A multiagent deep deterministic policy gradient-based distributed protection method for distribution network

Relay protection system plays an important role in the safe and stable operation of distribution network (DN), and the traditional model-based relay protection algorithms are difficult to solve the impact of the increasing uncertainty caused by distributed generation (DG) access on the security of D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications Jg. 35; H. 3; S. 2267 - 2278
Hauptverfasser: Zeng, Peng, Cui, Shijie, Song, Chunhe, Wang, Zhongfeng, Li, Guangye
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.01.2023
Springer Nature B.V
Schlagworte:
ISSN:0941-0643, 1433-3058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Relay protection system plays an important role in the safe and stable operation of distribution network (DN), and the traditional model-based relay protection algorithms are difficult to solve the impact of the increasing uncertainty caused by distributed generation (DG) access on the security of DN. To solve this issue, first, the relay protection characteristics of DN under DG access are analyzed; second, the DN relay protection problem is transformed into multiagent reinforcement learning (RL) problem; third, a DN distributed protection method based on multiagent deep deterministic policy gradient (MADDPG) is proposed. The advantage of this method is that there is no need to build a DN security model in advance; therefore, it can effectively overcome the impact of uncertainty caused by DG access on DN security . Extensive experiments show the effectiveness of the proposed algorithm.
AbstractList Relay protection system plays an important role in the safe and stable operation of distribution network (DN), and the traditional model-based relay protection algorithms are difficult to solve the impact of the increasing uncertainty caused by distributed generation (DG) access on the security of DN. To solve this issue, first, the relay protection characteristics of DN under DG access are analyzed; second, the DN relay protection problem is transformed into multiagent reinforcement learning (RL) problem; third, a DN distributed protection method based on multiagent deep deterministic policy gradient (MADDPG) is proposed. The advantage of this method is that there is no need to build a DN security model in advance; therefore, it can effectively overcome the impact of uncertainty caused by DG access on DN security . Extensive experiments show the effectiveness of the proposed algorithm.
Author Wang, Zhongfeng
Cui, Shijie
Zeng, Peng
Song, Chunhe
Li, Guangye
Author_xml – sequence: 1
  givenname: Peng
  surname: Zeng
  fullname: Zeng, Peng
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences
– sequence: 2
  givenname: Shijie
  surname: Cui
  fullname: Cui, Shijie
  email: cuishijie@sia.cn
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Chunhe
  surname: Song
  fullname: Song, Chunhe
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences
– sequence: 4
  givenname: Zhongfeng
  surname: Wang
  fullname: Wang, Zhongfeng
  organization: State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences
– sequence: 5
  givenname: Guangye
  surname: Li
  fullname: Li, Guangye
  organization: State Grid Liaoning Electric Power Co., Ltd
BookMark eNp9kEtPAyEUhYnRxLb6B1xN4hrlMTDDsml8JU3c6JpQYCp1ZhiBiem_lzomTVx0A-Te8517OXNw3vveAnCD0R1GqLqPCDGCISIEIi5qAukZmOGSUkgRq8_BDIkyt3lJL8E8xh1CqOQ1m4F2WXRjm5za2j4VxtohH8mGzvUuJqeLwbdO74ttUMZlCdyoaE1hcjO4zZjyewg-WZ2c74vOpg9visaHo-JQ72369uHzClw0qo32-u9egPfHh7fVM1y_Pr2slmuoKRYJCmxJIwSrS1FVVDDFSMWFYQIzw8uKN5xhzXnJEGeGVU2ZRUoQThuruUKELsDt5JtX-xptTHLnx9DnkTI7sbpi2T2ryKTSwccYbCOH4DoV9hIjeUhVTqnKnKr8TVXSDNX_IO2SOnwyBeXa0yid0Jjn9FsbjludoH4A9RiO4Q
CitedBy_id crossref_primary_10_1007_s00521_024_10655_8
crossref_primary_10_1007_s13042_022_01759_5
crossref_primary_10_1007_s40747_024_01529_6
crossref_primary_10_1063_5_0147592
crossref_primary_10_1007_s00521_023_09067_x
crossref_primary_10_1109_ACCESS_2023_3335191
crossref_primary_10_3390_en16196867
crossref_primary_10_1007_s11042_024_19871_9
crossref_primary_10_1109_ACCESS_2023_3268283
crossref_primary_10_1109_TPWRD_2024_3447084
crossref_primary_10_1007_s00521_022_07706_3
Cites_doi 10.1109/TSG.2018.2857449
10.1109/TPWRS.2017.2760011
10.1016/j.trc.2018.12.018
10.1016/j.arcontrol.2019.09.008
10.1016/j.epsr.2018.07.008
10.1109/TSG.2018.2834219
10.1049/iet-rpg.2019.0793
10.1109/ACCESS.2021.3061919
10.1109/TSG.2019.2903756
10.1049/iet-gtd.2018.6230
10.1109/TSG.2018.2879572
10.1007/s00521-021-05795-0
10.1016/j.apenergy.2018.12.061
10.1109/TSG.2016.2629450
10.1109/TSMCB.2009.2026289
10.1002/etep.2532
10.11591/ijeecs.v14.i1.pp319-326
10.1016/j.ipm.2019.102096
10.1016/j.rser.2019.109524
10.3390/en13092149
10.1109/JSYST.2018.2855689
10.23919/JSEE.2020.000006
10.1109/TPWRS.2018.2842648
10.3390/en12030436
10.1109/SEST.2018.8495830
10.1109/ISGTEurope.2019.8905476
10.1109/TSG.2016.2601149
10.1109/EEEIC.2019.8783396
10.1109/ISGT-Asia.2018.8467835
10.1109/CDC40024.2019.9029268
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-022-06982-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 2278
ExternalDocumentID 10_1007_s00521_022_06982_3
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB1700103
– fundername: Science and Technology Project of State Grid Zhejiang Electric Power Company Ltd
  grantid: B311SX210003
– fundername: Science and Technology Project of State Grid Liaoning Electric Power Company Ltd
  grantid: 2021YF-39
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-91e2f99584977395a52769d5915d6476f651c6645065d57f4739a9263fec6a023
IEDL.DBID P5Z
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751715200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 01:37:09 EST 2025
Sat Nov 29 02:59:26 EST 2025
Tue Nov 18 22:07:01 EST 2025
Fri Feb 21 02:45:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Distributed generation
Power system protection
Distribution system
Reinforcement learning
Multiagent
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-91e2f99584977395a52769d5915d6476f651c6645065d57f4739a9263fec6a023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2765875995
PQPubID 2043988
PageCount 12
ParticipantIDs proquest_journals_2765875995
crossref_primary_10_1007_s00521_022_06982_3
crossref_citationtrail_10_1007_s00521_022_06982_3
springer_journals_10_1007_s00521_022_06982_3
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Zhang, Li, Yu, Yang (CR27) 2018; 9
Quan, Zhan, Zhang, Xiao, Peng (CR2) 2021; 49
Darabi, Bagheri, Gharehpetian (CR11) 2020; 14
Pereira, Pereira, Contreras, Mantovani (CR7) 2018; 33
Kiliçkiran, Şengör, Akdemir, Kekezoğlu, Erdinç, Paterakis (CR6) 2018; 164
Lu, Hong (CR24) 2019; 236
Dong (CR34) 2021; 45
CR15
CR14
Karupiah, Hussain, Musirin, Rahim (CR13) 2019; 14
CR35
Qi, Luo, Wu, Boriboonsomsin, Barth (CR20) 2019; 99
Xu, Sun, Nikovski, Kitamura, Mori, Hashimoto (CR23) 2019; 10
Lin, Sun, Tan, Liu, Guerrero, Vasquez (CR12) 2019; 14
CR31
CR30
Hussain, Nasir, Vasquez, Guerrero (CR5) 2020; 13
Remani, Jasmin, ImthiasAhamed (CR26) 2019; 13
Barra, Coury, Fernandes (CR3) 2020; 118
Usama (CR4) 2021; 9
Nguyen, Nguyen, Vamplew (CR21) 2021; 33
Zhou, Chen, Yang (CR1) 2018; 39
Wan, Li, He, Prokhorov (CR19) 2019; 10
Kim, Park, Park, Kang (CR33) 2010; 40
Mocanu, Mocanu, Nguyen, Liotta, Webber, Gibescu, Slootweg (CR18) 2019; 10
CR9
Zhang, Zhang, Qiu (CR17) 2020; 6
Saenz-Aguirre, Zulueta, Fernandez-Gamiz, Lozano, Lopez-Guede (CR28) 2019; 12
Glavic (CR16) 2019; 48
Ye, Luo (CR25) 2020; 57
Claessens, Vrancx, Ruelens (CR29) 2018; 9
Shabani, Karimi (CR10) 2018; 28
Zhang, Wang, Yue, Liu, Yao (CR32) 2020; 31
Atteya, El Zonkoly, Ashour (CR8) 2017; 97
Chen, Su (CR22) 2018; 10
Schneider (CR36) 2018; 33
J Zhang (6982_CR32) 2020; 31
B Zhou (6982_CR1) 2018; 39
A Darabi (6982_CR11) 2020; 14
6982_CR14
ZQ Wan (6982_CR19) 2019; 10
6982_CR15
B Kim (6982_CR33) 2010; 40
BJ Claessens (6982_CR29) 2018; 9
M Glavic (6982_CR16) 2019; 48
6982_CR35
T Chen (6982_CR22) 2018; 10
6982_CR30
6982_CR31
6982_CR9
RZ Lu (6982_CR24) 2019; 236
A Saenz-Aguirre (6982_CR28) 2019; 12
L Dong (6982_CR34) 2021; 45
XW Qi (6982_CR20) 2019; 99
Z Zhang (6982_CR17) 2020; 6
N Hussain (6982_CR5) 2020; 13
L Quan (6982_CR2) 2021; 49
HC Kiliçkiran (6982_CR6) 2018; 164
H Lin (6982_CR12) 2019; 14
S Karupiah (6982_CR13) 2019; 14
H Ye (6982_CR25) 2020; 57
PHA Barra (6982_CR3) 2020; 118
T Remani (6982_CR26) 2019; 13
AI Atteya (6982_CR8) 2017; 97
KP Schneider (6982_CR36) 2018; 33
E Mocanu (6982_CR18) 2019; 10
M Shabani (6982_CR10) 2018; 28
M Usama (6982_CR4) 2021; 9
HC Xu (6982_CR23) 2019; 10
XS Zhang (6982_CR27) 2018; 9
K Pereira (6982_CR7) 2018; 33
ND Nguyen (6982_CR21) 2021; 33
References_xml – volume: 10
  start-page: 4338
  issue: 4
  year: 2018
  end-page: 4348
  ident: CR22
  article-title: Indirect customer-to-customer energy trading with reinforcement learning
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2857449
– volume: 33
  start-page: 3181
  year: 2018
  end-page: 3188
  ident: CR36
  article-title: Analytic considerations and design basis for the IEEE distribution test feeders
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2760011
– volume: 97
  start-page: 463
  issue: 5
  year: 2017
  end-page: 469
  ident: CR8
  article-title: Adaptive protection scheme for optimally coordinated relay setting using modified PSO algorithm
  publication-title: J Power Technol
– volume: 99
  start-page: 67
  year: 2019
  end-page: 81
  ident: CR20
  article-title: Deep reinforcement learning enabled self-learning control for energy efficient driving
  publication-title: Trans Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2018.12.018
– volume: 48
  start-page: 22
  year: 2019
  end-page: 35
  ident: CR16
  article-title: (Deep) Reinforcement learning for electric power system control and related problems: a short review and perspectives
  publication-title: Annu Rev Control
  doi: 10.1016/j.arcontrol.2019.09.008
– volume: 164
  start-page: 89
  year: 2018
  end-page: 102
  ident: CR6
  article-title: Power system protection with digital overcurrent relays: a review of non-standard characteristics
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2018.07.008
– volume: 10
  start-page: 3698
  issue: 4
  year: 2019
  end-page: 3708
  ident: CR18
  article-title: On-line building energy optimization using deep reinforcement learning
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2834219
– ident: CR14
– volume: 14
  start-page: 1201
  issue: 7
  year: 2020
  end-page: 1209
  ident: CR11
  article-title: Highly sensitive micro-grid protection using overcurrent relays with a novel relay characteristic
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2019.0793
– ident: CR30
– volume: 9
  start-page: 35740
  year: 2021
  end-page: 35765
  ident: CR4
  article-title: A comprehensive review on protection strategies to mitigate the impact of renewable energy sources on interconnected distribution networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061919
– ident: CR35
– volume: 10
  start-page: 6366
  issue: 6
  year: 2019
  end-page: 6375
  ident: CR23
  article-title: Deep reinforcement learning for joint bidding and pricing of load serving entity
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2903756
– volume: 45
  start-page: 4729
  issue: 12
  year: 2021
  end-page: 4738
  ident: CR34
  article-title: Optimal dispatch of combined heat and power system based on multi-agent deep reinforcement learning
  publication-title: Power Syst Technol
– volume: 14
  start-page: 770
  issue: 7
  year: 2019
  end-page: 779
  ident: CR12
  article-title: Adaptive protection combined with machine learning for microgrids
  publication-title: IET Gener, Transm Distrib
  doi: 10.1049/iet-gtd.2018.6230
– volume: 10
  start-page: 5246
  issue: 5
  year: 2019
  end-page: 5257
  ident: CR19
  article-title: Model-free real-time EV charging scheduling based on deep reinforcement learning
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2879572
– volume: 39
  start-page: 97
  issue: 2
  year: 2018
  end-page: 105
  ident: CR1
  article-title: On the power system large-scale blackout in Brazil
  publication-title: Power Gen Technol
– volume: 9
  start-page: 2152
  issue: 3
  year: 2018
  end-page: 2165
  ident: CR27
  article-title: Consensus transfer Q-learning for decentralized generation command dispatch based on virtual generation tribe
  publication-title: IEEE Trans Smart Grid
– ident: CR15
– volume: 33
  start-page: 10335
  year: 2021
  end-page: 10349
  ident: CR21
  article-title: A prioritized objective actor-critic method for deep reinforcement learning
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-021-05795-0
– volume: 236
  start-page: 937
  year: 2019
  end-page: 949
  ident: CR24
  article-title: Incentive-based demand response for smart grid with reinforcement learning and deep neural network
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.061
– volume: 9
  start-page: 3259
  issue: 4
  year: 2018
  end-page: 3269
  ident: CR29
  article-title: Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2629450
– volume: 40
  start-page: 433
  issue: 2
  year: 2010
  end-page: 443
  ident: CR33
  article-title: Impedance learning for robotic contact tasks using natural actor-critic algorithm
  publication-title: IEEE Trans Syst, Man, Cybern Part B (Cybernetics)
  doi: 10.1109/TSMCB.2009.2026289
– volume: 28
  start-page: e2532
  issue: 5
  year: 2018
  ident: CR10
  article-title: A robust approach for coordination of directional overcurrent relays in active radial and meshed distribution networks considering uncertainties
  publication-title: Int Trans Electr Energy Syst
  doi: 10.1002/etep.2532
– volume: 14
  start-page: 319
  issue: 1
  year: 2019
  end-page: 326
  ident: CR13
  article-title: Prediction of overcurrent relay miscoordination time using urtificial neural network
  publication-title: IndonesianJ Electr Eng Comput Sci
  doi: 10.11591/ijeecs.v14.i1.pp319-326
– ident: CR31
– ident: CR9
– volume: 6
  start-page: 213
  issue: 1
  year: 2020
  end-page: 225
  ident: CR17
  article-title: Deep reinforcement learning for power system applications: an overview
  publication-title: CSEE J Power Energy Syst
– volume: 57
  start-page: 102096
  issue: 6
  year: 2020
  ident: CR25
  article-title: Deep ranking based cost-sensitive multi-label learning for distant supervision relation extraction
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2019.102096
– volume: 118
  start-page: 109524
  year: 2020
  ident: CR3
  article-title: A survey on adaptive protection of microgrids and distribution systems with distributed generators
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109524
– volume: 13
  start-page: 2149
  issue: 9
  year: 2020
  ident: CR5
  article-title: Recent developments and challenges on AC microgrids fault detection and protection systems–a review
  publication-title: Energies
  doi: 10.3390/en13092149
– volume: 13
  start-page: 3283
  issue: 3
  year: 2019
  end-page: 3294
  ident: CR26
  article-title: Residential load scheduling with renewable generation in the smart grid: a reinforcement learning approach
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2018.2855689
– volume: 31
  start-page: 279
  issue: 2
  year: 2020
  end-page: 289
  ident: CR32
  article-title: Multi-agent system application in accordance with game theory in bi-directional coordination network model
  publication-title: J Syst Eng Electron
  doi: 10.23919/JSEE.2020.000006
– volume: 33
  start-page: 7064
  issue: 6
  year: 2018
  end-page: 7075
  ident: CR7
  article-title: A multiobjective optimization technique to develop protection systems of distribution networks with distributed generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2842648
– volume: 12
  start-page: 436
  issue: 3
  year: 2019
  ident: CR28
  article-title: Artificial neural network based reinforcement learning for wind turbine yaw control
  publication-title: Energies
  doi: 10.3390/en12030436
– volume: 49
  start-page: 63
  issue: 8
  year: 2021
  end-page: 69
  ident: CR2
  article-title: Adaptive current main protection scheme of distribution network accessed with multiple distributed generations
  publication-title: Power Syst Protect Control
– volume: 40
  start-page: 433
  issue: 2
  year: 2010
  ident: 6982_CR33
  publication-title: IEEE Trans Syst, Man, Cybern Part B (Cybernetics)
  doi: 10.1109/TSMCB.2009.2026289
– volume: 236
  start-page: 937
  year: 2019
  ident: 6982_CR24
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.12.061
– volume: 45
  start-page: 4729
  issue: 12
  year: 2021
  ident: 6982_CR34
  publication-title: Power Syst Technol
– volume: 10
  start-page: 4338
  issue: 4
  year: 2018
  ident: 6982_CR22
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2857449
– volume: 97
  start-page: 463
  issue: 5
  year: 2017
  ident: 6982_CR8
  publication-title: J Power Technol
– volume: 10
  start-page: 3698
  issue: 4
  year: 2019
  ident: 6982_CR18
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2834219
– volume: 9
  start-page: 35740
  year: 2021
  ident: 6982_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061919
– volume: 10
  start-page: 5246
  issue: 5
  year: 2019
  ident: 6982_CR19
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2879572
– volume: 10
  start-page: 6366
  issue: 6
  year: 2019
  ident: 6982_CR23
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2903756
– volume: 118
  start-page: 109524
  year: 2020
  ident: 6982_CR3
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.109524
– volume: 14
  start-page: 1201
  issue: 7
  year: 2020
  ident: 6982_CR11
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2019.0793
– ident: 6982_CR30
  doi: 10.1109/SEST.2018.8495830
– volume: 9
  start-page: 3259
  issue: 4
  year: 2018
  ident: 6982_CR29
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2629450
– volume: 33
  start-page: 3181
  year: 2018
  ident: 6982_CR36
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2760011
– ident: 6982_CR15
  doi: 10.1109/ISGTEurope.2019.8905476
– volume: 48
  start-page: 22
  year: 2019
  ident: 6982_CR16
  publication-title: Annu Rev Control
  doi: 10.1016/j.arcontrol.2019.09.008
– volume: 57
  start-page: 102096
  issue: 6
  year: 2020
  ident: 6982_CR25
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2019.102096
– volume: 9
  start-page: 2152
  issue: 3
  year: 2018
  ident: 6982_CR27
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2601149
– volume: 12
  start-page: 436
  issue: 3
  year: 2019
  ident: 6982_CR28
  publication-title: Energies
  doi: 10.3390/en12030436
– volume: 39
  start-page: 97
  issue: 2
  year: 2018
  ident: 6982_CR1
  publication-title: Power Gen Technol
– volume: 99
  start-page: 67
  year: 2019
  ident: 6982_CR20
  publication-title: Trans Res Part C: Emerg Technol
  doi: 10.1016/j.trc.2018.12.018
– volume: 28
  start-page: e2532
  issue: 5
  year: 2018
  ident: 6982_CR10
  publication-title: Int Trans Electr Energy Syst
  doi: 10.1002/etep.2532
– ident: 6982_CR9
  doi: 10.1109/EEEIC.2019.8783396
– volume: 13
  start-page: 2149
  issue: 9
  year: 2020
  ident: 6982_CR5
  publication-title: Energies
  doi: 10.3390/en13092149
– volume: 14
  start-page: 319
  issue: 1
  year: 2019
  ident: 6982_CR13
  publication-title: IndonesianJ Electr Eng Comput Sci
  doi: 10.11591/ijeecs.v14.i1.pp319-326
– ident: 6982_CR14
  doi: 10.1109/ISGT-Asia.2018.8467835
– volume: 164
  start-page: 89
  year: 2018
  ident: 6982_CR6
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2018.07.008
– volume: 13
  start-page: 3283
  issue: 3
  year: 2019
  ident: 6982_CR26
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2018.2855689
– volume: 33
  start-page: 7064
  issue: 6
  year: 2018
  ident: 6982_CR7
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2842648
– ident: 6982_CR31
  doi: 10.1109/CDC40024.2019.9029268
– volume: 14
  start-page: 770
  issue: 7
  year: 2019
  ident: 6982_CR12
  publication-title: IET Gener, Transm Distrib
  doi: 10.1049/iet-gtd.2018.6230
– volume: 31
  start-page: 279
  issue: 2
  year: 2020
  ident: 6982_CR32
  publication-title: J Syst Eng Electron
  doi: 10.23919/JSEE.2020.000006
– volume: 33
  start-page: 10335
  year: 2021
  ident: 6982_CR21
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-021-05795-0
– volume: 6
  start-page: 213
  issue: 1
  year: 2020
  ident: 6982_CR17
  publication-title: CSEE J Power Energy Syst
– ident: 6982_CR35
– volume: 49
  start-page: 63
  issue: 8
  year: 2021
  ident: 6982_CR2
  publication-title: Power Syst Protect Control
SSID ssj0004685
Score 2.3570929
Snippet Relay protection system plays an important role in the safe and stable operation of distribution network (DN), and the traditional model-based relay protection...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2267
SubjectTerms Algorithms
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Distributed generation
Electricity distribution
Image Processing and Computer Vision
Laboratories
Machine learning
Methods
Multiagent systems
Neural networks
Optimization
Power supply
Probability and Statistics in Computer Science
Relay
Robotics
S.I.: Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIOT 2021)
Security
Special Issue on 2021 Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIOT 2021)
Uncertainty
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509eDF9Ymrq-TgTQu2TdLOcRHF0yL4YG8lm6QiLHXZrf5-J2m6q6KCXkppp6GZvGaSme8DODVGYY5JFpU45hF37g7y0kYmVmgxMbTEa082kQ2H-WiEtyEpbN5Gu7dHkn6mXiS7uR1Mcn2ptAuJZBemq7AmHNqM89HvHj9kQ3oiTvJbXEwPT0OqzPdlfF6Oljbml2NRv9pcd__3n1uwGaxLNmi6wzas2GoHui1zAwsDeRcmA-YjCZVLrGLG2ildmrgYD9zMph4umD3NfERYHbnFzjDjUHYdQRbdB4AHalbWsFAzMn-XEu551YSY78HD9dX95U0UeBciTQOypvnPJiUimSZkHKYolEgyiUZgLIzkmSyliLWUXJD5YkRWchJSmMi0tFoqMgL2oVO9VPYAWKpio5E7WmvJxzIfqyzXDlYtzqUqs7gHcav-QgdQcseNMSkWcMpenQWps_DqLNIenC2-mTaQHL9K99tWLcLwnBdUH0GOGtWxB-dtKy5f_1za4d_Ej2DD0dM3WzZ96NSzV3sM6_qtfp7PTny3fQeLreWx
  priority: 102
  providerName: Springer Nature
Title A multiagent deep deterministic policy gradient-based distributed protection method for distribution network
URI https://link.springer.com/article/10.1007/s00521-022-06982-3
https://www.proquest.com/docview/2765875995
Volume 35
WOSCitedRecordID wos000751715200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZWDhjSgveWCDCJI4TjyhgkBMVcVLFUvk2g5CqtrQFn4_d47TABIsLFHkOJats33n8933ARwbo2QmozQo5IAHnI47khc2MKGSVkYGVbx2ZBNpt5v1-7LnHW5TH1ZZ74luozZjTT7ysyhFXZkSPNZF-RYQaxTdrnoKjUVoEUoCUTf0kucveZGOkhNPMBTdw2OfNONS58gfiqXYt3Mh0cqMvyumxtr8cUHq9M7N2n97vA6r3uJknWqKbMCCHW3CWs3mwPzi3oJhh7noQkXJVsxYW-KjipVxYM6sdBDC7GXiosRmASlAwwwh7xJpFr570AcUNauYqRmaxE0NKh9VYefb8Hhz_XB1G3guhkDjIp3hnmijAoeScTQYY5moBIcnTSLDxAieikIkoRaCJ2jSmCQtOFZSMhJxYbVQaBjswNJoPLK7wGIVGi05UV0LPhDZQKWZJqi1MBOqSMM2hLUgcu2ByokvY5jPIZad8HIUXu6El8dtOJn_U1YwHX_WPqgllvslO80bcbXhtJZ58_n31vb-bm0fVoiivnLbHMDSbPJuD2FZf8xep5MjaF1ed3t3R27i4vPu_ukT2DPyyQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PS8MwFH7IJujF-ROnU3PQkxZtm6bNQWT-GBN1iCjsVrMkFWFsdZuK_5R_oy9p61TQ2w5eSmnTQNMv772k730fwLZSgkfcC52Ed6hDzXKH00Q7yhVcc0-hi5dWbCJstaJ2m19PwXtRC2PSKgubaA216kuzR77vhegrQ0OPdZQ-OUY1yvxdLSQ0Mlhc6LdXXLIND89P8fvueF7j7Pak6eSqAo5EuI1wdmsvwW4iiqGPzwMRYNdcBdwNFKMhS1jgSsZogM5ZBWFCsZHgHvMTLZmwRAdo8svUpywoQfn4rHV986US04qA4prJ5BNRPy_TscV6ZgcWr-JoHDCOca3_3RWO49sfv2Stp2tU_tsYzcNcHlOTejYJFmBK9xahUuhVkNx8LUG3Tmz-pDDlZERpneIhywaydNUktSTJ5GFg8-BGjnHxiijDLWxkwfA8p7VAMJNMe5tg0D9uYa73ssT6ZbibyDuvQKnX7-lVIL5wleTUiHkz2mFRR4SRNGRybsREErpVcIsPH8ucit0ognTjTxJpC5YYwRJbsMR-FXY_n0kzIpI_W9cKhMS5URrGY3hUYa_A2Pj2772t_d3bFsw0b68u48vz1sU6zHo4FtkmVQ1Ko8Gz3oBp-TJ6HA428-lC4H7S6PsAhOZJEw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90ivji_MTp1Dz4pmW2TdPmcahDUcbwi72FrElEGHVs1b_fS9puU1QQX0ppr6HJNb275O73AzhWSvKEB7Fn-IB61IY7nBrtKV9yzQOFJj51ZBNxt5v0-7w3V8Xvst2rLcmipsGiNGV5a6RMa1r4ZlczMQzGls8YRx8xXIQlipGMTeq6u3-aq4x0pJwYw9j8HhqWZTPft_HZNM38zS9bpM7ydOr_f-d1WCu9TtIuPpMNWNDZJtQrRgdSTvAtGLaJyzCUtuCKKK1HeCjyZRygMxk5GGHyPHaZYrlnjaAiyqLvWuIsPC-BH1DdpGCnJugWzyTs9axIPd-Gx87lw_mVV_IxeClO1Bz_izownKPLgk5jyCMZBTHjKuJ-pBiNmWGRnzJGI3RrVBQbikKSByw0OmUSnYMdqGWvmd4FEkpfpZxaumtGBywZyDhJLdyanzBpYr8BfqUKkZZg5ZYzYyimMMtuOAUOp3DDKcIGnEyfGRVQHb9KNysNi3LaTgT2J8IADvvYgNNKo7PbP7e29zfxI1jpXXTE7XX3Zh9WLYN9sarThFo-ftMHsJy-5y-T8aH7mj8AvePxeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multiagent+deep+deterministic+policy+gradient-based+distributed+protection+method+for+distribution+network&rft.jtitle=Neural+computing+%26+applications&rft.au=Zeng%2C+Peng&rft.au=Cui%2C+Shijie&rft.au=Song%2C+Chunhe&rft.au=Wang%2C+Zhongfeng&rft.date=2023-01-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=35&rft.issue=3&rft.spage=2267&rft.epage=2278&rft_id=info:doi/10.1007%2Fs00521-022-06982-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_022_06982_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon