A multiagent deep deterministic policy gradient-based distributed protection method for distribution network

Relay protection system plays an important role in the safe and stable operation of distribution network (DN), and the traditional model-based relay protection algorithms are difficult to solve the impact of the increasing uncertainty caused by distributed generation (DG) access on the security of D...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neural computing & applications Ročník 35; číslo 3; s. 2267 - 2278
Hlavní autoři: Zeng, Peng, Cui, Shijie, Song, Chunhe, Wang, Zhongfeng, Li, Guangye
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.01.2023
Springer Nature B.V
Témata:
ISSN:0941-0643, 1433-3058
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Relay protection system plays an important role in the safe and stable operation of distribution network (DN), and the traditional model-based relay protection algorithms are difficult to solve the impact of the increasing uncertainty caused by distributed generation (DG) access on the security of DN. To solve this issue, first, the relay protection characteristics of DN under DG access are analyzed; second, the DN relay protection problem is transformed into multiagent reinforcement learning (RL) problem; third, a DN distributed protection method based on multiagent deep deterministic policy gradient (MADDPG) is proposed. The advantage of this method is that there is no need to build a DN security model in advance; therefore, it can effectively overcome the impact of uncertainty caused by DG access on DN security . Extensive experiments show the effectiveness of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-022-06982-3