The Application of the Accelerated Proximal Gradient Descent Algorithm for the Solution of the Weighted Schatten-p Norm in Sparse Noise Extraction
In this study, we introduce the weighted Schatten-p norm optimization robust principal component analysis model, transforming the nuclear norm into a combination of the Schatten-p norm and the weighted nuclear norm for enhanced flexibility. We adapt the model for compatibility with the Accelerated P...
Uloženo v:
| Vydáno v: | Circuits, systems, and signal processing Ročník 43; číslo 8; s. 5169 - 5190 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0278-081X, 1531-5878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this study, we introduce the weighted Schatten-p norm optimization robust principal component analysis model, transforming the nuclear norm into a combination of the Schatten-p norm and the weighted nuclear norm for enhanced flexibility. We adapt the model for compatibility with the Accelerated Proximal gradient descent algorithm (APG) and use APG to solve this new model. In the experimental section, we analyze the algorithm’s adaptability under various conditions through multi-dimensional variation analysis on generated data. Additionally, we assess its practical effectiveness by testing on noisy images for restoration, establishing the proposed method as the most advanced algorithm in terms of performance. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0278-081X 1531-5878 |
| DOI: | 10.1007/s00034-024-02697-z |