Fingerprint pattern identification and classification approach based on convolutional neural networks

Fingerprint pattern recognition and classification can be of assistance in the research on human personality. In some previous studies, fingerprints were classified into four categories to speed up recognition, but the method of that classification is not suitable for researching the diversity of hu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 32; číslo 10; s. 5725 - 5734
Hlavní autoři: Wu, Fan, Zhu, Juelin, Guo, Xiaomeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.05.2020
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fingerprint pattern recognition and classification can be of assistance in the research on human personality. In some previous studies, fingerprints were classified into four categories to speed up recognition, but the method of that classification is not suitable for researching the diversity of human personalities. Therefore, in this paper, fingerprint patterns were classified into six types and the accuracy of the recognition was improved to facilitate the research on human personality characteristics. Based on this idea, a six-category fingerprint database is annotated manually and a convolutional neural network (CNN) is proposed for identifying real fingerprint patterns. The new CNN consists of four convolutional layers, three max-pooling layers, two norm layers, and three fully connected layers. The best accuracy the model achieved was 94.87% for a six-category fingerprint database and 92.9% accuracy for a four-category fingerprint database. The results of experimental tests show that the proposed model can recognize the pattern features from a large fingerprint database using the automatic learning and feature extraction abilities of the CNN to get a greater accuracy than in previous experiments.
AbstractList Fingerprint pattern recognition and classification can be of assistance in the research on human personality. In some previous studies, fingerprints were classified into four categories to speed up recognition, but the method of that classification is not suitable for researching the diversity of human personalities. Therefore, in this paper, fingerprint patterns were classified into six types and the accuracy of the recognition was improved to facilitate the research on human personality characteristics. Based on this idea, a six-category fingerprint database is annotated manually and a convolutional neural network (CNN) is proposed for identifying real fingerprint patterns. The new CNN consists of four convolutional layers, three max-pooling layers, two norm layers, and three fully connected layers. The best accuracy the model achieved was 94.87% for a six-category fingerprint database and 92.9% accuracy for a four-category fingerprint database. The results of experimental tests show that the proposed model can recognize the pattern features from a large fingerprint database using the automatic learning and feature extraction abilities of the CNN to get a greater accuracy than in previous experiments.
Author Guo, Xiaomeng
Wu, Fan
Zhu, Juelin
Author_xml – sequence: 1
  givenname: Fan
  orcidid: 0000-0001-9392-2597
  surname: Wu
  fullname: Wu, Fan
  email: wufan@hnu.edu.cn
  organization: School of Information Science and Engineering, Hunan University
– sequence: 2
  givenname: Juelin
  surname: Zhu
  fullname: Zhu, Juelin
  organization: School of Information Science and Engineering, Hunan University
– sequence: 3
  givenname: Xiaomeng
  surname: Guo
  fullname: Guo, Xiaomeng
  organization: School of Information Science and Engineering, Hunan University
BookMark eNp9kE1LAzEQhoNUsFb_gKcFz6vJJvuRoxSrQsGLnkM-NXVN1iRr8d-bdgXFQ08DM_MM7zynYOa80wBcIHiFIGyvI4R1hUqIaAkJobTcHoE5IhiXGNbdDMwhJXncEHwCTmPcQAhJ09VzoFfWvegwBOtSMfCUdHCFVdola6zkyXpXcKcK2fMY_7SGIXguXwvBo1ZF7kjvPn0_7qa8L5wew76krQ9v8QwcG95Hff5TF-B5dfu0vC_Xj3cPy5t1KTGiqaRIGy4INhArQ1ojatUaTYU2FRKSU6JJrRpE6pZiLBRRWBjVNp3hpOtqUeMFuJzu5nQfo46JbfwYcqDIqoqiroK0gXmrmrZk8DEGbVh-_52HL4Yg2-lkk06WdbK9TrbNUPcPkjbtZaTAbX8YxRMad5qz7d9UB6hvu5OQEQ
CitedBy_id crossref_primary_10_1002_cpe_6057
crossref_primary_10_3390_app15052793
crossref_primary_10_3390_math9070730
crossref_primary_10_1002_eng2_12897
crossref_primary_10_1007_s42979_024_02885_3
crossref_primary_10_1016_j_patcog_2025_111439
crossref_primary_10_1155_2022_1101282
crossref_primary_10_1109_JSEN_2021_3077698
crossref_primary_10_3390_app13021188
crossref_primary_10_1016_j_compeleceng_2021_107387
crossref_primary_10_1155_acis_8442143
crossref_primary_10_4028_p_fiJ4gb
crossref_primary_10_1007_s00371_022_02437_x
crossref_primary_10_1016_j_patrec_2023_08_006
Cites_doi 10.1016/S0031-3203(01)00121-2
10.1109/ACCESS.2017.2788044
10.1016/S0262-8856(01)00045-2
10.1016/0031-3203(84)90079-7
10.1016/j.neucom.2017.08.062
10.1016/j.patrec.2007.04.002
10.1109/TII.2019.2909473
10.1109/FSKD.2017.8393034
10.1109/TGRS.2009.2037898
10.1007/3-540-45344-X_37
10.1006/ciun.1993.1012
10.1016/B978-1-4832-3093-1.50017-1
10.1016/0031-3203(95)00106-9
10.1109/34.761265
10.1109/TSMC.2017.2690673
10.1007/s10916-016-0436-2
10.1109/TPDS.2018.2877359
10.1145/2647868.2654889
10.1109/TIP.2012.2195014
10.1016/j.patcog.2007.07.004
10.1109/IJCNN.2011.6033589
10.1109/5.726791
10.1109/TPAMI.1980.4767009
10.1016/0031-3203(75)90011-4
10.1016/j.patcog.2013.05.008
10.1109/ICPR.1996.547013
10.1109/TIP.2011.2177846
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04499-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 5734
ExternalDocumentID 10_1007_s00521_019_04499_w
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2016YFB0201800
– fundername: Hunan Provincial Key Research and Development Program
  grantid: 2018GK2055
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-91efab43f03df47fb5d7fe9bef21bca94e45d61457933bd4d3bfd768fa4885b53
IEDL.DBID RSV
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529745200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 00:42:46 EST 2025
Sat Nov 29 02:59:13 EST 2025
Tue Nov 18 21:31:35 EST 2025
Fri Feb 21 02:35:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Pattern feature
Fingerprint
Identification
Convolutional neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-91efab43f03df47fb5d7fe9bef21bca94e45d61457933bd4d3bfd768fa4885b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9392-2597
PQID 2291820960
PQPubID 2043988
PageCount 10
ParticipantIDs proquest_journals_2291820960
crossref_primary_10_1007_s00521_019_04499_w
crossref_citationtrail_10_1007_s00521_019_04499_w
springer_journals_10_1007_s00521_019_04499_w
PublicationCentury 2000
PublicationDate 20200500
2020-05-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Jain AK, Minut S (2002) Hierarchical kernel fitting for fingerprint classification and alignment. In: Object recognition supported by user interaction for service robots, vol 2. IEEE, pp 469–473
ChenCLiKOuyangATangZLiKGpu-accelerated parallel hierarchical extreme learning machine on Flink for big dataIEEE Trans Syst Man Cybern Syst201747102740275310.1109/TSMC.2017.2690673
KawagoeMTojoAFingerprint pattern classificationPattern Recogn198417329530310.1016/0031-3203(84)90079-7
GiacintoGRoliFDesign of effective neural network ensembles for image classification purposesImage Vis Comput2001199–1069970710.1016/S0262-8856(01)00045-2
LecunYLBottouLBengioYGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
CaoKPangLLiangJFingerprint classification by a hierarchical classifierPattern Recogn201346123186319710.1016/j.patcog.2013.05.008
Maio D, Maltoni D (1996) A structural approach to fingerprint classification. In: Proceedings of the 13th international conference on, pp 578–585
Duan M, Li K, Tian Q (2018) A novel multi-task tensor correlation neural network for facial attribute prediction. arXiv preprint arXiv:1804.02810
Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: Advances in neural information processing systems, pp 568-576
BaiXNiwasSILinWJuBFKwohCKWangLLearning ECOC code matrix for multiclass classification with application to glaucoma diagnosisJ Med Syst20164047810.1007/s10916-016-0436-2
Dai J, Li Y, He K et al (2016) R-FCN: Object detection via region-based fully convolutional networks. In: Advances in neural information processing systems, pp 379–387
WangLDaiMApplication of a new type of singular points in fingerprint classificationPattern Recogn Lett200728131640165010.1016/j.patrec.2007.04.002
ZhangLWangLLinWConjunctive patches subspace learning with side information for collaborative image retrievalIEEE Trans Image Process20122183707372029604591373.9448610.1109/TIP.2012.2195014
Chen C et al (2018) Exploiting spatio-temporal correlations with multiple 3D convolutional neural networks for citywide vehicle flow prediction. In: 2018 IEEE international conference on data mining (ICDM). IEEE, pp 893–898
ZhangLWangLLinWSemisupervised biased maximum margin analysis for interactive image retrievalIEEE Trans Image Process20122142294230829595291373.9448510.1109/TIP.2011.2177846
ChenJA bi-layered parallel training architecture for large-scale convolutional neural networksIEEE Trans Parallel Distrib Syst20183096597610.1109/TPDS.2018.2877359
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
Sermanet P, LeCun Y (2011) Traffic sign recognition with multi-scale convolutional networks. In: The 2011 international joint conference on neural networks, San Jose, CA, pp 2809–2813
Wang R, Han C, Wu Y et al (2014) Fingerprint classification based on depth neural network. arXiv preprint arXiv:1409.5188
KaruKJainAKFingerprint classificationPattern Recogn199629338940410.1016/0031-3203(95)00106-9
HongJHMinJKChoUKFingerprint classification using one-vs-all support vector machines dynamically ordered with näive Bayes classifiersPattern Recogn20084126626711131.6851310.1016/j.patcog.2007.07.004
Bowen JD (1992) The home office automatic fingerprint pattern classification project. In: IEE Colloquium on neural networks for image processing applications. IET, pp 1/1–1/5
Sermanet P, Chintala S, LeCun Y (2012) Convolutional neural networks applied to house numbers digit classification. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012), Tsukuba, pp 3288–3291
DonahueMJRokhlinSIOn the use of level curves in image analysisCVGIP Image Underst199357218520310.1006/ciun.1993.1012
YaoYFrasconiPPontilMKanadeTJainARathaNKFingerprint classification with combinations of support vector machinesInternational conference on audio-and video-based biometric person authentication2001BerlinSpringer25325810.1007/3-540-45344-X_37
Jia Y, Shelhamer E, Donahue J et al (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia. ACM, pp 675–678
KerJWangLRaoJDeep learning applications in medical image analysisIEEE Access201869375938910.1109/ACCESS.2017.2788044
JainAKPrabhakarSHongLA multichannel approach to fingerprint classificationIEEE Trans Pattern Anal Mach Intell200221434835910.1109/34.761265
ChangJHFanKCA new model for fingerprint classification by ridge distribution sequencesPattern Recogn2002356120912231001.6892510.1016/S0031-3203(01)00121-2
RaoKBalckKType classification of fingerprints: a syntactic approachIEEE Trans Pattern Anal Mach Intell1980232233110.1109/TPAMI.1980.4767009
GrasselliAOn the automatic classification of fingerprints—some considerations on the linguistic interpretation of picturesMethodol Pattern Recogn1969588125327310.1016/B978-1-4832-3093-1.50017-1
ChenJLiKDengQLiKPhilipSYDistributed deep learning model for intelligent video surveillance systems with edge computingIEEE Trans Ind Inf201910.1109/TII.2019.2909473
Dai T, Li K, Chen C (2017) A parallel randomized neural network on in-memory cluster computing for big data. In: 13th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD). IEEE, pp 1769–1778
ZeilerMDFergusRFleetDPajdlaTSchieleBTuytelaarsTVisualizing and understanding convolutional networksEuropean conference on computer vision2014ChamSpringer818833
MoayerBFuKSA syntactic approach to fingerprint pattern recognitionPattern Recogn197571–21230318.6805910.1016/0031-3203(75)90011-4
DuanMLiKYangCLiKA hybrid deep learning CNN–ELM for age and gender classificationNeurocomputing201827544846110.1016/j.neucom.2017.08.062
HenryERClassification and uses of finger prints1905RichmondHM Stationery Office
Gholami A, Azad A, Jin P, Keutzer K, Buluc A (2017) Integrated model, batch and domain parallelism in training neural networks. arXiv preprint arXiv:1712.04432
RatleFCamps-VallsGWestonJSemisupervised neural networks for efficient hyperspectral image classificationIEEE Trans Geosci Remote Sens20104852271228210.1109/TGRS.2009.2037898
A Grasselli (4499_CR23) 1969; 588
K Cao (4499_CR17) 2013; 46
4499_CR10
4499_CR33
YL Lecun (4499_CR40) 1998; 86
ER Henry (4499_CR7) 1905
4499_CR2
4499_CR18
M Duan (4499_CR25) 2018; 275
4499_CR3
4499_CR39
4499_CR5
4499_CR36
4499_CR16
L Zhang (4499_CR28) 2012; 21
4499_CR38
4499_CR1
4499_CR15
4499_CR37
B Moayer (4499_CR13) 1975; 7
4499_CR6
JH Chang (4499_CR19) 2002; 35
JH Hong (4499_CR11) 2008; 41
MJ Donahue (4499_CR22) 1993; 57
C Chen (4499_CR34) 2017; 47
M Kawagoe (4499_CR14) 1984; 17
K Karu (4499_CR8) 1996; 29
AK Jain (4499_CR21) 2002; 21
X Bai (4499_CR31) 2016; 40
L Wang (4499_CR20) 2007; 28
J Chen (4499_CR35) 2018; 30
J Ker (4499_CR30) 2018; 6
Y Yao (4499_CR9) 2001
F Ratle (4499_CR24) 2010; 48
MD Zeiler (4499_CR4) 2014
4499_CR26
G Giacinto (4499_CR29) 2001; 19
K Rao (4499_CR12) 1980; 2
J Chen (4499_CR32) 2019
L Zhang (4499_CR27) 2012; 21
References_xml – reference: ZeilerMDFergusRFleetDPajdlaTSchieleBTuytelaarsTVisualizing and understanding convolutional networksEuropean conference on computer vision2014ChamSpringer818833
– reference: Sermanet P, Chintala S, LeCun Y (2012) Convolutional neural networks applied to house numbers digit classification. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012), Tsukuba, pp 3288–3291
– reference: DonahueMJRokhlinSIOn the use of level curves in image analysisCVGIP Image Underst199357218520310.1006/ciun.1993.1012
– reference: ZhangLWangLLinWConjunctive patches subspace learning with side information for collaborative image retrievalIEEE Trans Image Process20122183707372029604591373.9448610.1109/TIP.2012.2195014
– reference: GiacintoGRoliFDesign of effective neural network ensembles for image classification purposesImage Vis Comput2001199–1069970710.1016/S0262-8856(01)00045-2
– reference: BaiXNiwasSILinWJuBFKwohCKWangLLearning ECOC code matrix for multiclass classification with application to glaucoma diagnosisJ Med Syst20164047810.1007/s10916-016-0436-2
– reference: WangLDaiMApplication of a new type of singular points in fingerprint classificationPattern Recogn Lett200728131640165010.1016/j.patrec.2007.04.002
– reference: Duan M, Li K, Tian Q (2018) A novel multi-task tensor correlation neural network for facial attribute prediction. arXiv preprint arXiv:1804.02810
– reference: Dai T, Li K, Chen C (2017) A parallel randomized neural network on in-memory cluster computing for big data. In: 13th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD). IEEE, pp 1769–1778
– reference: RatleFCamps-VallsGWestonJSemisupervised neural networks for efficient hyperspectral image classificationIEEE Trans Geosci Remote Sens20104852271228210.1109/TGRS.2009.2037898
– reference: Chen C et al (2018) Exploiting spatio-temporal correlations with multiple 3D convolutional neural networks for citywide vehicle flow prediction. In: 2018 IEEE international conference on data mining (ICDM). IEEE, pp 893–898
– reference: CaoKPangLLiangJFingerprint classification by a hierarchical classifierPattern Recogn201346123186319710.1016/j.patcog.2013.05.008
– reference: ChenCLiKOuyangATangZLiKGpu-accelerated parallel hierarchical extreme learning machine on Flink for big dataIEEE Trans Syst Man Cybern Syst201747102740275310.1109/TSMC.2017.2690673
– reference: HongJHMinJKChoUKFingerprint classification using one-vs-all support vector machines dynamically ordered with näive Bayes classifiersPattern Recogn20084126626711131.6851310.1016/j.patcog.2007.07.004
– reference: ZhangLWangLLinWSemisupervised biased maximum margin analysis for interactive image retrievalIEEE Trans Image Process20122142294230829595291373.9448510.1109/TIP.2011.2177846
– reference: LecunYLBottouLBengioYGradient-based learning applied to document recognitionProc IEEE199886112278232410.1109/5.726791
– reference: KerJWangLRaoJDeep learning applications in medical image analysisIEEE Access201869375938910.1109/ACCESS.2017.2788044
– reference: Bowen JD (1992) The home office automatic fingerprint pattern classification project. In: IEE Colloquium on neural networks for image processing applications. IET, pp 1/1–1/5
– reference: Sermanet P, LeCun Y (2011) Traffic sign recognition with multi-scale convolutional networks. In: The 2011 international joint conference on neural networks, San Jose, CA, pp 2809–2813
– reference: Dai J, Li Y, He K et al (2016) R-FCN: Object detection via region-based fully convolutional networks. In: Advances in neural information processing systems, pp 379–387
– reference: KaruKJainAKFingerprint classificationPattern Recogn199629338940410.1016/0031-3203(95)00106-9
– reference: KawagoeMTojoAFingerprint pattern classificationPattern Recogn198417329530310.1016/0031-3203(84)90079-7
– reference: DuanMLiKYangCLiKA hybrid deep learning CNN–ELM for age and gender classificationNeurocomputing201827544846110.1016/j.neucom.2017.08.062
– reference: Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: Advances in neural information processing systems, pp 568-576
– reference: Wang R, Han C, Wu Y et al (2014) Fingerprint classification based on depth neural network. arXiv preprint arXiv:1409.5188
– reference: GrasselliAOn the automatic classification of fingerprints—some considerations on the linguistic interpretation of picturesMethodol Pattern Recogn1969588125327310.1016/B978-1-4832-3093-1.50017-1
– reference: Jain AK, Minut S (2002) Hierarchical kernel fitting for fingerprint classification and alignment. In: Object recognition supported by user interaction for service robots, vol 2. IEEE, pp 469–473
– reference: JainAKPrabhakarSHongLA multichannel approach to fingerprint classificationIEEE Trans Pattern Anal Mach Intell200221434835910.1109/34.761265
– reference: ChenJLiKDengQLiKPhilipSYDistributed deep learning model for intelligent video surveillance systems with edge computingIEEE Trans Ind Inf201910.1109/TII.2019.2909473
– reference: ChenJA bi-layered parallel training architecture for large-scale convolutional neural networksIEEE Trans Parallel Distrib Syst20183096597610.1109/TPDS.2018.2877359
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
– reference: ChangJHFanKCA new model for fingerprint classification by ridge distribution sequencesPattern Recogn2002356120912231001.6892510.1016/S0031-3203(01)00121-2
– reference: Jia Y, Shelhamer E, Donahue J et al (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia. ACM, pp 675–678
– reference: MoayerBFuKSA syntactic approach to fingerprint pattern recognitionPattern Recogn197571–21230318.6805910.1016/0031-3203(75)90011-4
– reference: Gholami A, Azad A, Jin P, Keutzer K, Buluc A (2017) Integrated model, batch and domain parallelism in training neural networks. arXiv preprint arXiv:1712.04432
– reference: RaoKBalckKType classification of fingerprints: a syntactic approachIEEE Trans Pattern Anal Mach Intell1980232233110.1109/TPAMI.1980.4767009
– reference: Maio D, Maltoni D (1996) A structural approach to fingerprint classification. In: Proceedings of the 13th international conference on, pp 578–585
– reference: HenryERClassification and uses of finger prints1905RichmondHM Stationery Office
– reference: YaoYFrasconiPPontilMKanadeTJainARathaNKFingerprint classification with combinations of support vector machinesInternational conference on audio-and video-based biometric person authentication2001BerlinSpringer25325810.1007/3-540-45344-X_37
– volume: 35
  start-page: 1209
  issue: 6
  year: 2002
  ident: 4499_CR19
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(01)00121-2
– volume: 6
  start-page: 9375
  year: 2018
  ident: 4499_CR30
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2788044
– volume: 19
  start-page: 699
  issue: 9–10
  year: 2001
  ident: 4499_CR29
  publication-title: Image Vis Comput
  doi: 10.1016/S0262-8856(01)00045-2
– volume: 17
  start-page: 295
  issue: 3
  year: 1984
  ident: 4499_CR14
  publication-title: Pattern Recogn
  doi: 10.1016/0031-3203(84)90079-7
– volume: 275
  start-page: 448
  year: 2018
  ident: 4499_CR25
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.062
– ident: 4499_CR36
– volume: 28
  start-page: 1640
  issue: 13
  year: 2007
  ident: 4499_CR20
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2007.04.002
– year: 2019
  ident: 4499_CR32
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2019.2909473
– ident: 4499_CR37
  doi: 10.1109/FSKD.2017.8393034
– volume: 48
  start-page: 2271
  issue: 5
  year: 2010
  ident: 4499_CR24
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2009.2037898
– start-page: 253
  volume-title: International conference on audio-and video-based biometric person authentication
  year: 2001
  ident: 4499_CR9
  doi: 10.1007/3-540-45344-X_37
– ident: 4499_CR6
– volume: 57
  start-page: 185
  issue: 2
  year: 1993
  ident: 4499_CR22
  publication-title: CVGIP Image Underst
  doi: 10.1006/ciun.1993.1012
– start-page: 818
  volume-title: European conference on computer vision
  year: 2014
  ident: 4499_CR4
– volume: 588
  start-page: 253
  issue: 1
  year: 1969
  ident: 4499_CR23
  publication-title: Methodol Pattern Recogn
  doi: 10.1016/B978-1-4832-3093-1.50017-1
– volume: 29
  start-page: 389
  issue: 3
  year: 1996
  ident: 4499_CR8
  publication-title: Pattern Recogn
  doi: 10.1016/0031-3203(95)00106-9
– volume: 21
  start-page: 348
  issue: 4
  year: 2002
  ident: 4499_CR21
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.761265
– volume: 47
  start-page: 2740
  issue: 10
  year: 2017
  ident: 4499_CR34
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2017.2690673
– ident: 4499_CR3
– ident: 4499_CR1
– volume: 40
  start-page: 78
  issue: 4
  year: 2016
  ident: 4499_CR31
  publication-title: J Med Syst
  doi: 10.1007/s10916-016-0436-2
– ident: 4499_CR10
– volume: 30
  start-page: 965
  year: 2018
  ident: 4499_CR35
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2018.2877359
– ident: 4499_CR38
  doi: 10.1145/2647868.2654889
– volume: 21
  start-page: 3707
  issue: 8
  year: 2012
  ident: 4499_CR28
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2195014
– volume: 41
  start-page: 662
  issue: 2
  year: 2008
  ident: 4499_CR11
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2007.07.004
– ident: 4499_CR2
  doi: 10.1109/IJCNN.2011.6033589
– ident: 4499_CR5
– ident: 4499_CR39
– ident: 4499_CR33
– volume-title: Classification and uses of finger prints
  year: 1905
  ident: 4499_CR7
– ident: 4499_CR18
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 4499_CR40
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– ident: 4499_CR16
– volume: 2
  start-page: 223
  issue: 3
  year: 1980
  ident: 4499_CR12
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1980.4767009
– volume: 7
  start-page: 1
  issue: 1–2
  year: 1975
  ident: 4499_CR13
  publication-title: Pattern Recogn
  doi: 10.1016/0031-3203(75)90011-4
– volume: 46
  start-page: 3186
  issue: 12
  year: 2013
  ident: 4499_CR17
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2013.05.008
– ident: 4499_CR15
  doi: 10.1109/ICPR.1996.547013
– volume: 21
  start-page: 2294
  issue: 4
  year: 2012
  ident: 4499_CR27
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2177846
– ident: 4499_CR26
SSID ssj0004685
Score 2.299078
Snippet Fingerprint pattern recognition and classification can be of assistance in the research on human personality. In some previous studies, fingerprints were...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5725
SubjectTerms Accuracy
Advances in Parallel and Distributed Computing for Neural Computing
Artificial Intelligence
Artificial neural networks
Biometric recognition systems
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Feature extraction
Feature recognition
Fingerprinting
Fingerprints
Image Processing and Computer Vision
Model accuracy
Neural networks
Pattern recognition
Personality
Probability and Statistics in Computer Science
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o9ODF-YnTKTl40-LWJmt7EhGHp7GDwvBSmi8YSDfX6v5938vSbQru4qmQtkngl_eVvPwewHWnp0QPg7Sgq3ke8FzyQMYUrBieCBUi0Ea7YhPxYJCMRunQb7iVPq2y1olOUeuJoj3yuzBMiWscHe776UdAVaPodNWX0NiGHWJJoNINQ_G2di_SleTECIaye3jkL824q3O0H0qBNB0NoNcfzH8appW3-euA1NmdfvO_Mz6Afe9xsofFEjmELVMcQbOu5sC8cB-D6bvxaRoVmzrazYKNtc8mcgCyvNBMkb-91uRJyRnZQ82whRLZ_YLGcYkw0z1cunl5Aq_9p5fH58AXYQgUSmeFytBYRDCynUhbHlspdGxNKo0Nu1LlKTdcaLTxAgU9kprrSFqNMYzNUTUIKaJTaBSTwpwBs0lHaqvDRMVE-6elVJTE2sV-VGrSpAXdGoFMeYZyKpTxni25lR1qGaKWOdSyeQtulv9MF_wcG79u11BlXlbLbIVTC25rsFev_-7tfHNvF7AXUnDusiPb0Khmn-YSdtVXNS5nV26lfgOhCvII
  priority: 102
  providerName: ProQuest
Title Fingerprint pattern identification and classification approach based on convolutional neural networks
URI https://link.springer.com/article/10.1007/s00521-019-04499-w
https://www.proquest.com/docview/2291820960
Volume 32
WOSCitedRecordID wos000529745200034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYxoEL4ykGY8qBG1Ra22Rtj4A2cZqm8dDEpWpe0iRUprWwv4-TpdtAgASnSm3qVnYc24n9GeCi2xOsh0Ga50uaeTTj1OORCVYUjZkIUNBK2mYT0XAYTybJyBWFFVW2e3UkaVfqVbGb2cE0oa_ZzEc_3VvUoIHmLjYNG8b3TxvVkLYRJ8YtJqeHhq5U5nsan83R2sf8cixqrc2g-b__3INd512S6-V02IctlR9As-rcQJwiH4IaWIqGcElmFmIzJ1PpMoessEiWSyKMb71xywGQE2P7JME7JmndTV78rgHHtBebWl4cweOg_3B757mGC55ATSxx4VMapRXqbig1jTRnMtIq4UoHPhdZQhVlEu05Q6UOuaQy5FpivKIzXAYYZ-Ex1PPXXJ0A0XGXSy2DWEQG4k9yLkzCqo90RKKSuAV-xfdUODRy0xTjJV3hKFs-psjH1PIxXbTgcvXObInF8evodiXO1OllkQZBYhDrMWxrwVUlvvXjn6md_m34GewEJjC3mZFtqJfzN3UO2-K9nBbzDjRu-sPRuAO1EXvu2Nn7AcZ162c
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB6kCnqxPrFadQ960mCTbExyEBG1KGrxoCBeYvYFBUmrrRb_lL_Rme3GqmBvHjwFNslmN_vNa3ceAFuNfRnto5Hm-YrnHs8F90RMxormSSQDXGitbLGJuNVK7u7S6wl4L2NhyK2y5ImWUauOpD3yvSBIKdc4KtyH3SePqkbR6WpZQmMIiwv9NkCTrXdwfoLrux0EzdOb4zPPVRXwJMKtj9StDQ4pNI1QGR4bEanY6FRoE_hC5inXPFIotCJEbigUV6EwCpVykyPWI0FVIpDlT3KOg0H6uY7uv8Rh2hKgaDGRNxEPXZCODdWj_Vcy3OkoAq0Mb_BdEI602x8HslbONav_7Q_NwazTqNnRkATmYUIXC1Atq1Uwx7wWQTftfGnafda1aUUL1lbOW8oClOWFYpLsiS9NLuk6I3mvGLaQo74jWPwuJQS1F-tO31uC2z-Z7DJUik6hV4CZpCGUUUEiY0prqISQ5KTrYz8y1WlSA79c8Uy6DOxUCOQx-8wdbVGSIUoyi5JsUIOdz3e6w_wjY5-ul9DIHC_qZSNc1GC3BNfo9u-9rY7vbROmz26uLrPL89bFGswEtBFhPUHrUOk_v-h1mJKv_XbvecNSCYOHvwbdBwytUdU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4pmVrm67to6hFUcbAD_YWmi8YSB1bdf--uSzdpqggPhXS9FJyudxdcvc7gNN2R0Qd46R5vqS5R3NOPR6js6JoEonAMFpJW2wi7naTfj_tLWTx22j36kpymtOAKE1F2RpK3ZolvuFpJrrBeLBvbHZvsgwrFAPp0V9_eF7IjLRFOY0Pg_E9NHRpM9_T-Kya5vbmlytSq3my-v__eRM2nNVJLqbLZAuWVLEN9aqiA3ECvgMqs9RxkJIMLfRmQQbSRRRZJpK8kESgzb3Q5IDJCepESUwLBrO7RW3GRdBM-7Ah5-NdeMquHy9vPFeIwRNGQkuzISptuBjqdig1jTWPZKxVypUOfC7ylCoaSaPnIyPsIZdUhlxL48fo3GwPEY_CPagVr4XaB6KTNpdaBomIEfpPci4wkNU3dESq0qQBfsUDJhxKORbLeGEzfGU7j8zMI7PzyCYNOJt9M5xidPzau1mxljl5HbMgSBHJ3rhzDTivWDl__TO1g791P4G13lXG7m-7d4ewHqDvboMnm1ArR2_qCFbFezkYj47tMv4AFbj0lQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fingerprint+pattern+identification+and+classification+approach+based+on+convolutional+neural+networks&rft.jtitle=Neural+computing+%26+applications&rft.au=Wu%2C+Fan&rft.au=Zhu%2C+Juelin&rft.au=Guo%2C+Xiaomeng&rft.date=2020-05-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=10&rft.spage=5725&rft.epage=5734&rft_id=info:doi/10.1007%2Fs00521-019-04499-w&rft.externalDocID=10_1007_s00521_019_04499_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon