A modified whale optimization algorithm with multi-strategy mechanism for global optimization problems

Whale Optimization Algorithm (WOA) is an outstanding nature-inspired algorithm widely used to solve many complex engineering optimization problems. However, WOA has a poor balance in exploration and exploitation, which converges to local optimum easily. This article proposes a Modified Whale Optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 37; H. 27; S. 22339 - 22352
Hauptverfasser: Li, Mingyuan, Yu, Xiaobing, Fu, Bingbing, Wang, Xuming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.09.2025
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Whale Optimization Algorithm (WOA) is an outstanding nature-inspired algorithm widely used to solve many complex engineering optimization problems. However, WOA has a poor balance in exploration and exploitation, which converges to local optimum easily. This article proposes a Modified Whale Optimization Algorithm (MWOA) with multi-strategy mechanism, which introduces the elite reverse learning strategy, nonlinear convergence factor, DE/rand/1 mutation strategy and Lévy flight disturbance strategy. MWOA can improve the convergent ability and maintain the balance of exploitation and exploration to avoid local optimum. Compared with WOA, PSO, MFO, SOA, SCA and other four WOA variants on the CEC2017 benchmark suite, MWOA has strong competitiveness and can better improve the efficiency of WOA according to the experimental results and analysis.
AbstractList Whale Optimization Algorithm (WOA) is an outstanding nature-inspired algorithm widely used to solve many complex engineering optimization problems. However, WOA has a poor balance in exploration and exploitation, which converges to local optimum easily. This article proposes a Modified Whale Optimization Algorithm (MWOA) with multi-strategy mechanism, which introduces the elite reverse learning strategy, nonlinear convergence factor, DE/rand/1 mutation strategy and Lévy flight disturbance strategy. MWOA can improve the convergent ability and maintain the balance of exploitation and exploration to avoid local optimum. Compared with WOA, PSO, MFO, SOA, SCA and other four WOA variants on the CEC2017 benchmark suite, MWOA has strong competitiveness and can better improve the efficiency of WOA according to the experimental results and analysis.
Author Fu, Bingbing
Yu, Xiaobing
Li, Mingyuan
Wang, Xuming
Author_xml – sequence: 1
  givenname: Mingyuan
  surname: Li
  fullname: Li, Mingyuan
  organization: School of Management Science and Engineering, Nanjing University of Information Science and Technology
– sequence: 2
  givenname: Xiaobing
  surname: Yu
  fullname: Yu, Xiaobing
  email: yuxiaobing@nuist.edu.cn
  organization: School of Management Science and Engineering, Nanjing University of Information Science and Technology
– sequence: 3
  givenname: Bingbing
  surname: Fu
  fullname: Fu, Bingbing
  organization: School of Management Science and Engineering, Nanjing University of Information Science and Technology
– sequence: 4
  givenname: Xuming
  surname: Wang
  fullname: Wang, Xuming
  organization: School of Management Science and Engineering, Nanjing University of Information Science and Technology
BookMark eNp9kD9PwzAQxS0EEm3hCzBZYg6cYyexx6rin1SJBWbLSezWVRIX21VVPj2mQUIwdLkb7v3u3r0pOh_coBG6IXBHAKr7AFDkJIOcZsBzXmXFGZoQRmlGoeDnaAKCpXHJ6CWahrABAFbyYoLMHPeutcbqFu_XqtPYbaPt7aeK1g1YdSvnbVz3eJ8q7nddtFmIXkW9OuBeN2s12NBj4zxeda5W3V9-613d6T5coQujuqCvf_oMvT8-vC2es-Xr08tivswaSkTMBNGqLgrdMEN4S2sjalUpJaqmZIZDzaniQnHFoa14y4CDKcocStG0UDFB6AzdjnvT4Y-dDlFu3M4P6aSkOeMiF4JAUvFR1XgXgtdGNjYeDafPbCcJyO9U5ZiqTKnKY6qySGj-D9162yt_OA3REQpJPKy0_3V1gvoCjqmOGw
CitedBy_id crossref_primary_10_3390_electronics13245018
crossref_primary_10_3390_axioms13010033
crossref_primary_10_1155_2023_8160121
crossref_primary_10_3390_agronomy13122966
crossref_primary_10_1109_ACCESS_2024_3357993
crossref_primary_10_1007_s10668_024_05214_z
crossref_primary_10_1007_s10462_023_10542_z
crossref_primary_10_1007_s13042_024_02227_y
crossref_primary_10_1080_10739149_2023_2286366
crossref_primary_10_1038_s41598_025_15674_6
crossref_primary_10_1007_s11831_023_09928_7
Cites_doi 10.1016/j.advengsoft.2016.01.008
10.1051/matecconf/201713900157
10.1016/j.enconman.2018.05.062
10.1007/s00521-020-04823-9
10.1016/j.engappai.2020.103731
10.3390/sym13020238
10.1016/j.knosys.2018.11.024
10.1016/j.cie.2020.107086
10.1109/ACCESS.2019.2933661
10.1007/s10462-021-10114-z
10.1016/j.knosys.2015.12.022
10.1007/978-981-10-3773-3_6
10.1109/ICCA.2019.8900003
10.1109/ACCESS.2021.3120079
10.1109/ACCESS.2020.2989445
10.1016/j.jcde.2019.02.002
10.1016/j.eswa.2019.113018
10.1109/NABIC.2009.5393690
10.1109/3477.484436
10.1016/j.asoc.2019.105954
10.1016/j.knosys.2021.108071
10.1016/j.swevo.2021.100844
10.1016/j.knosys.2021.107638
10.1007/s00366-022-01638-1
10.1007/s12065-021-00569-y
10.1016/j.enconman.2020.112595
10.1016/j.knosys.2015.07.006
10.1109/PEEIC47157.2019.8976653
10.3390/app10113667
10.1016/j.swevo.2019.03.004
10.1016/j.compbiomed.2022.105858
10.1002/int.22617
10.1016/j.engappai.2021.104558
10.1016/j.matcom.2022.01.018
10.1007/s44196-022-00092-7
10.1007/s00500-021-05983-z
10.1016/j.ins.2022.06.036
10.1109/ICMIC.2016.7804267
10.1007/s00500-021-06623-2
10.1016/j.advengsoft.2013.12.007
10.1007/978-3-319-93025-1_4
10.1080/25742558.2018.1483565
10.1016/j.egyai.2021.100047
10.1023/A:1008202821328
10.1016/j.apenergy.2021.117446
10.1109/TVT.2020.2973294
10.1016/j.advengsoft.2021.103009
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023.
DBID AAYXX
CITATION
DOI 10.1007/s00521-023-08287-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 22352
ExternalDocumentID 10_1007_s00521_023_08287_5
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PUEGO
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~8M
~EX
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c319t-91eab55ec4f18d3bf9ba7aa97c64f80b83a89a8a80d78d4080f562069cd074913
IEDL.DBID RSV
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923116500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 04:11:56 EST 2025
Sat Nov 29 07:34:18 EST 2025
Tue Nov 18 21:32:20 EST 2025
Tue Sep 09 01:10:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords Elite reverse learning strategy
Whale optimization algorithm
Nonlinear convergence factor
Multi-strategy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-91eab55ec4f18d3bf9ba7aa97c64f80b83a89a8a80d78d4080f562069cd074913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3248929910
PQPubID 2043988
PageCount 14
ParticipantIDs proquest_journals_3248929910
crossref_citationtrail_10_1007_s00521_023_08287_5
crossref_primary_10_1007_s00521_023_08287_5
springer_journals_10_1007_s00521_023_08287_5
PublicationCentury 2000
PublicationDate 20250900
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References X Yuan (8287_CR37) 2020; 10
H Chen (8287_CR24) 2020; 154
Y Li (8287_CR55) 2019; 7
G Hu (8287_CR5) 2022; 240
B Yang (8287_CR2) 2020; 208
S Li (8287_CR20) 2021; 157
8287_CR32
S Mirjalili (8287_CR1) 2014; 69
H Mohammed (8287_CR29) 2020; 32
8287_CR30
M Liu (8287_CR48) 2020; 87
G Hu (8287_CR10) 2022; 197
8287_CR31
8287_CR9
S Mirjalili (8287_CR53) 2016; 96
8287_CR6
8287_CR7
8287_CR39
Y Xue (8287_CR43) 2022; 608
S Mirjalili (8287_CR12) 2016; 95
B Dey (8287_CR34) 2022; 15
8287_CR44
8287_CR46
8287_CR40
8287_CR41
S Mirjalili (8287_CR8) 2015; 89
P Lu (8287_CR4) 2021; 301
G Sun (8287_CR38) 2022; 15
D Cui (8287_CR15) 2017; 37
Q Jin (8287_CR36) 2021; 13
G Dhiman (8287_CR52) 2019; 165
R Kushwah (8287_CR21) 2021; 25
8287_CR11
8287_CR51
8287_CR19
FS Gharehchopogh (8287_CR13) 2019; 48
Y Wu (8287_CR3) 2021; 62
S Chakraborty (8287_CR35) 2021; 153
8287_CR17
Q-V Pham (8287_CR16) 2020; 69
MH Nadimi-Shahraki (8287_CR27) 2022; 148
J Nasiri (8287_CR14) 2018; 5
R Storn (8287_CR42) 1997; 11
G Kaur (8287_CR18) 2018; 5
C Tang (8287_CR33) 2022; 26
G Hu (8287_CR45) 2022; 235
8287_CR22
MJ Mohiz (8287_CR50) 2021; 9
S Mohseni (8287_CR49) 2021; 3
J Zhang (8287_CR23) 2020; 8
EH Houssein (8287_CR47) 2020; 94
W Yang (8287_CR54) 2022; 108
8287_CR25
8287_CR26
8287_CR28
References_xml – volume: 95
  start-page: 51
  year: 2016
  ident: 8287_CR12
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: 8287_CR19
  doi: 10.1051/matecconf/201713900157
– ident: 8287_CR39
– ident: 8287_CR22
  doi: 10.1016/j.enconman.2018.05.062
– volume: 32
  start-page: 14701
  issue: 18
  year: 2020
  ident: 8287_CR29
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04823-9
– volume: 94
  start-page: 103731
  year: 2020
  ident: 8287_CR47
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103731
– volume: 13
  start-page: 238
  issue: 2
  year: 2021
  ident: 8287_CR36
  publication-title: Symmetry
  doi: 10.3390/sym13020238
– volume: 165
  start-page: 169
  year: 2019
  ident: 8287_CR52
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.11.024
– volume: 153
  year: 2021
  ident: 8287_CR35
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.107086
– volume: 7
  start-page: 110138
  year: 2019
  ident: 8287_CR55
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933661
– ident: 8287_CR26
  doi: 10.1007/s10462-021-10114-z
– ident: 8287_CR51
– volume: 96
  start-page: 120
  year: 2016
  ident: 8287_CR53
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– ident: 8287_CR28
  doi: 10.1007/978-981-10-3773-3_6
– ident: 8287_CR41
  doi: 10.1109/ICCA.2019.8900003
– volume: 9
  start-page: 141778
  year: 2021
  ident: 8287_CR50
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3120079
– volume: 37
  start-page: 72
  issue: 3
  year: 2017
  ident: 8287_CR15
  publication-title: Adv Sci Technol Water Resour
– volume: 8
  start-page: 77013
  year: 2020
  ident: 8287_CR23
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989445
– ident: 8287_CR31
  doi: 10.1016/j.jcde.2019.02.002
– volume: 154
  year: 2020
  ident: 8287_CR24
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113018
– ident: 8287_CR46
  doi: 10.1109/NABIC.2009.5393690
– ident: 8287_CR9
  doi: 10.1109/3477.484436
– volume: 5
  start-page: 275
  issue: 3
  year: 2018
  ident: 8287_CR18
  publication-title: J Comput Des Eng
– volume: 87
  start-page: 105954
  year: 2020
  ident: 8287_CR48
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105954
– ident: 8287_CR40
– volume: 240
  start-page: 108071
  year: 2022
  ident: 8287_CR5
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.108071
– volume: 62
  year: 2021
  ident: 8287_CR3
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2021.100844
– volume: 235
  year: 2022
  ident: 8287_CR45
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107638
– ident: 8287_CR25
  doi: 10.1007/s00366-022-01638-1
– volume: 15
  start-page: 1587
  issue: 3
  year: 2022
  ident: 8287_CR34
  publication-title: Evol Intel
  doi: 10.1007/s12065-021-00569-y
– volume: 208
  start-page: 112595
  year: 2020
  ident: 8287_CR2
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.112595
– volume: 89
  start-page: 228
  year: 2015
  ident: 8287_CR8
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– ident: 8287_CR17
  doi: 10.1109/PEEIC47157.2019.8976653
– volume: 10
  start-page: 3667
  issue: 11
  year: 2020
  ident: 8287_CR37
  publication-title: Appl Sci
  doi: 10.3390/app10113667
– volume: 48
  start-page: 1
  year: 2019
  ident: 8287_CR13
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.03.004
– volume: 148
  start-page: 105858
  year: 2022
  ident: 8287_CR27
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105858
– ident: 8287_CR44
  doi: 10.1002/int.22617
– volume: 108
  start-page: 104558
  year: 2022
  ident: 8287_CR54
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104558
– volume: 197
  start-page: 207
  year: 2022
  ident: 8287_CR10
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2022.01.018
– volume: 15
  start-page: 1
  issue: 1
  year: 2022
  ident: 8287_CR38
  publication-title: Int J Comput Intell Syst
  doi: 10.1007/s44196-022-00092-7
– volume: 25
  start-page: 10275
  issue: 15
  year: 2021
  ident: 8287_CR21
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-05983-z
– volume: 608
  start-page: 453
  year: 2022
  ident: 8287_CR43
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.06.036
– ident: 8287_CR32
  doi: 10.1109/ICMIC.2016.7804267
– ident: 8287_CR30
– ident: 8287_CR11
– volume: 26
  start-page: 2075
  issue: 5
  year: 2022
  ident: 8287_CR33
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-06623-2
– volume: 69
  start-page: 46
  year: 2014
  ident: 8287_CR1
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 8287_CR6
  doi: 10.1007/978-3-319-93025-1_4
– ident: 8287_CR7
– volume: 5
  start-page: 1483565
  issue: 1
  year: 2018
  ident: 8287_CR14
  publication-title: Cogent Math Stat
  doi: 10.1080/25742558.2018.1483565
– volume: 3
  start-page: 100047
  year: 2021
  ident: 8287_CR49
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2021.100047
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 8287_CR42
  publication-title: J Global Optim
  doi: 10.1023/A:1008202821328
– volume: 301
  start-page: 117446
  year: 2021
  ident: 8287_CR4
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117446
– volume: 69
  start-page: 4285
  issue: 4
  year: 2020
  ident: 8287_CR16
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2020.2973294
– volume: 157
  start-page: 103009
  year: 2021
  ident: 8287_CR20
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2021.103009
SSID ssj0004685
Score 2.4849284
Snippet Whale Optimization Algorithm (WOA) is an outstanding nature-inspired algorithm widely used to solve many complex engineering optimization problems. However,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 22339
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Exploitation
Foraging behavior
Global optimization
Heuristic
Image Processing and Computer Vision
Mutation
Optimization algorithms
Probability and Statistics in Computer Science
S.I.: Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications
Special Issue on Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications
Whales & whaling
Title A modified whale optimization algorithm with multi-strategy mechanism for global optimization problems
URI https://link.springer.com/article/10.1007/s00521-023-08287-5
https://www.proquest.com/docview/3248929910
Volume 37
WOSCitedRecordID wos000923116500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2iJQ0L3usEBUDqhCPqlt0sWMaqWlQU0D8e86uUygCJJhjW9HZ5_ts3_cdIaehpzwQChz9COTg-St0UibQryCTUnIXAiNWPbiO-302HPIbSwqr6mz3-knS7NQLspu-wcSjb8d3jEq7E66SNQx3TLvj7d3gExvSFOLEc4vO6Ql8S5X5fozlcPSBMb88i5po02v-7z-3yKZFl7Q7Xw7bZCWb7JBmXbmBWkfeJapLi1LmCvEnfR1hjKAlbh2F5WRSGD-W03w2Kqi-pqUm6dCp5jq2b7TINFs4rwqKgJfOFUWW-9sqNdUeeehd3l9cObbigiPQFWe482WQhmEmAuUx6aeKpxAD8FhEgWJuynxgHBgwV8ZMBog2FeInN-JCIhThnr9PGpNykh1oLriSsYrcNAKOIIVzAMaEEF4IEEchbxGvNnwirBy5rooxThZCysaQCRoyMYZMwhY5W_R5motx_Nq6Xc9nYh2zShA_MkSECJJa5Lyev4_PP492-LfmR2SjoysFm2y0NmnMps_ZMVkXL7O8mp6YBfsO5O7mAg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6-QC--xWrVHLzpwm73lRxFLBVrEa3F2zKbbGyh20q3Kv57J2m2WlFBz5uEZZLJfEnm-4aQ49BTHggFjn4EcvD8FTopE-hXkEkpuQuBEavuNONWiz088BtLCivKbPfySdLs1FOym77BxKNvzXeMSrsTzpPFACOWTuS7vet8YkOaQpx4btE5PYFvqTLfjzEbjj4w5pdnURNt6mv_-891smrRJT2bLIcNMpcNNslaWbmBWkfeIuqM5kPZU4g_6WsXYwQd4taRW04mhf7jcNQbd3Oqr2mpSTp0iomO7RvNM80W7hU5RcBLJ4ois_1tlZpim9zXL9rnDcdWXHAEuuIYd74M0jDMRKA8Jv1U8RRiAB6LKFDMTZkPjAMD5sqYyQDRpkL85EZcSIQi3PN3yMJgOMh2NRdcyVhFbhoBR5DCOQBjQggvBIijkFeIVxo-EVaOXFfF6CdTIWVjyAQNmRhDJmGFnEz7PE3EOH5tXS3nM7GOWSSIHxkiQgRJFXJazt_H559H2_tb8yOy3GhfN5PmZetqn6zUdNVgk5lWJQvj0XN2QJbEy7hXjA7N4n0HtRbo5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7eEF-8i9OpefBNi-16Sx5FHYoyBHXsrZwmjRusm6xV8d97kra7iAric5NQkpyc7yTn-w4hx76jHBAKLP0IZGH85VsxE2hXkEgpuQ2eEatu34WtFut0-P0Ui99ku1dPkgWnQas0DfKzF6nOxsQ3fZuJYXDDtYxiu-XPk0VPFw3S8fpDe4oZaYpyYgyj83s8t6TNfD_GrGua4M0vT6TG8zTX_v_P62S1RJ30vNgmG2QuGWyStaqiAy0NfIuoc5oOZU8hLqXvXfQddIhHSlpyNSn0n4ejXt5Nqb6-pSYZ0coKfdsPmiaaRdzLUopAmBZKI7P9y-o12TZ5al49XlxbZSUGS6CJ5ngiJhD7fiI85TDpxorHEALwUASeYnbMXGAcGDBbhkx6iEIV4io74EIiROGOu0MWBsNBsqs54kqGKrDjADiCF84BGBNCOD5AGPi8RpxqESJRypTrahn9aCywbCYywomMzERGfo2cjPu8FCIdv7auV2sblQabRYgrGSJFBE81clqt5eTzz6Pt_a35EVm-v2xGdzet232y0tDFhE3CWp0s5KPX5IAsibe8l40OzT7-BOfZ8co
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+whale+optimization+algorithm+with+multi-strategy+mechanism+for+global+optimization+problems&rft.jtitle=Neural+computing+%26+applications&rft.au=Li%2C+Mingyuan&rft.au=Yu%2C+Xiaobing&rft.au=Fu%2C+Bingbing&rft.au=Wang%2C+Xuming&rft.date=2025-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=27&rft.spage=22339&rft.epage=22352&rft_id=info:doi/10.1007%2Fs00521-023-08287-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_08287_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon