A modified whale optimization algorithm with multi-strategy mechanism for global optimization problems
Whale Optimization Algorithm (WOA) is an outstanding nature-inspired algorithm widely used to solve many complex engineering optimization problems. However, WOA has a poor balance in exploration and exploitation, which converges to local optimum easily. This article proposes a Modified Whale Optimiz...
Gespeichert in:
| Veröffentlicht in: | Neural computing & applications Jg. 37; H. 27; S. 22339 - 22352 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Springer London
01.09.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0941-0643, 1433-3058 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Whale Optimization Algorithm (WOA) is an outstanding nature-inspired algorithm widely used to solve many complex engineering optimization problems. However, WOA has a poor balance in exploration and exploitation, which converges to local optimum easily. This article proposes a Modified Whale Optimization Algorithm (MWOA) with multi-strategy mechanism, which introduces the elite reverse learning strategy, nonlinear convergence factor, DE/rand/1 mutation strategy and Lévy flight disturbance strategy. MWOA can improve the convergent ability and maintain the balance of exploitation and exploration to avoid local optimum. Compared with WOA, PSO, MFO, SOA, SCA and other four WOA variants on the CEC2017 benchmark suite, MWOA has strong competitiveness and can better improve the efficiency of WOA according to the experimental results and analysis. |
|---|---|
| AbstractList | Whale Optimization Algorithm (WOA) is an outstanding nature-inspired algorithm widely used to solve many complex engineering optimization problems. However, WOA has a poor balance in exploration and exploitation, which converges to local optimum easily. This article proposes a Modified Whale Optimization Algorithm (MWOA) with multi-strategy mechanism, which introduces the elite reverse learning strategy, nonlinear convergence factor, DE/rand/1 mutation strategy and Lévy flight disturbance strategy. MWOA can improve the convergent ability and maintain the balance of exploitation and exploration to avoid local optimum. Compared with WOA, PSO, MFO, SOA, SCA and other four WOA variants on the CEC2017 benchmark suite, MWOA has strong competitiveness and can better improve the efficiency of WOA according to the experimental results and analysis. |
| Author | Fu, Bingbing Yu, Xiaobing Li, Mingyuan Wang, Xuming |
| Author_xml | – sequence: 1 givenname: Mingyuan surname: Li fullname: Li, Mingyuan organization: School of Management Science and Engineering, Nanjing University of Information Science and Technology – sequence: 2 givenname: Xiaobing surname: Yu fullname: Yu, Xiaobing email: yuxiaobing@nuist.edu.cn organization: School of Management Science and Engineering, Nanjing University of Information Science and Technology – sequence: 3 givenname: Bingbing surname: Fu fullname: Fu, Bingbing organization: School of Management Science and Engineering, Nanjing University of Information Science and Technology – sequence: 4 givenname: Xuming surname: Wang fullname: Wang, Xuming organization: School of Management Science and Engineering, Nanjing University of Information Science and Technology |
| BookMark | eNp9kD9PwzAQxS0EEm3hCzBZYg6cYyexx6rin1SJBWbLSezWVRIX21VVPj2mQUIwdLkb7v3u3r0pOh_coBG6IXBHAKr7AFDkJIOcZsBzXmXFGZoQRmlGoeDnaAKCpXHJ6CWahrABAFbyYoLMHPeutcbqFu_XqtPYbaPt7aeK1g1YdSvnbVz3eJ8q7nddtFmIXkW9OuBeN2s12NBj4zxeda5W3V9-613d6T5coQujuqCvf_oMvT8-vC2es-Xr08tivswaSkTMBNGqLgrdMEN4S2sjalUpJaqmZIZDzaniQnHFoa14y4CDKcocStG0UDFB6AzdjnvT4Y-dDlFu3M4P6aSkOeMiF4JAUvFR1XgXgtdGNjYeDafPbCcJyO9U5ZiqTKnKY6qySGj-D9162yt_OA3REQpJPKy0_3V1gvoCjqmOGw |
| CitedBy_id | crossref_primary_10_3390_electronics13245018 crossref_primary_10_3390_axioms13010033 crossref_primary_10_1155_2023_8160121 crossref_primary_10_3390_agronomy13122966 crossref_primary_10_1109_ACCESS_2024_3357993 crossref_primary_10_1007_s10668_024_05214_z crossref_primary_10_1007_s10462_023_10542_z crossref_primary_10_1007_s13042_024_02227_y crossref_primary_10_1080_10739149_2023_2286366 crossref_primary_10_1038_s41598_025_15674_6 crossref_primary_10_1007_s11831_023_09928_7 |
| Cites_doi | 10.1016/j.advengsoft.2016.01.008 10.1051/matecconf/201713900157 10.1016/j.enconman.2018.05.062 10.1007/s00521-020-04823-9 10.1016/j.engappai.2020.103731 10.3390/sym13020238 10.1016/j.knosys.2018.11.024 10.1016/j.cie.2020.107086 10.1109/ACCESS.2019.2933661 10.1007/s10462-021-10114-z 10.1016/j.knosys.2015.12.022 10.1007/978-981-10-3773-3_6 10.1109/ICCA.2019.8900003 10.1109/ACCESS.2021.3120079 10.1109/ACCESS.2020.2989445 10.1016/j.jcde.2019.02.002 10.1016/j.eswa.2019.113018 10.1109/NABIC.2009.5393690 10.1109/3477.484436 10.1016/j.asoc.2019.105954 10.1016/j.knosys.2021.108071 10.1016/j.swevo.2021.100844 10.1016/j.knosys.2021.107638 10.1007/s00366-022-01638-1 10.1007/s12065-021-00569-y 10.1016/j.enconman.2020.112595 10.1016/j.knosys.2015.07.006 10.1109/PEEIC47157.2019.8976653 10.3390/app10113667 10.1016/j.swevo.2019.03.004 10.1016/j.compbiomed.2022.105858 10.1002/int.22617 10.1016/j.engappai.2021.104558 10.1016/j.matcom.2022.01.018 10.1007/s44196-022-00092-7 10.1007/s00500-021-05983-z 10.1016/j.ins.2022.06.036 10.1109/ICMIC.2016.7804267 10.1007/s00500-021-06623-2 10.1016/j.advengsoft.2013.12.007 10.1007/978-3-319-93025-1_4 10.1080/25742558.2018.1483565 10.1016/j.egyai.2021.100047 10.1023/A:1008202821328 10.1016/j.apenergy.2021.117446 10.1109/TVT.2020.2973294 10.1016/j.advengsoft.2021.103009 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00521-023-08287-5 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1433-3058 |
| EndPage | 22352 |
| ExternalDocumentID | 10_1007_s00521_023_08287_5 |
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQGLB PT4 PT5 PUEGO QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~8M ~EX AAYXX AFFHD CITATION |
| ID | FETCH-LOGICAL-c319t-91eab55ec4f18d3bf9ba7aa97c64f80b83a89a8a80d78d4080f562069cd074913 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000923116500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-0643 |
| IngestDate | Wed Nov 05 04:11:56 EST 2025 Sat Nov 29 07:34:18 EST 2025 Tue Nov 18 21:32:20 EST 2025 Tue Sep 09 01:10:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Keywords | Elite reverse learning strategy Whale optimization algorithm Nonlinear convergence factor Multi-strategy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-91eab55ec4f18d3bf9ba7aa97c64f80b83a89a8a80d78d4080f562069cd074913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3248929910 |
| PQPubID | 2043988 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_3248929910 crossref_citationtrail_10_1007_s00521_023_08287_5 crossref_primary_10_1007_s00521_023_08287_5 springer_journals_10_1007_s00521_023_08287_5 |
| PublicationCentury | 2000 |
| PublicationDate | 20250900 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | Neural computing & applications |
| PublicationTitleAbbrev | Neural Comput & Applic |
| PublicationYear | 2025 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | X Yuan (8287_CR37) 2020; 10 H Chen (8287_CR24) 2020; 154 Y Li (8287_CR55) 2019; 7 G Hu (8287_CR5) 2022; 240 B Yang (8287_CR2) 2020; 208 S Li (8287_CR20) 2021; 157 8287_CR32 S Mirjalili (8287_CR1) 2014; 69 H Mohammed (8287_CR29) 2020; 32 8287_CR30 M Liu (8287_CR48) 2020; 87 G Hu (8287_CR10) 2022; 197 8287_CR31 8287_CR9 S Mirjalili (8287_CR53) 2016; 96 8287_CR6 8287_CR7 8287_CR39 Y Xue (8287_CR43) 2022; 608 S Mirjalili (8287_CR12) 2016; 95 B Dey (8287_CR34) 2022; 15 8287_CR44 8287_CR46 8287_CR40 8287_CR41 S Mirjalili (8287_CR8) 2015; 89 P Lu (8287_CR4) 2021; 301 G Sun (8287_CR38) 2022; 15 D Cui (8287_CR15) 2017; 37 Q Jin (8287_CR36) 2021; 13 G Dhiman (8287_CR52) 2019; 165 R Kushwah (8287_CR21) 2021; 25 8287_CR11 8287_CR51 8287_CR19 FS Gharehchopogh (8287_CR13) 2019; 48 Y Wu (8287_CR3) 2021; 62 S Chakraborty (8287_CR35) 2021; 153 8287_CR17 Q-V Pham (8287_CR16) 2020; 69 MH Nadimi-Shahraki (8287_CR27) 2022; 148 J Nasiri (8287_CR14) 2018; 5 R Storn (8287_CR42) 1997; 11 G Kaur (8287_CR18) 2018; 5 C Tang (8287_CR33) 2022; 26 G Hu (8287_CR45) 2022; 235 8287_CR22 MJ Mohiz (8287_CR50) 2021; 9 S Mohseni (8287_CR49) 2021; 3 J Zhang (8287_CR23) 2020; 8 EH Houssein (8287_CR47) 2020; 94 W Yang (8287_CR54) 2022; 108 8287_CR25 8287_CR26 8287_CR28 |
| References_xml | – volume: 95 start-page: 51 year: 2016 ident: 8287_CR12 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – ident: 8287_CR19 doi: 10.1051/matecconf/201713900157 – ident: 8287_CR39 – ident: 8287_CR22 doi: 10.1016/j.enconman.2018.05.062 – volume: 32 start-page: 14701 issue: 18 year: 2020 ident: 8287_CR29 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04823-9 – volume: 94 start-page: 103731 year: 2020 ident: 8287_CR47 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103731 – volume: 13 start-page: 238 issue: 2 year: 2021 ident: 8287_CR36 publication-title: Symmetry doi: 10.3390/sym13020238 – volume: 165 start-page: 169 year: 2019 ident: 8287_CR52 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.11.024 – volume: 153 year: 2021 ident: 8287_CR35 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.107086 – volume: 7 start-page: 110138 year: 2019 ident: 8287_CR55 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933661 – ident: 8287_CR26 doi: 10.1007/s10462-021-10114-z – ident: 8287_CR51 – volume: 96 start-page: 120 year: 2016 ident: 8287_CR53 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.12.022 – ident: 8287_CR28 doi: 10.1007/978-981-10-3773-3_6 – ident: 8287_CR41 doi: 10.1109/ICCA.2019.8900003 – volume: 9 start-page: 141778 year: 2021 ident: 8287_CR50 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3120079 – volume: 37 start-page: 72 issue: 3 year: 2017 ident: 8287_CR15 publication-title: Adv Sci Technol Water Resour – volume: 8 start-page: 77013 year: 2020 ident: 8287_CR23 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989445 – ident: 8287_CR31 doi: 10.1016/j.jcde.2019.02.002 – volume: 154 year: 2020 ident: 8287_CR24 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113018 – ident: 8287_CR46 doi: 10.1109/NABIC.2009.5393690 – ident: 8287_CR9 doi: 10.1109/3477.484436 – volume: 5 start-page: 275 issue: 3 year: 2018 ident: 8287_CR18 publication-title: J Comput Des Eng – volume: 87 start-page: 105954 year: 2020 ident: 8287_CR48 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105954 – ident: 8287_CR40 – volume: 240 start-page: 108071 year: 2022 ident: 8287_CR5 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.108071 – volume: 62 year: 2021 ident: 8287_CR3 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2021.100844 – volume: 235 year: 2022 ident: 8287_CR45 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107638 – ident: 8287_CR25 doi: 10.1007/s00366-022-01638-1 – volume: 15 start-page: 1587 issue: 3 year: 2022 ident: 8287_CR34 publication-title: Evol Intel doi: 10.1007/s12065-021-00569-y – volume: 208 start-page: 112595 year: 2020 ident: 8287_CR2 publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.112595 – volume: 89 start-page: 228 year: 2015 ident: 8287_CR8 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2015.07.006 – ident: 8287_CR17 doi: 10.1109/PEEIC47157.2019.8976653 – volume: 10 start-page: 3667 issue: 11 year: 2020 ident: 8287_CR37 publication-title: Appl Sci doi: 10.3390/app10113667 – volume: 48 start-page: 1 year: 2019 ident: 8287_CR13 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.03.004 – volume: 148 start-page: 105858 year: 2022 ident: 8287_CR27 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105858 – ident: 8287_CR44 doi: 10.1002/int.22617 – volume: 108 start-page: 104558 year: 2022 ident: 8287_CR54 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104558 – volume: 197 start-page: 207 year: 2022 ident: 8287_CR10 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2022.01.018 – volume: 15 start-page: 1 issue: 1 year: 2022 ident: 8287_CR38 publication-title: Int J Comput Intell Syst doi: 10.1007/s44196-022-00092-7 – volume: 25 start-page: 10275 issue: 15 year: 2021 ident: 8287_CR21 publication-title: Soft Comput doi: 10.1007/s00500-021-05983-z – volume: 608 start-page: 453 year: 2022 ident: 8287_CR43 publication-title: Inf Sci doi: 10.1016/j.ins.2022.06.036 – ident: 8287_CR32 doi: 10.1109/ICMIC.2016.7804267 – ident: 8287_CR30 – ident: 8287_CR11 – volume: 26 start-page: 2075 issue: 5 year: 2022 ident: 8287_CR33 publication-title: Soft Comput doi: 10.1007/s00500-021-06623-2 – volume: 69 start-page: 46 year: 2014 ident: 8287_CR1 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – ident: 8287_CR6 doi: 10.1007/978-3-319-93025-1_4 – ident: 8287_CR7 – volume: 5 start-page: 1483565 issue: 1 year: 2018 ident: 8287_CR14 publication-title: Cogent Math Stat doi: 10.1080/25742558.2018.1483565 – volume: 3 start-page: 100047 year: 2021 ident: 8287_CR49 publication-title: Energy AI doi: 10.1016/j.egyai.2021.100047 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 8287_CR42 publication-title: J Global Optim doi: 10.1023/A:1008202821328 – volume: 301 start-page: 117446 year: 2021 ident: 8287_CR4 publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117446 – volume: 69 start-page: 4285 issue: 4 year: 2020 ident: 8287_CR16 publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2020.2973294 – volume: 157 start-page: 103009 year: 2021 ident: 8287_CR20 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2021.103009 |
| SSID | ssj0004685 |
| Score | 2.4849284 |
| Snippet | Whale Optimization Algorithm (WOA) is an outstanding nature-inspired algorithm widely used to solve many complex engineering optimization problems. However,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 22339 |
| SubjectTerms | Algorithms Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Exploitation Foraging behavior Global optimization Heuristic Image Processing and Computer Vision Mutation Optimization algorithms Probability and Statistics in Computer Science S.I.: Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications Special Issue on Hybrid Approaches to Nature-inspired Optimization Algorithms and Their Applications Whales & whaling |
| Title | A modified whale optimization algorithm with multi-strategy mechanism for global optimization problems |
| URI | https://link.springer.com/article/10.1007/s00521-023-08287-5 https://www.proquest.com/docview/3248929910 |
| Volume | 37 |
| WOSCitedRecordID | wos000923116500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3058 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004685 issn: 0941-0643 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2iJQ0L3usEBUDqhCPqlt0sWMaqWlQU0D8e86uUygCJJhjW9HZ5_ts3_cdIaehpzwQChz9COTg-St0UibQryCTUnIXAiNWPbiO-302HPIbSwqr6mz3-knS7NQLspu-wcSjb8d3jEq7E66SNQx3TLvj7d3gExvSFOLEc4vO6Ql8S5X5fozlcPSBMb88i5po02v-7z-3yKZFl7Q7Xw7bZCWb7JBmXbmBWkfeJapLi1LmCvEnfR1hjKAlbh2F5WRSGD-W03w2Kqi-pqUm6dCp5jq2b7TINFs4rwqKgJfOFUWW-9sqNdUeeehd3l9cObbigiPQFWe482WQhmEmAuUx6aeKpxAD8FhEgWJuynxgHBgwV8ZMBog2FeInN-JCIhThnr9PGpNykh1oLriSsYrcNAKOIIVzAMaEEF4IEEchbxGvNnwirBy5rooxThZCysaQCRoyMYZMwhY5W_R5motx_Nq6Xc9nYh2zShA_MkSECJJa5Lyev4_PP492-LfmR2SjoysFm2y0NmnMps_ZMVkXL7O8mp6YBfsO5O7mAg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6-QC--xWrVHLzpwm73lRxFLBVrEa3F2zKbbGyh20q3Kv57J2m2WlFBz5uEZZLJfEnm-4aQ49BTHggFjn4EcvD8FTopE-hXkEkpuQuBEavuNONWiz088BtLCivKbPfySdLs1FOym77BxKNvzXeMSrsTzpPFACOWTuS7vet8YkOaQpx4btE5PYFvqTLfjzEbjj4w5pdnURNt6mv_-891smrRJT2bLIcNMpcNNslaWbmBWkfeIuqM5kPZU4g_6WsXYwQd4taRW04mhf7jcNQbd3Oqr2mpSTp0iomO7RvNM80W7hU5RcBLJ4ois_1tlZpim9zXL9rnDcdWXHAEuuIYd74M0jDMRKA8Jv1U8RRiAB6LKFDMTZkPjAMD5sqYyQDRpkL85EZcSIQi3PN3yMJgOMh2NRdcyVhFbhoBR5DCOQBjQggvBIijkFeIVxo-EVaOXFfF6CdTIWVjyAQNmRhDJmGFnEz7PE3EOH5tXS3nM7GOWSSIHxkiQgRJFXJazt_H559H2_tb8yOy3GhfN5PmZetqn6zUdNVgk5lWJQvj0XN2QJbEy7hXjA7N4n0HtRbo5g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7eEF-8i9OpefBNi-16Sx5FHYoyBHXsrZwmjRusm6xV8d97kra7iAric5NQkpyc7yTn-w4hx76jHBAKLP0IZGH85VsxE2hXkEgpuQ2eEatu34WtFut0-P0Ui99ku1dPkgWnQas0DfKzF6nOxsQ3fZuJYXDDtYxiu-XPk0VPFw3S8fpDe4oZaYpyYgyj83s8t6TNfD_GrGua4M0vT6TG8zTX_v_P62S1RJ30vNgmG2QuGWyStaqiAy0NfIuoc5oOZU8hLqXvXfQddIhHSlpyNSn0n4ejXt5Nqb6-pSYZ0coKfdsPmiaaRdzLUopAmBZKI7P9y-o12TZ5al49XlxbZSUGS6CJ5ngiJhD7fiI85TDpxorHEALwUASeYnbMXGAcGDBbhkx6iEIV4io74EIiROGOu0MWBsNBsqs54kqGKrDjADiCF84BGBNCOD5AGPi8RpxqESJRypTrahn9aCywbCYywomMzERGfo2cjPu8FCIdv7auV2sblQabRYgrGSJFBE81clqt5eTzz6Pt_a35EVm-v2xGdzet232y0tDFhE3CWp0s5KPX5IAsibe8l40OzT7-BOfZ8co |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+whale+optimization+algorithm+with+multi-strategy+mechanism+for+global+optimization+problems&rft.jtitle=Neural+computing+%26+applications&rft.au=Li%2C+Mingyuan&rft.au=Yu%2C+Xiaobing&rft.au=Fu%2C+Bingbing&rft.au=Wang%2C+Xuming&rft.date=2025-09-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=37&rft.issue=27&rft.spage=22339&rft.epage=22352&rft_id=info:doi/10.1007%2Fs00521-023-08287-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_023_08287_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |