfGCf3a5Jfu4KDjWBYaD8jgSU5zjc8dsRf7wtejN3wNk9HYszx30X3v8u7iivjSC0TBmCyJYCqmNGSaGpWEsbIxc5kHIotMDA6VZBncpjIGTQdGcqkjxpQOIy24TQcj2R5qFJMi30dYaMaFMIKHCnwd2M9kSc65EVGmmAl01kJhpYFU-bzktjzGKK0zKluJpiDR1Ek0fW2h0493psusHL-2bleKTf0InacUdnI0Ae-Et9BZpcj68c-9Hfyt-SFap5Yx4YDebdQoZ4v8CK2pl_J5Pjt2lvsOfw7qOw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6igr44rzidmgfftNAmXdM8TnFMnFPclL2VNGlV2LqxdaL_3pMstSgq6FNvaSg5uZz0fN93EDr2ZZ1ITlNHKeY6cMWc2JVwxmUSBCohceqaZBOs0wn7fX5rSWHTAu1ehCTNTF2S3TxCmKMhBS7lYF_wHJd8WLG0Yv5d96FkQ9J5XJnDxiis-8RSZb6v4_NyVPqYX8KiZrVpVv73netozXqXuDHvDhtoIck2UaXI3IDtQN5Co8YsHxmxVqzBrngozC9zPJ7ouI22FdaA-EesQem2c0K9WvzSHAx0HItM4a7TfRLjROEzQ-zFNvH14A3fwGQ0tCzPbXTfvOidtxybesGRMCZzh1MZEOJRRVIZeoHUMXORuDz20wAcKkFjuE1EAJZ2U8GE8imVyvMVZ1oORtAdtJiNsmQXYa4o4zzlzJPg68B-Jg4TxlLux5KmroqryCssEEmrS67TYwyiUlFZt2gELRqZFo1eq-jk453xXJXj19K1wrCRHaHTiMBOjoTgnbAqOi0MWT7-uba9vxU_Qiut3nU7al92rvbRKtHsCQP6rqHFfDJLDtCyfMmfp5ND04vfAYIk7R8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIr44P3E6NQ--aVmbdE3zOD-GoszBVPZW0qRRYevK1on-9yZpalVUEJ_6lYaSuzR3ud_vDoBDn7cQp1g6QhDXUVfEiV2uzihPgkAkKJauKTZBut1wMKC9Dyx-g3YvQ5IFp0FnaUrzZiZksyK-eQgRR8MLXEyVrJUVueBrIL321_v3FTMSFzFmqpyksOUjS5v5vo_PS1Nlb34JkZqVp1P7_zevghVrdcJ2oSZrYC5J10GtrOgA7QTfAOP2LB-bJK5Qg2DhiJmtdJhNdDxHyxBqoPwD1GB1q7SqX50U0xwMpByyVMC-039kWSLgiSH8QlsQe_gKb9RPamTZn5vgrnN-e3rh2JIMDldzNXco5gFCHhZI8tALuI6ls8SlsS8DZWgxHKvbiAVKA1zJCBM-xlx4vqBEp4lheAvMp-M02QaQCkwolZR4XNlAys-Jw4QQSf2YY-mKuA68UhoRt_nKddmMYVRlWtYjGqkRjcyIRi91cPT-TlZk6_i1daMUcmRn7jRCysNDobJaSB0cl0KtHv_c287fmh-Apd5ZJ7q-7F7tgmWkSRUGC94A8_lkluyBRf6cP00n-0ah3wANU_YD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+lane+marking+prediction+using+convolutional+neural+network+and+S-Shaped+Binary+Butterfly+Optimization&rft.jtitle=The+Journal+of+supercomputing&rft.au=Alajlan%2C+Abrar+Mohammed&rft.au=Almasri%2C+Marwah+Mohammad&rft.date=2022-02-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=78&rft.issue=3&rft.spage=3715&rft.epage=3745&rft_id=info:doi/10.1007%2Fs11227-021-03988-x&rft.externalDocID=10_1007_s11227_021_03988_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon