Customer churn prediction system: a machine learning approach

The customer churn prediction (CCP) is one of the challenging problems in the telecom industry. With the advancement in the field of machine learning and artificial intelligence, the possibilities to predict customer churn has increased significantly. Our proposed methodology, consists of six phases...

Full description

Saved in:
Bibliographic Details
Published in:Computing Vol. 104; no. 2; pp. 271 - 294
Main Authors: Lalwani, Praveen, Mishra, Manas Kumar, Chadha, Jasroop Singh, Sethi, Pratyush
Format: Journal Article
Language:English
Published: Vienna Springer Vienna 01.02.2022
Springer Nature B.V
Subjects:
ISSN:0010-485X, 1436-5057
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The customer churn prediction (CCP) is one of the challenging problems in the telecom industry. With the advancement in the field of machine learning and artificial intelligence, the possibilities to predict customer churn has increased significantly. Our proposed methodology, consists of six phases. In the first two phases, data pre-processing and feature analysis is performed. In the third phase, feature selection is taken into consideration using gravitational search algorithm. Next, the data has been split into two parts train and test set in the ratio of 80% and 20% respectively. In the prediction process, most popular predictive models have been applied, namely, logistic regression, naive bayes, support vector machine, random forest, decision trees, etc. on train set as well as boosting and ensemble techniques are applied to see the effect on accuracy of models. In addition, K-fold cross validation has been used over train set for hyperparameter tuning and to prevent overfitting of models. Finally, the obtained results on test set have been evaluated using confusion matrix and AUC curve. It was found that Adaboost and XGboost Classifier gives the highest accuracy of 81.71% and 80.8% respectively. The highest AUC score of 84%, is achieved by both Adaboost and XGBoost Classifiers which outperforms over others.
AbstractList The customer churn prediction (CCP) is one of the challenging problems in the telecom industry. With the advancement in the field of machine learning and artificial intelligence, the possibilities to predict customer churn has increased significantly. Our proposed methodology, consists of six phases. In the first two phases, data pre-processing and feature analysis is performed. In the third phase, feature selection is taken into consideration using gravitational search algorithm. Next, the data has been split into two parts train and test set in the ratio of 80% and 20% respectively. In the prediction process, most popular predictive models have been applied, namely, logistic regression, naive bayes, support vector machine, random forest, decision trees, etc. on train set as well as boosting and ensemble techniques are applied to see the effect on accuracy of models. In addition, K-fold cross validation has been used over train set for hyperparameter tuning and to prevent overfitting of models. Finally, the obtained results on test set have been evaluated using confusion matrix and AUC curve. It was found that Adaboost and XGboost Classifier gives the highest accuracy of 81.71% and 80.8% respectively. The highest AUC score of 84%, is achieved by both Adaboost and XGBoost Classifiers which outperforms over others.
Author Lalwani, Praveen
Mishra, Manas Kumar
Sethi, Pratyush
Chadha, Jasroop Singh
Author_xml – sequence: 1
  givenname: Praveen
  orcidid: 0000-0002-0024-7738
  surname: Lalwani
  fullname: Lalwani, Praveen
  email: praveen.lalwani@vitbhopal.ac.in
  organization: VIT Bhopal University
– sequence: 2
  givenname: Manas Kumar
  surname: Mishra
  fullname: Mishra, Manas Kumar
  organization: VIT Bhopal University
– sequence: 3
  givenname: Jasroop Singh
  surname: Chadha
  fullname: Chadha, Jasroop Singh
  organization: VIT Bhopal University
– sequence: 4
  givenname: Pratyush
  surname: Sethi
  fullname: Sethi, Pratyush
  organization: VIT Bhopal University
BookMark eNp9kMtKAzEUhoMo2FZfwFXAdfTkMpcILqR4g4IbBXchM5NpUzqZMUkX8_amjiC46OrA4f_Of_jm6NT1ziB0ReGGAhS3ASCHggCjBEBCScYTNKOC5ySDrDhFMwAKRJTZ5zmah7AFAMZLOUP3y32IfWc8rjd77_DgTWPraHuHwxii6e6wxp2uN9YZvDPaO-vWWA-D79PyAp21ehfM5e9coI-nx_flC1m9Pb8uH1ak5lRGIrnmRc7bhoOWLdOgQeR51RohqaTQMNEyoytZZ1wUXDNTQVO1JTcFbbKKS75A19PdVPu1NyGqbZ--TZWK5SwTlAtZphSbUrXvQ_CmVYO3nfajoqAOmtSkSSVN6keTGhNU_oNqG_VBQPTa7o6jfEJD6nFr4_--OkJ9AySTfvI
CitedBy_id crossref_primary_10_3390_technologies13030088
crossref_primary_10_1016_j_sciaf_2024_e02223
crossref_primary_10_21015_vtse_v12i4_1928
crossref_primary_10_1109_ACCESS_2024_3402092
crossref_primary_10_3390_su15118631
crossref_primary_10_1109_ACCESS_2024_3443318
crossref_primary_10_1007_s11042_023_17715_6
crossref_primary_10_32604_cmc_2022_030428
crossref_primary_10_1186_s40537_024_00922_9
crossref_primary_10_3390_electronics13224527
crossref_primary_10_1016_j_eswa_2025_128465
crossref_primary_10_1016_j_rsurfi_2025_100484
crossref_primary_10_1016_j_eswa_2024_123251
crossref_primary_10_1155_2023_6029121
crossref_primary_10_1109_TCE_2025_3563905
crossref_primary_10_1080_24751839_2025_2528440
crossref_primary_10_3390_app12168270
crossref_primary_10_1155_2022_1858300
crossref_primary_10_3390_electronics11193172
crossref_primary_10_1007_s42452_025_07157_0
crossref_primary_10_1016_j_techfore_2023_122945
crossref_primary_10_1109_ACCESS_2022_3215682
crossref_primary_10_1016_j_envpol_2023_122787
crossref_primary_10_1108_INMR_06_2023_0101
crossref_primary_10_1016_j_telpol_2024_102816
crossref_primary_10_3390_a17060231
crossref_primary_10_3390_app14209226
crossref_primary_10_1007_s10878_024_01196_w
crossref_primary_10_1007_s00521_023_09327_w
crossref_primary_10_3390_biomimetics9010001
crossref_primary_10_32628_IJSRST52411140
crossref_primary_10_1002_aepp_13448
crossref_primary_10_1016_j_jbusres_2022_07_015
crossref_primary_10_1038_s41598_024_79603_9
crossref_primary_10_3390_app12189355
crossref_primary_10_2139_ssrn_5048518
crossref_primary_10_1016_j_entcom_2023_100569
crossref_primary_10_3390_electronics14101916
crossref_primary_10_1051_shsconf_202521802013
crossref_primary_10_2478_picbe_2025_0074
crossref_primary_10_1007_s00521_024_10869_w
crossref_primary_10_1016_j_socnet_2025_03_002
crossref_primary_10_1016_j_rineng_2025_104629
crossref_primary_10_3390_electronics13163113
crossref_primary_10_1007_s13755_021_00164_6
crossref_primary_10_1186_s40537_025_01204_8
crossref_primary_10_1108_IJBM_12_2023_0645
crossref_primary_10_1061_JCEMD4_COENG_13857
crossref_primary_10_1007_s42452_023_05389_6
crossref_primary_10_1038_s41598_025_99119_0
crossref_primary_10_1109_ACCESS_2023_3304669
crossref_primary_10_1155_2022_5134356
crossref_primary_10_1007_s10844_023_00803_2
crossref_primary_10_1007_s10489_025_06749_y
crossref_primary_10_3390_technologies11060167
crossref_primary_10_1007_s11517_022_02555_7
crossref_primary_10_32604_cmc_2023_034399
crossref_primary_10_1051_itmconf_20235605012
crossref_primary_10_1002_for_2960
crossref_primary_10_1108_K_02_2023_0245
crossref_primary_10_1007_s00607_021_01008_7
crossref_primary_10_1007_s42979_022_01533_y
crossref_primary_10_1016_j_seta_2022_102973
crossref_primary_10_1007_s42979_024_02722_7
crossref_primary_10_1007_s41870_022_01017_5
crossref_primary_10_1016_j_procs_2024_05_139
crossref_primary_10_37394_232032_2025_3_34
crossref_primary_10_38124_ijisrt_25jun1816
crossref_primary_10_1134_S2070048224700182
crossref_primary_10_1016_j_heliyon_2024_e37229
crossref_primary_10_1007_s11042_023_17267_9
crossref_primary_10_1186_s40537_023_00721_8
crossref_primary_10_1016_j_omega_2024_103034
Cites_doi 10.1016/j.eswa.2010.12.045
10.1007/s12083-016-0531-7
10.1016/j.eswa.2008.06.121
10.1016/j.jbusres.2012.12.008
10.1016/j.eswa.2006.09.038
10.1007/s00500-016-2429-y
10.1016/S0167-9236(01)00108-7
10.1016/j.eswa.2008.05.027
10.1002/(SICI)1522-7138(199723)11:4<109::AID-DIR12>3.0.CO;2-G
10.1016/j.asoc.2009.04.004
10.1007/s00500-019-03879-7
10.21275/v5i4.NOV162954
10.1007/s10586-017-0933-1
10.1007/s40745-018-0155-2
10.1057/palgrave.jt.5740056
10.1186/s40537-019-0191-6
10.1016/j.cor.2005.11.007
10.1016/j.patrec.2005.10.010
10.1016/S0957-4174(02)00030-1
10.1109/ICSMC.2012.6377917
10.1145/2723372.2742794
10.2307/41703503
10.1108/10662240110410183
10.1109/ICRITO.2015.7359318
10.1007/11941439_114
10.1145/2492517.2500274
10.1007/978-3-642-21402-8_23
10.1007/11527503_36
10.1007/978-981-10-7098-3_13
10.1109/ICComm.2016.7528311
10.1109/ICDIM.2013.6693977
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s00607-021-00908-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
EndPage 294
ExternalDocumentID 10_1007_s00607_021_00908_y
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M0N
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZL0
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKWF
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c319t-93a3763fd30a9f2a0a0466bfe491910d24f2eab9c53473a2eb0dbf83e71d5b393
IEDL.DBID RSV
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617842900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-485X
IngestDate Wed Nov 26 14:52:28 EST 2025
Sat Nov 29 03:51:38 EST 2025
Tue Nov 18 22:02:26 EST 2025
Fri Feb 21 02:47:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Predictive Modeling
68T01
68T05
AUC Curve
Machine Learning
Customer Churn Prediction
Confusion Matrix
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-93a3763fd30a9f2a0a0466bfe491910d24f2eab9c53473a2eb0dbf83e71d5b393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0024-7738
PQID 2625413498
PQPubID 48322
PageCount 24
ParticipantIDs proquest_journals_2625413498
crossref_primary_10_1007_s00607_021_00908_y
crossref_citationtrail_10_1007_s00607_021_00908_y
springer_journals_10_1007_s00607_021_00908_y
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Computing
PublicationTitleAbbrev Computing
PublicationYear 2022
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Coussement, De Bock (CR10) 2013; 66
Radosavljevik, van der Putten, Larsen (CR33) 2010; 3
Kisioglu, Topcu (CR23) 2011; 38
CR19
CR39
CR38
CR13
Petrison, Blattberg, Wang (CR31) 1997; 11
Sharma, Kumar (CR37) 2016; 5
Abbasimehr, Setak, Tarokh (CR1) 2011; 19
CR12
Asthana (CR5) 2018; 119
CR32
Gürsoy (CR16) 2010; 39
Hadden, Tiwari, Roy, Ruta (CR18) 2007; 34
Ultsch (CR41) 2002; 10
Rajamohamed, Manokaran (CR34) 2018; 21
Musheer, Verma, Srivastava (CR29) 2019; 23
Aziz, Verma, Srivastava (CR6) 2018; 5
Nath, Behara (CR30) 2003; 561
Shaaban, Helmy, Khedr, Nasr (CR36) 2012; 2
Wei, Chiu (CR43) 2002; 23
Massey, Montoya-Weiss, Holcom (CR28) 2001; 32
Hadden, Tiwari, Roy, Ruta (CR17) 2006; 1
Coussement, Van den Poel (CR11) 2008; 34
CR4
Ahmad, Jafar, Aljoumaa (CR3) 2019; 6
CR7
CR9
CR27
García, Fernández, Herrera (CR15) 2009; 9
CR25
CR46
CR45
CR22
Lalwani, Banka, Kumar (CR26) 2018; 22
CR21
CR20
Burez, Van den Poel (CR8) 2009; 36
CR40
Fawcett (CR14) 2006; 27
Adwan, Faris, Jaradat, Harfoushi, Ghatasheh (CR2) 2014; 11
Xie, Li, Ngai, Ying (CR44) 2009; 36
Umayaparvathi, Iyakutti (CR42) 2016; 4
Lalwani, Banka, Kumar (CR24) 2017; 10
Rodan, Faris, Alsakran, Al-Kadi (CR35) 2014; 17
V Umayaparvathi (908_CR42) 2016; 4
908_CR9
Y Xie (908_CR44) 2009; 36
K Coussement (908_CR10) 2013; 66
R Aziz (908_CR6) 2018; 5
908_CR27
908_CR7
908_CR25
D Radosavljevik (908_CR33) 2010; 3
908_CR4
O Adwan (908_CR2) 2014; 11
UŞ Gürsoy (908_CR16) 2010; 39
RA Musheer (908_CR29) 2019; 23
A Rodan (908_CR35) 2014; 17
E Shaaban (908_CR36) 2012; 2
908_CR46
908_CR45
908_CR22
908_CR21
908_CR20
LA Petrison (908_CR31) 1997; 11
T Fawcett (908_CR14) 2006; 27
908_CR40
908_CR19
908_CR39
P Kisioglu (908_CR23) 2011; 38
908_CR38
H Sharma (908_CR37) 2016; 5
AK Ahmad (908_CR3) 2019; 6
AP Massey (908_CR28) 2001; 32
J Burez (908_CR8) 2009; 36
S García (908_CR15) 2009; 9
P Lalwani (908_CR26) 2018; 22
R Rajamohamed (908_CR34) 2018; 21
J Hadden (908_CR17) 2006; 1
J Hadden (908_CR18) 2007; 34
A Ultsch (908_CR41) 2002; 10
CP Wei (908_CR43) 2002; 23
K Coussement (908_CR11) 2008; 34
SV Nath (908_CR30) 2003; 561
908_CR13
908_CR12
P Asthana (908_CR5) 2018; 119
908_CR32
P Lalwani (908_CR24) 2017; 10
H Abbasimehr (908_CR1) 2011; 19
References_xml – ident: CR45
– ident: CR22
– volume: 3
  start-page: 80
  issue: 2
  year: 2010
  end-page: 99
  ident: CR33
  article-title: The impact of experimental setup in prepaid churn prediction for mobile telecommunications: What to predict, for whom and does the customer experience matter?
  publication-title: Trans. MLDM
– volume: 38
  start-page: 7151
  issue: 6
  year: 2011
  end-page: 7157
  ident: CR23
  article-title: Applying bayesian belief network approach to customer churn analysis: A case study on the telecom industry of turkey
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.12.045
– ident: CR4
– ident: CR39
– volume: 10
  start-page: 453
  issue: 3
  year: 2017
  end-page: 471
  ident: CR24
  article-title: Crwo: Clustering and routing in wireless sensor networks using optics inspired optimization
  publication-title: Peer-to-Peer Networking and Applications
  doi: 10.1007/s12083-016-0531-7
– ident: CR12
– volume: 36
  start-page: 5445
  issue: 3
  year: 2009
  end-page: 5449
  ident: CR44
  article-title: Customer churn prediction using improved balanced random forests
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.121
– volume: 66
  start-page: 1629
  issue: 9
  year: 2013
  end-page: 1636
  ident: CR10
  article-title: Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2012.12.008
– volume: 34
  start-page: 313
  issue: 1
  year: 2008
  end-page: 327
  ident: CR11
  article-title: Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2006.09.038
– volume: 22
  start-page: 1651
  issue: 5
  year: 2018
  end-page: 1667
  ident: CR26
  article-title: Bera: a biogeography-based energy saving routing architecture for wireless sensor networks
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2429-y
– volume: 32
  start-page: 155
  issue: 2
  year: 2001
  end-page: 170
  ident: CR28
  article-title: Re-engineering the customer relationship: leveraging knowledge assets at ibm
  publication-title: Decision Support Systems
  doi: 10.1016/S0167-9236(01)00108-7
– volume: 19
  start-page: 35
  issue: 8
  year: 2011
  end-page: 41
  ident: CR1
  article-title: A neuro-fuzzy classifier for customer churn prediction
  publication-title: International Journal of Computer Applications
– volume: 36
  start-page: 4626
  issue: 3
  year: 2009
  end-page: 4636
  ident: CR8
  article-title: Handling class imbalance in customer churn prediction
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.05.027
– volume: 11
  start-page: 109
  issue: 4
  year: 1997
  end-page: 125
  ident: CR31
  article-title: Database marketing: Past, present, and future
  publication-title: Journal of Direct Marketing
  doi: 10.1002/(SICI)1522-7138(199723)11:4<109::AID-DIR12>3.0.CO;2-G
– ident: CR40
– volume: 4
  start-page: 1065
  issue: 4
  year: 2016
  end-page: 1070
  ident: CR42
  article-title: A survey on customer churn prediction in telecom industry: Datasets, methods and metrics
  publication-title: International Research Journal of Engineering and Technology (IRJET)
– volume: 9
  start-page: 1304
  issue: 4
  year: 2009
  end-page: 1314
  ident: CR15
  article-title: Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.04.004
– ident: CR25
– volume: 23
  start-page: 13409
  issue: 24
  year: 2019
  end-page: 13421
  ident: CR29
  article-title: Novel machine learning approach for classification of high-dimensional microarray data
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-03879-7
– volume: 11
  start-page: 75
  issue: 3
  year: 2014
  end-page: 81
  ident: CR2
  article-title: Predicting customer churn in telecom industry using multilayer preceptron neural networks: Modeling and analysis
  publication-title: Life Science Journal
– ident: CR27
– volume: 17
  start-page: 3961
  issue: 8
  year: 2014
  end-page: 3970
  ident: CR35
  article-title: A support vector machine approach for churn prediction in telecom industry
  publication-title: International journal on information
– volume: 119
  start-page: 1149
  issue: 10
  year: 2018
  end-page: 1169
  ident: CR5
  article-title: A comparison of machine learning techniques for customer churn prediction
  publication-title: International Journal of Pure and Applied Mathematics
– volume: 1
  start-page: 104
  issue: 2
  year: 2006
  end-page: 110
  ident: CR17
  article-title: Churn prediction: Does technology matter
  publication-title: International Journal of Intelligent Technology
– ident: CR21
– volume: 5
  start-page: 2094
  issue: 4
  year: 2016
  end-page: 2097
  ident: CR37
  article-title: A survey on decision tree algorithms of classification in data mining
  publication-title: International Journal of Science and Research (IJSR)
  doi: 10.21275/v5i4.NOV162954
– ident: CR46
– ident: CR19
– volume: 21
  start-page: 65
  issue: 1
  year: 2018
  end-page: 77
  ident: CR34
  article-title: Improved credit card churn prediction based on rough clustering and supervised learning techniques
  publication-title: Cluster Computing
  doi: 10.1007/s10586-017-0933-1
– volume: 5
  start-page: 615
  issue: 4
  year: 2018
  end-page: 635
  ident: CR6
  article-title: Artificial neural network classification of high dimensional data with novel optimization approach of dimension reduction
  publication-title: Annals of Data Science
  doi: 10.1007/s40745-018-0155-2
– ident: CR38
– volume: 10
  start-page: 314
  issue: 4
  year: 2002
  end-page: 324
  ident: CR41
  article-title: Emergent self-organising feature maps used for prediction and prevention of churn in mobile phone markets
  publication-title: Journal of Targeting, Measurement and Analysis for Marketing
  doi: 10.1057/palgrave.jt.5740056
– ident: CR13
– ident: CR9
– ident: CR32
– volume: 6
  start-page: 28
  issue: 1
  year: 2019
  ident: CR3
  article-title: Customer churn prediction in telecom using machine learning in big data platform
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0191-6
– volume: 34
  start-page: 2902
  issue: 10
  year: 2007
  end-page: 2917
  ident: CR18
  article-title: Computer assisted customer churn management: State-of-the-art and future trends
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2005.11.007
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  end-page: 874
  ident: CR14
  article-title: An introduction to roc analysis
  publication-title: Pattern recognition letters
  doi: 10.1016/j.patrec.2005.10.010
– ident: CR7
– volume: 23
  start-page: 103
  issue: 2
  year: 2002
  end-page: 112
  ident: CR43
  article-title: Turning telecommunications call details to churn prediction: a data mining approach
  publication-title: Expert systems with applications
  doi: 10.1016/S0957-4174(02)00030-1
– volume: 39
  start-page: 35
  issue: 1
  year: 2010
  end-page: 49
  ident: CR16
  article-title: Customer churn analysis in telecommunication sector
  publication-title: İstanbul Üniversitesi İşletme Fakültesi Dergisi
– volume: 2
  start-page: 693
  issue: 4
  year: 2012
  end-page: 697
  ident: CR36
  article-title: A proposed churn prediction model
  publication-title: International Journal of Engineering Research and Applications
– ident: CR20
– volume: 561
  start-page: 505
  year: 2003
  end-page: 510
  ident: CR30
  article-title: Customer churn analysis in the wireless industry: A data mining approach
  publication-title: Proceedings-annual meeting of the decision sciences institute
– volume: 1
  start-page: 104
  issue: 2
  year: 2006
  ident: 908_CR17
  publication-title: International Journal of Intelligent Technology
– volume: 2
  start-page: 693
  issue: 4
  year: 2012
  ident: 908_CR36
  publication-title: International Journal of Engineering Research and Applications
– ident: 908_CR38
– ident: 908_CR40
– volume: 11
  start-page: 75
  issue: 3
  year: 2014
  ident: 908_CR2
  publication-title: Life Science Journal
– ident: 908_CR21
  doi: 10.1109/ICSMC.2012.6377917
– ident: 908_CR19
– ident: 908_CR20
  doi: 10.1145/2723372.2742794
– volume: 10
  start-page: 314
  issue: 4
  year: 2002
  ident: 908_CR41
  publication-title: Journal of Targeting, Measurement and Analysis for Marketing
  doi: 10.1057/palgrave.jt.5740056
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 908_CR14
  publication-title: Pattern recognition letters
  doi: 10.1016/j.patrec.2005.10.010
– volume: 23
  start-page: 13409
  issue: 24
  year: 2019
  ident: 908_CR29
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-03879-7
– volume: 39
  start-page: 35
  issue: 1
  year: 2010
  ident: 908_CR16
  publication-title: İstanbul Üniversitesi İşletme Fakültesi Dergisi
– ident: 908_CR9
  doi: 10.2307/41703503
– volume: 22
  start-page: 1651
  issue: 5
  year: 2018
  ident: 908_CR26
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2429-y
– volume: 38
  start-page: 7151
  issue: 6
  year: 2011
  ident: 908_CR23
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.12.045
– volume: 32
  start-page: 155
  issue: 2
  year: 2001
  ident: 908_CR28
  publication-title: Decision Support Systems
  doi: 10.1016/S0167-9236(01)00108-7
– volume: 19
  start-page: 35
  issue: 8
  year: 2011
  ident: 908_CR1
  publication-title: International Journal of Computer Applications
– ident: 908_CR45
– ident: 908_CR27
  doi: 10.1108/10662240110410183
– volume: 6
  start-page: 28
  issue: 1
  year: 2019
  ident: 908_CR3
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0191-6
– volume: 5
  start-page: 615
  issue: 4
  year: 2018
  ident: 908_CR6
  publication-title: Annals of Data Science
  doi: 10.1007/s40745-018-0155-2
– volume: 10
  start-page: 453
  issue: 3
  year: 2017
  ident: 908_CR24
  publication-title: Peer-to-Peer Networking and Applications
  doi: 10.1007/s12083-016-0531-7
– volume: 561
  start-page: 505
  year: 2003
  ident: 908_CR30
  publication-title: Proceedings-annual meeting of the decision sciences institute
– volume: 34
  start-page: 2902
  issue: 10
  year: 2007
  ident: 908_CR18
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2005.11.007
– volume: 4
  start-page: 1065
  issue: 4
  year: 2016
  ident: 908_CR42
  publication-title: International Research Journal of Engineering and Technology (IRJET)
– volume: 23
  start-page: 103
  issue: 2
  year: 2002
  ident: 908_CR43
  publication-title: Expert systems with applications
  doi: 10.1016/S0957-4174(02)00030-1
– ident: 908_CR12
  doi: 10.1109/ICRITO.2015.7359318
– volume: 11
  start-page: 109
  issue: 4
  year: 1997
  ident: 908_CR31
  publication-title: Journal of Direct Marketing
  doi: 10.1002/(SICI)1522-7138(199723)11:4<109::AID-DIR12>3.0.CO;2-G
– volume: 36
  start-page: 4626
  issue: 3
  year: 2009
  ident: 908_CR8
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.05.027
– ident: 908_CR39
  doi: 10.1007/11941439_114
– ident: 908_CR4
  doi: 10.1145/2492517.2500274
– ident: 908_CR13
  doi: 10.1007/978-3-642-21402-8_23
– ident: 908_CR22
– ident: 908_CR46
  doi: 10.1007/11527503_36
– ident: 908_CR25
  doi: 10.1007/978-981-10-7098-3_13
– volume: 66
  start-page: 1629
  issue: 9
  year: 2013
  ident: 908_CR10
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2012.12.008
– volume: 34
  start-page: 313
  issue: 1
  year: 2008
  ident: 908_CR11
  publication-title: Expert systems with applications
  doi: 10.1016/j.eswa.2006.09.038
– volume: 21
  start-page: 65
  issue: 1
  year: 2018
  ident: 908_CR34
  publication-title: Cluster Computing
  doi: 10.1007/s10586-017-0933-1
– volume: 119
  start-page: 1149
  issue: 10
  year: 2018
  ident: 908_CR5
  publication-title: International Journal of Pure and Applied Mathematics
– volume: 36
  start-page: 5445
  issue: 3
  year: 2009
  ident: 908_CR44
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.121
– ident: 908_CR7
  doi: 10.1109/ICComm.2016.7528311
– volume: 17
  start-page: 3961
  issue: 8
  year: 2014
  ident: 908_CR35
  publication-title: International journal on information
– volume: 9
  start-page: 1304
  issue: 4
  year: 2009
  ident: 908_CR15
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.04.004
– ident: 908_CR32
  doi: 10.1109/ICDIM.2013.6693977
– volume: 3
  start-page: 80
  issue: 2
  year: 2010
  ident: 908_CR33
  publication-title: Trans. MLDM
– volume: 5
  start-page: 2094
  issue: 4
  year: 2016
  ident: 908_CR37
  publication-title: International Journal of Science and Research (IJSR)
  doi: 10.21275/v5i4.NOV162954
SSID ssj0002389
Score 2.638391
Snippet The customer churn prediction (CCP) is one of the challenging problems in the telecom industry. With the advancement in the field of machine learning and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 271
SubjectTerms Artificial Intelligence
Classifiers
Computer Appl. in Administrative Data Processing
Computer Communication Networks
Computer Science
Customers
Decision trees
Information Systems Applications (incl.Internet)
Machine learning
Model accuracy
Prediction models
Predictions
Regular Paper
Search algorithms
Software Engineering
Support vector machines
Test sets
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3o9EEfnE7F6ZQ8-KbBNmnXVhCR4RDU4YPK3kq-qoL7cN2E_XuTNO1Q0Bdf-xFKT3LvSXJzDsAx40nAjcpnEnGCA-lxzGUmcehHMlaCC2ltOp_vol4v7veTB7fglruyyjIm2kAtR8KskZ8RTdQDo6UXX44_sHGNMrurzkJjGVZ8QnzTz28jXEVinY4K-qtjTRCHfXdoxh6dM0IkETYFCppleDGef09MC7b5Y4PU5p1u_b9fvAkbjnGiq6KLbMGSGjagXro5IDe4G7B-Xym45ttw0ZlpWjjQD4hX3QAaT8yOjkERFeLP54ihga3EVMhZT7ygUqF8B56614-dG-ysFrDQY3CKE8pMpMkk9ViSEeYxPW9u80wFiZ7QeZIEGVEaVxHSIKKMKO5JnsVURb4MOU3oLtSGo6HaAyR4mOkrhMRtptkOZTofMqqJJWnHSSCiJvjlf06F0yE3dhjvaaWgbLFJNTapxSadN-GkemdcqHD8-XSrBCR1IzJPF2g04bSEdHH799b2_27tANaIORFhC7lbUJtOZuoQVsXn9C2fHNn--AWeQ-Sq
  priority: 102
  providerName: ProQuest
Title Customer churn prediction system: a machine learning approach
URI https://link.springer.com/article/10.1007/s00607-021-00908-y
https://www.proquest.com/docview/2625413498
Volume 104
WOSCitedRecordID wos000617842900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-5057
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002389
  issn: 0010-485X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB58HfTgW6yPsgdvupDuJt2N4EGLIqi1-Kxewr6igq3SVsF_72yaRBQV9LKQZLOEmczMt-zMNwAbSseh9iyfsdCMhjbQVNvU0qgmrHRGG5u16bw6Fs2mbLfjVl4U1i-y3YsjycxTl8VunjpEUJ9SgLggkPRtFMYx3ElvjmfnV6X_xSA0BL3oYUIZtfNSme_X-ByOPjDml2PRLNoczPzvO2dhOkeXZHf4O8zBiOvOw0zRuYHkhjwPUyclW2t_AXYaLwgBOzjB3OMC5LnnT2-8xsiQ6HmbKNLJsi4dydtM3JGCjXwRLg_2LxqHNG-rQA3a24DGXHmvkloeqDhlKlC4R67r1IUxbt4Cy8KUOdShiXgouGJOB1ankjtRs5HmMV-Cse5T1y0DMTpK8Q5jsq4Q2XCFsU9xBJGsLuPQiArUCukmJucc960vHpOSLTmTVoLSSjJpJW8V2CzfeR4ybvw6e61QWpJbXz9huKkLPe-irMBWoaSPxz-vtvK36aswyXw1RJbEvQZjg96LW4cJ8zp46PeqMCqub6owvrffbJ3h1ZGgOJ4EDT-yUxxb0W01-3ffAcjl4eg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5EBfXgW6zPPehJF9PNpkkEEamKYi0eVHqL-4oKtta2Kv1T_kZnN0mLgt48eM1jYbPfzHybnfkGYEvImEur8hmHklGuPUmlTjUNyqGOjJJKuzadt7WwXo8ajfhqBD6KWhibVln4ROeo9bOy_8j3GBJ1brX0osP2C7Vdo-zpatFCI4PFhem_45ate3B-jOu7zdjpyXX1jOZdBahCuPVo7AtrVKn2PRGnTHgCt4gVmRoe497F04ynzOAUVODz0BfMSE_LNPJNWNaB9K34Err8Mc7RHGyqoFcdeH4MfxndRt_Go6CRF-m4Uj0rfBJSmxCBrMaLaP9rIByy228Hsi7Onc78ty80C9M5oyZHmQnMwYhpzcNM0a2C5M5rHqYuBwq13QU4qL4i7W3iA-oBByDtjj2xsiglmbj1PhGk6TJNDclba9yTQoF9EW7-ZEpLMNp6bpllIEoGKV5hLKoIZHO-wHgvfCTOrBLFXIUlKBfrmqhcZ922-3hKBgrRDgsJYiFxWEj6JdgZvNPOVEZ-fXqtAECSe5xuMlz9EuwWEBre_nm0ld9H24SJs-vLWlI7r1-swiSz1R8uaX0NRnudV7MO4-qt99jtbDhbIHD319D6BFnXQeA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB6KiujBt1ife9CTLqabpEkEEVGLUi0eVHqL-4oK9mEfSv-av87ZTdKioLcevOaxsNlvZr7NznwDsMtF5Amj8hkFglFPOYIKlSjqlwIVaimksm06H66DWi2s16PbAnzmtTAmrTL3idZRq5Y0_8gPGRJ1z2jphYdJlhZxe145ab9R00HKnLTm7TRSiFT14AO3b93jq3Nc6z3GKhd3Z5c06zBAJUKvRyOXGwNLlOvwKGHc4bhdLItEexHuYxzFvIRpnI70XS9wOdPCUSIJXR2UlC9cI8SE7n8So7BvbKwa0GEUwFCYUm_0c17o17OCHVu2Z0RQAmqSI5DhOCEdfA-KI6b743DWxrzK_H_-WgswlzFtcpqaxiIUdHMJ5vMuFiRzakswezNUru0uw_FZH-lwAx-QzzgAaXfMSZZBL0lFr48IJw2bgapJ1nLjieTK7CtwP5YprcJEs9XUa0Ck8BO8wlhY5sjyXI48gLtIqFk5jDwZFKGUr3EsM_110wbkNR4qR1tcxIiL2OIiHhRhf_hOO1Uf-fPpzRwMceaJuvEICUU4yOE0uv37aOt_j7YD04io-PqqVt2AGWaKQmwu-yZM9Dp9vQVT8r330u1sW7Mg8DhuZH0B9UJKhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Customer+churn+prediction+system%3A+a+machine+learning+approach&rft.jtitle=Computing&rft.au=Lalwani%2C+Praveen&rft.au=Mishra%2C+Manas+Kumar&rft.au=Chadha%2C+Jasroop+Singh&rft.au=Sethi%2C+Pratyush&rft.date=2022-02-01&rft.pub=Springer+Vienna&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=104&rft.issue=2&rft.spage=271&rft.epage=294&rft_id=info:doi/10.1007%2Fs00607-021-00908-y&rft.externalDocID=10_1007_s00607_021_00908_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon