A new hybrid simulated annealing-based genetic programming technique to predict the ultimate bearing capacity of piles

The aim of this research is to develop three soft-computing techniques, including adaptive-neuro-fuzzy inference system (ANFIS), genetic-programming (GP) tree-based, and simulated annealing–GP or SA–GP for prediction of the ultimate-bearing capacity ( Q ult ) of the pile. The collected database cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers Jg. 37; H. 3; S. 2111 - 2127
Hauptverfasser: Yong, Weixun, Zhou, Jian, Jahed Armaghani, Danial, Tahir, M. M., Tarinejad, Reza, Pham, Binh Thai, Van Huynh, Van
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Springer London 01.07.2021
Springer Nature B.V
Schlagworte:
ISSN:0177-0667, 1435-5663
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The aim of this research is to develop three soft-computing techniques, including adaptive-neuro-fuzzy inference system (ANFIS), genetic-programming (GP) tree-based, and simulated annealing–GP or SA–GP for prediction of the ultimate-bearing capacity ( Q ult ) of the pile. The collected database consists of 50 driven piles properties with pile length, pile cross-sectional area, hammer weight, pile set and drop height as model inputs and Q ult as model output. Many GP and SA–GP models were constructed for estimating pile bearing capacity and the best models were selected using some performance indices. For comparison purposes, the ANFIS model was also applied to predict Q ult of the pile. It was observed that the developed models are able to provide higher prediction performance in the design of Q ult of the pile. Concerning the coefficient of correlation, and mean square error, the SA–GP model had the best values for both training and testing data sets, followed by the GP and ANFIS models, respectively. It implies that the neural-based predictive machine learning techniques like ANFIS are not as powerful as evolutionary predictive machine learning techniques like GP and SA–GP in estimating the ultimate-bearing capacity of the pile. Besides, GP and SA–GP can propose a formula for Q ult prediction which is a privilege of these models over the ANFIS predictive model. The sensitivity analysis also showed that the Q ult of pile looks to be more affected by pile cross-sectional area and pile set.
AbstractList The aim of this research is to develop three soft-computing techniques, including adaptive-neuro-fuzzy inference system (ANFIS), genetic-programming (GP) tree-based, and simulated annealing–GP or SA–GP for prediction of the ultimate-bearing capacity (Qult) of the pile. The collected database consists of 50 driven piles properties with pile length, pile cross-sectional area, hammer weight, pile set and drop height as model inputs and Qult as model output. Many GP and SA–GP models were constructed for estimating pile bearing capacity and the best models were selected using some performance indices. For comparison purposes, the ANFIS model was also applied to predict Qult of the pile. It was observed that the developed models are able to provide higher prediction performance in the design of Qult of the pile. Concerning the coefficient of correlation, and mean square error, the SA–GP model had the best values for both training and testing data sets, followed by the GP and ANFIS models, respectively. It implies that the neural-based predictive machine learning techniques like ANFIS are not as powerful as evolutionary predictive machine learning techniques like GP and SA–GP in estimating the ultimate-bearing capacity of the pile. Besides, GP and SA–GP can propose a formula for Qult prediction which is a privilege of these models over the ANFIS predictive model. The sensitivity analysis also showed that the Qult of pile looks to be more affected by pile cross-sectional area and pile set.
The aim of this research is to develop three soft-computing techniques, including adaptive-neuro-fuzzy inference system (ANFIS), genetic-programming (GP) tree-based, and simulated annealing–GP or SA–GP for prediction of the ultimate-bearing capacity ( Q ult ) of the pile. The collected database consists of 50 driven piles properties with pile length, pile cross-sectional area, hammer weight, pile set and drop height as model inputs and Q ult as model output. Many GP and SA–GP models were constructed for estimating pile bearing capacity and the best models were selected using some performance indices. For comparison purposes, the ANFIS model was also applied to predict Q ult of the pile. It was observed that the developed models are able to provide higher prediction performance in the design of Q ult of the pile. Concerning the coefficient of correlation, and mean square error, the SA–GP model had the best values for both training and testing data sets, followed by the GP and ANFIS models, respectively. It implies that the neural-based predictive machine learning techniques like ANFIS are not as powerful as evolutionary predictive machine learning techniques like GP and SA–GP in estimating the ultimate-bearing capacity of the pile. Besides, GP and SA–GP can propose a formula for Q ult prediction which is a privilege of these models over the ANFIS predictive model. The sensitivity analysis also showed that the Q ult of pile looks to be more affected by pile cross-sectional area and pile set.
Author Zhou, Jian
Jahed Armaghani, Danial
Tarinejad, Reza
Pham, Binh Thai
Van Huynh, Van
Tahir, M. M.
Yong, Weixun
Author_xml – sequence: 1
  givenname: Weixun
  surname: Yong
  fullname: Yong, Weixun
  organization: School of Resources and Safety Engineering, Central South University, Kunming Prospecting Design Institute Of China Nonferrous Metals Industry Co., Ltd
– sequence: 2
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 3
  givenname: Danial
  surname: Jahed Armaghani
  fullname: Jahed Armaghani, Danial
  email: danialjahedarmaghani@tdtu.edu.vn
  organization: Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University
– sequence: 4
  givenname: M. M.
  surname: Tahir
  fullname: Tahir, M. M.
  organization: Faculty of Civil Engineering, UTM Construction Research Centre, Institute for Smart, Infrastructure and Innovative Construction (ISIIC), Universiti Teknologi Malaysia
– sequence: 5
  givenname: Reza
  surname: Tarinejad
  fullname: Tarinejad, Reza
  organization: Faculty of Civil Engineering, University of Tabriz
– sequence: 6
  givenname: Binh Thai
  surname: Pham
  fullname: Pham, Binh Thai
  organization: Institute of Research and Development, Duy Tan University
– sequence: 7
  givenname: Van
  surname: Van Huynh
  fullname: Van Huynh, Van
  organization: Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University
BookMark eNp9kMtKAzEUhoMoWC8v4CrgOprMZHJZingDwY2uQyZzpo1MM2OSIn2bPkufzNQKggtXIeT_Tv7znaDDMAZA6ILRK0apvE6U1kIQyjShVNcV0QdoxnjdkEaI-hDNKJOSUCHkMTpJ6Z1SVpfgDK1vcIBPvFi30XfbTfLL1WAzdNiGAHbwYU5am8p9DgGyd9vNFMd5tMtlecIZ3CL4jxXgPOIpQuddxnkBeDVkvyxztpsWbNxFnZ2s83mNxx5PfoB0ho56OyQ4_zlP0dv93evtI3l-eXi6vXkmrmY6E00dk71SjlvNK-esaLnr217yqhKN6hiovuWScaF7TZVjHe-07LhslBIa2voUXe7nluKlacrmfVzFUL40VcOVLhq0KCm1T7k4phShN6WszX4MOVo_GEbNTrTZizZFtPkWbXRBqz_oFMvycf0_VO-hNO30QPxt9Q_1Bejnlvs
CitedBy_id crossref_primary_10_1007_s40098_024_01036_y
crossref_primary_10_1155_2020_8855069
crossref_primary_10_1016_j_engappai_2023_106568
crossref_primary_10_3390_app12178468
crossref_primary_10_1016_j_apor_2024_104149
crossref_primary_10_1007_s41939_024_00415_5
crossref_primary_10_1007_s10462_021_10036_w
crossref_primary_10_1007_s12145_024_01482_5
crossref_primary_10_1007_s40030_024_00852_y
crossref_primary_10_1016_j_asoc_2023_110808
crossref_primary_10_1007_s40515_023_00291_5
crossref_primary_10_1007_s10462_024_11099_1
crossref_primary_10_1038_s41598_024_83784_8
crossref_primary_10_1007_s12517_022_09557_7
crossref_primary_10_1007_s10462_022_10140_5
crossref_primary_10_1016_j_istruc_2024_106039
crossref_primary_10_1155_2021_5586913
crossref_primary_10_1007_s00603_024_04094_z
crossref_primary_10_1007_s40515_024_00411_9
crossref_primary_10_1007_s11440_023_01830_7
crossref_primary_10_1155_2022_7183700
crossref_primary_10_1007_s00521_021_06321_y
crossref_primary_10_1061__ASCE_CO_1943_7862_0002327
crossref_primary_10_3390_su152216070
crossref_primary_10_1007_s10661_021_09269_7
crossref_primary_10_1007_s11053_020_09773_6
crossref_primary_10_1016_j_measurement_2024_114563
crossref_primary_10_3846_jcem_2024_21886
crossref_primary_10_1007_s00366_020_00997_x
crossref_primary_10_1155_2023_8272566
crossref_primary_10_3390_app10051691
crossref_primary_10_3390_buildings14082273
crossref_primary_10_1007_s40098_024_01083_5
crossref_primary_10_1016_j_trgeo_2024_101288
crossref_primary_10_1108_JM2_12_2024_0410
crossref_primary_10_4018_IJCAC_2022010101
crossref_primary_10_1007_s11053_020_09714_3
crossref_primary_10_1007_s41939_023_00184_7
crossref_primary_10_1007_s10462_024_10772_9
crossref_primary_10_3390_buildings13051242
crossref_primary_10_1007_s41062_021_00631_9
crossref_primary_10_1016_j_oceaneng_2023_114724
crossref_primary_10_1016_j_trgeo_2022_100756
crossref_primary_10_1007_s10163_023_01785_7
crossref_primary_10_1007_s42461_021_00455_2
crossref_primary_10_3390_app10072364
crossref_primary_10_1016_j_engstruct_2022_114769
crossref_primary_10_1016_j_ijrmms_2021_104856
crossref_primary_10_3390_ma13051072
crossref_primary_10_3390_app10041486
crossref_primary_10_3390_app112210908
crossref_primary_10_1007_s40808_025_02540_7
crossref_primary_10_1038_s41598_025_13616_w
Cites_doi 10.1016/j.tust.2016.12.009
10.1016/j.measurement.2019.06.007
10.1007/s10064-016-0872-8
10.1007/s11053-019-09519-z
10.1007/s00521-016-2598-8
10.1007/s10064-019-01626-8
10.1007/s12665-015-4305-y
10.1007/s00366-015-0404-3
10.1007/s00366-019-00770-9
10.1007/s12517-015-1908-2
10.1007/s00366-019-00752-x
10.1007/s10706-017-0254-4
10.1007/s00366-019-00849-3
10.1007/s00500-018-3253-3
10.1016/j.ijrmms.2009.03.004
10.1007/s00603-016-1015-z
10.1007/s00366-018-00700-1
10.1007/s00500-018-3517-y
10.1007/s10706-017-0356-z
10.1007/s10064-017-1116-2
10.3390/app9061042
10.1155/2016/5104907
10.1016/j.ijmst.2013.08.018
10.1007/s40815-017-0324-z
10.1177/1475921718797949
10.1617/s11527-013-0039-z
10.1016/j.compgeo.2007.03.001
10.1007/s11069-015-1842-3
10.1016/j.ins.2011.07.026
10.1061/(ASCE)MT.1943-5533.0000154
10.1126/science.220.4598.671
10.1016/j.enggeo.2014.11.016
10.1016/j.cie.2014.05.010
10.1016/j.ijrmms.2013.08.004
10.1016/j.ijrmms.2014.03.003
10.3390/app9020243
10.1109/ACCESS.2019.2927632
10.1016/j.asoc.2010.06.009
10.1007/s12665-016-5524-6
10.1007/s00521-017-3007-7
10.1016/j.ssci.2019.05.046
10.1007/s00366-017-0542-x
10.1007/s10064-014-0687-4
10.1007/s00366-016-0455-0
10.1080/0305215X.2018.1439943
10.1080/19648189.2016.1246693
10.1016/j.measurement.2015.07.019
10.1016/j.eswa.2007.06.006
10.3390/app9142788
10.1016/j.acme.2013.02.007
10.1016/j.cageo.2010.09.002
10.1016/j.tafmec.2007.04.008
10.1080/15376494.2018.1430874
10.1016/j.ssci.2011.08.065
10.1061/(ASCE)0733-9410(1996)122:6(492)
10.1016/j.advengsoft.2018.04.004
10.1002/nag.1076
10.1016/j.nima.2005.05.069
10.1016/j.enconman.2013.06.031
10.1016/j.measurement.2014.08.007
10.1016/j.tust.2018.07.023
10.1061/(ASCE)CF.1943-5509.0001292
10.1016/j.ijrmms.2007.02.003
10.1016/j.eswa.2010.10.021
10.1177/0040517509355344
10.1002/qsar.200710043
10.1007/978-3-319-20883-1
10.1007/s00366-017-0545-7
10.1007/s10706-018-0445-7
10.1016/j.acme.2016.11.005
10.3390/app9214650
10.1016/j.prostr.2019.08.123
10.1061/(ASCE)CP.1943-5487.0000553
10.1109/21.256541
10.1108/02644401111118132
10.1016/j.compgeo.2010.11.008
10.1016/j.measurement.2018.04.057
10.1061/(ASCE)1090-0241(1998)124:12(1177)
10.1016/S1093-3263(01)00123-1
10.1016/j.enggeo.2018.03.023
10.3390/app9183715
10.1007/978-1-84628-663-6_3
10.1007/s00521-015-2078-6
10.3390/s17061344
10.1016/j.prostr.2019.08.122
10.1063/1.1699114
10.1016/j.tust.2018.08.029
10.1016/j.jhydrol.2015.08.025
10.1016/j.measurement.2019.04.081
10.1007/s00521-015-2072-z
10.1007/s00521-015-1890-3
10.1016/j.ijrmms.2016.07.028
10.1016/j.eswa.2008.11.019
10.1061/(ASCE)1090-0241(2008)134:7(1021)
10.2140/jomms.2010.5.735
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s00366-019-00932-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1435-5663
EndPage 2127
ExternalDocumentID 10_1007_s00366_019_00932_9
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c319t-90c17f88c4a942cca6b4cfbf7422658d1e8fb471469f908c1d4d97d4758869eb3
IEDL.DBID RSV
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000574106600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-0667
IngestDate Tue Dec 02 15:54:26 EST 2025
Sat Nov 29 06:25:17 EST 2025
Tue Nov 18 22:08:07 EST 2025
Fri Feb 21 02:48:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Hybrid SA–GP
GP tree-based
ANFIS
Pile bearing capacity
Predictive model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-90c17f88c4a942cca6b4cfbf7422658d1e8fb471469f908c1d4d97d4758869eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2548900996
PQPubID 326339
PageCount 17
ParticipantIDs proquest_journals_2548900996
crossref_citationtrail_10_1007_s00366_019_00932_9
crossref_primary_10_1007_s00366_019_00932_9
springer_journals_10_1007_s00366_019_00932_9
PublicationCentury 2000
PublicationDate 20210700
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 7
  year: 2021
  text: 20210700
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationSubtitle An International Journal for Simulation-Based Engineering
PublicationTitle Engineering with computers
PublicationTitleAbbrev Engineering with Computers
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Apostolopoulou, Armaghani, Bakolas (CR12) 2019; 17
Momeni, Nazir, Armaghani, Maizir (CR73) 2014; 57
Bunawan, Momeni, Armaghani, Rashid (CR5) 2018; 124
Gandomi, Alavi, Mirzahosseini, Nejad (CR88) 2010; 23
Gandomi, Yun, Alavi (CR112) 2013; 46
Kirkpatrick, Gelatt, Vecchi (CR93) 1983; 220
Gandomi, Alavi, Shadmehri, Sahab (CR94) 2013; 13
Emamgolizadeh, Bateni, Shahsavani (CR61) 2015; 529
Chen, Sarir, Bui (CR78) 2019
Cavaleri, Asteris, Psyllaki (CR11) 2019; 9
Goh (CR49) 1996; 122
Koopialipoor, Armaghani, Hedayat (CR28) 2018
Asteris, Tsaris, Cavaleri (CR10) 2016; 2016
CR48
Tonnizam Mohamad, Jahed Armaghani, Ghoroqi (CR57) 2017
Hasni, Alavi, Jiao, Lajnef (CR102) 2017; 17
Chen, Shi, Shariati (CR4) 2019; 30
Asteris, Roussis, Douvika (CR8) 2017; 17
Momeni, Armaghani, Fatemi, Nazir (CR53) 2018; 34
Smith (CR104) 1986
Hossein Alavi, Hossein Gandomi (CR100) 2011; 28
Harandizadeh, Toufigh, Toufigh (CR80) 2018
Zhou, Li, Mitri (CR38) 2018; 81
Khandelwal, Singh (CR22) 2013; 46
CR59
Asteris, Nozhati, Nikoo (CR32) 2018; 26
Zhou, Yang (CR20) 2007; 48
Asteris, Apostolopoulou, Skentou, Moropoulou (CR37) 2019; 24
Shahin, Jaksa (CR72) 2009
Chen, Hu, Huang, Fang (CR46) 2019; 18
Khandelwal, Armaghani, Faradonbeh (CR26) 2016; 75
Yang, Lan, Lu, Zhou (CR21) 2015; 185
Asadi, Eftekhari, Bagheripour (CR65) 2011; 11
Golbraikh, Tropsha (CR107) 2002; 20
Hajihassani, Jahed Armaghani, Kalatehjari (CR60) 2017
Yang, Zeng, Lan, Zhou (CR16) 2014; 69
Gandomi, Alavi, Ryan (CR91) 2015
Wang, Shi, Zhou, Qiu (CR41) 2018; 50
Smith (CR82) 1960; 86
Koza, Koza (CR56) 1992
Fallahpour, Wong, Olugu, Musa (CR105) 2017; 19
Asteris, Kolovos (CR33) 2019; 31
Asteris, Moropoulou, Skentou (CR36) 2019; 9
Koopialipoor, Murlidhar, Hedayat (CR43) 2019
Khandelwal, Armaghani, Faradonbeh (CR23) 2017; 33
Goble, Rausche, Moses (CR83) 1970
Gandomi, Alavi (CR86) 2011; 181
Asteris, Armaghani, Hatzigeorgiou (CR35) 2019; 24
Shao, Armaghani, Bejarbaneh (CR47) 2019
Zhou, Li, Mitri (CR29) 2015; 79
Baykasoğlu, Güllü, Çanakçı, Özbakır (CR63) 2008; 35
Zhou, Li, Shi (CR27) 2012; 50
Faradonbeh, Armaghani, Monjezi, Mohamad (CR69) 2016; 88
Mostafavi, Mostafavi, Jaafari, Hosseinpour (CR99) 2013; 74
Zhou, Li, Yang (CR31) 2019; 118
Admuthe, Apte (CR98) 2010; 80
Zhou, Koopialipoor, Murlidhar (CR30) 2019
Link, Yager, Anjos (CR85) 2005; 551
Hajihassani, Abdullah, Asteris, Armaghani (CR9) 2019; 9
Shirani Faradonbeh, Monjezi, Jahed Armaghani (CR68) 2016
Moayedi, Armaghani (CR74) 2018; 34
Ekici, Aksoy (CR96) 2011; 38
Armaghani, Mohamad, Momeni, Narayanasamy (CR51) 2015; 74
Salgado (CR81) 2008
Padmini, Ilamparuthi, Sudheer (CR52) 2008; 35
Mohamad, Li, Murlidhar (CR58) 2019
Kiefa (CR71) 1998; 124
CR3
Harandizadeh, Armaghani, Khari (CR76) 2019
Fellenius (CR84) 1984; 1
Mayerhof (CR1) 1976; 102
Jang (CR95) 1993; 23
Khari, Dehghanbandaki, Motamedi, Armaghani (CR6) 2019; 146
Beiki, Majdi, Givshad (CR64) 2013; 63
CR87
Armaghani, Mahdiyar, Hasanipanah (CR25) 2016; 49
Zhou, Bejarbaneh, Armaghani, Tahir (CR90) 2019
Fallahpour, Olugu, Musa (CR103) 2016; 27
Xu, Gordan, Koopialipoor (CR45) 2019; 7
Fallahpour, Olugu, Musa (CR106) 2017; 28
Metropolis, Rosenbluth, Rosenbluth (CR92) 1953; 21
Li, Dai, Hou, Lei (CR62) 2007; 44
Zhou, Li, Mitri (CR42) 2016; 30
Jahed Armaghani, Hajihassani, Monjezi (CR54) 2015; 8
Kurugodu, Bordoloi, Hong (CR101) 2018; 122
Hasanipanah, Monjezi, Shahnazar (CR7) 2015; 75
Roy, Roy (CR109) 2008; 27
Xu, Zhou, Asteris (CR14) 2019; 9
Mollahasani, Alavi, Gandomi (CR108) 2011; 38
Gandomi, Alavi, Arjmandi (CR89) 2010; 5
Armaghani, Hatzigeorgiou, Karamani (CR15) 2019; 17
Pal, Deswal (CR50) 2008; 134
Momeni (CR2) 2012
Jahed Armaghani, Hasanipanah, Mahdiyar (CR39) 2018; 29
Samui (CR77) 2012; 36
Khandelwal, Singh (CR44) 2009; 46
Asteris, Kolovos, Douvika, Roinos (CR34) 2016; 20
Armaghani, Bin, Faizi, Rashid (CR75) 2017; 28
Zandi, Shariati, Marto (CR24) 2018; 28
Yang, Li, Jie, Zhang (CR19) 2018; 81
Ravandi, Rahmannejad, Monfared, Ravandi (CR67) 2013; 23
Faradonbeh, Jahed Armaghani, Monjezi (CR70) 2016
Chen, Asteris, Jahed Armaghani (CR13) 2019; 9
Karakus (CR66) 2011; 37
Ghorbani, Sadrossadat, Bazaz, Oskooei (CR79) 2018; 36
Yang, Xing, Wang, Li (CR18) 2018; 239
Armaghani, Mohamad, Narayanasamy (CR111) 2017; 63
Mousavi, Mostafavi, Hosseinpour (CR110) 2014; 74
Koopialipoor, Jahed Armaghani, Haghighi, Ghaleini (CR17) 2019; 78
Armaghani, Momeni, Abad, Khandelwal (CR55) 2015; 74
Zhou, Li, Wang (CR40) 2019; 33
Wu, Hsu, Chen (CR97) 2009; 36
DJ Armaghani (932_CR15) 2019; 17
RS Faradonbeh (932_CR69) 2016; 88
GG Mayerhof (932_CR1) 1976; 102
932_CR3
PP Roy (932_CR109) 2008; 27
R Shirani Faradonbeh (932_CR68) 2016
M Karakus (932_CR66) 2011; 37
SM Mousavi (932_CR110) 2014; 74
AH Gandomi (932_CR89) 2010; 5
J-S Jang (932_CR95) 1993; 23
M Khandelwal (932_CR22) 2013; 46
RS Faradonbeh (932_CR70) 2016
HQ Yang (932_CR18) 2018; 239
J Zhou (932_CR42) 2016; 30
932_CR48
AH Gandomi (932_CR112) 2013; 46
J Zhou (932_CR38) 2018; 81
PG Asteris (932_CR10) 2016; 2016
E Momeni (932_CR73) 2014; 57
B Chen (932_CR46) 2019; 18
M Pal (932_CR50) 2008; 134
L Cavaleri (932_CR11) 2019; 9
HQ Yang (932_CR16) 2014; 69
J-D Wu (932_CR97) 2009; 36
B Ghorbani (932_CR79) 2018; 36
R Salgado (932_CR81) 2008
H Hasni (932_CR102) 2017; 17
HV Kurugodu (932_CR101) 2018; 122
M Koopialipoor (932_CR28) 2018
AH Gandomi (932_CR88) 2010; 23
P Asteris (932_CR8) 2017; 17
AR Bunawan (932_CR5) 2018; 124
J Zhou (932_CR90) 2019
DJ Armaghani (932_CR25) 2016; 49
M Khandelwal (932_CR26) 2016; 75
E Tonnizam Mohamad (932_CR57) 2017
DJ Armaghani (932_CR51) 2015; 74
A Fallahpour (932_CR105) 2017; 19
M Apostolopoulou (932_CR12) 2019; 17
D Jahed Armaghani (932_CR54) 2015; 8
A Baykasoğlu (932_CR63) 2008; 35
A Fallahpour (932_CR106) 2017; 28
M Hasanipanah (932_CR7) 2015; 75
S Kirkpatrick (932_CR93) 1983; 220
N Metropolis (932_CR92) 1953; 21
M Koopialipoor (932_CR17) 2019; 78
M Hajihassani (932_CR9) 2019; 9
M Hajihassani (932_CR60) 2017
H Chen (932_CR13) 2019; 9
HQ Yang (932_CR21) 2015; 185
LS Admuthe (932_CR98) 2010; 80
PG Asteris (932_CR35) 2019; 24
H Harandizadeh (932_CR76) 2019
932_CR59
A Mollahasani (932_CR108) 2011; 38
M Khandelwal (932_CR44) 2009; 46
M Beiki (932_CR64) 2013; 63
AH Gandomi (932_CR86) 2011; 181
MAA Kiefa (932_CR71) 1998; 124
W Chen (932_CR78) 2019
GN Smith (932_CR104) 1986
EG Ravandi (932_CR67) 2013; 23
BB Ekici (932_CR96) 2011; 38
JM Link (932_CR85) 2005; 551
J Zhou (932_CR31) 2019; 118
932_CR87
Z Shao (932_CR47) 2019
H Moayedi (932_CR74) 2018; 34
MA Shahin (932_CR72) 2009
A Hossein Alavi (932_CR100) 2011; 28
H Xu (932_CR14) 2019; 9
M Khari (932_CR6) 2019; 146
C Chen (932_CR4) 2019; 30
XP Zhou (932_CR20) 2007; 48
J Zhou (932_CR29) 2015; 79
A Fallahpour (932_CR103) 2016; 27
M Khandelwal (932_CR23) 2017; 33
P Samui (932_CR77) 2012; 36
H Harandizadeh (932_CR80) 2018
J Zhou (932_CR40) 2019; 33
S Emamgolizadeh (932_CR61) 2015; 529
AH Gandomi (932_CR94) 2013; 13
W-X Li (932_CR62) 2007; 44
PG Asteris (932_CR33) 2019; 31
Y Zandi (932_CR24) 2018; 28
PG Asteris (932_CR37) 2019; 24
DJ Armaghani (932_CR55) 2015; 74
C Xu (932_CR45) 2019; 7
HQ Yang (932_CR19) 2018; 81
D Jahed Armaghani (932_CR39) 2018; 29
PG Asteris (932_CR36) 2019; 9
ET Mohamad (932_CR58) 2019
AH Gandomi (932_CR91) 2015
GG Goble (932_CR83) 1970
E Momeni (932_CR2) 2012
M Asadi (932_CR65) 2011; 11
DJ Armaghani (932_CR75) 2017; 28
EAL Smith (932_CR82) 1960; 86
JR Koza (932_CR56) 1992
ES Mostafavi (932_CR99) 2013; 74
DJ Armaghani (932_CR111) 2017; 63
PG Asteris (932_CR34) 2016; 20
M Wang (932_CR41) 2018; 50
E Momeni (932_CR53) 2018; 34
ATC Goh (932_CR49) 1996; 122
J Zhou (932_CR27) 2012; 50
A Golbraikh (932_CR107) 2002; 20
J Zhou (932_CR30) 2019
BH Fellenius (932_CR84) 1984; 1
PG Asteris (932_CR32) 2018; 26
D Padmini (932_CR52) 2008; 35
M Koopialipoor (932_CR43) 2019
References_xml – volume: 17
  start-page: 924
  year: 2019
  end-page: 933
  ident: CR15
  article-title: Soft computing-based techniques for concrete beams shear strength
  publication-title: Procedia Struct Integr
– volume: 74
  start-page: 120
  year: 2014
  end-page: 128
  ident: CR110
  article-title: Gene expression programming as a basis for new generation of electricity demand prediction models
  publication-title: Comput Ind Eng
– volume: 118
  start-page: 505
  year: 2019
  end-page: 518
  ident: CR31
  article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories
  publication-title: Saf Sci
– volume: 63
  start-page: 29
  year: 2017
  end-page: 43
  ident: CR111
  article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2016.12.009
– volume: 24
  start-page: 469
  year: 2019
  end-page: 488
  ident: CR35
  article-title: Predicting the shear strength of reinforced concrete beams using artificial neural networks
  publication-title: Comput Concr
– year: 2019
  ident: CR47
  article-title: Estimating the friction angle of black shale core specimens with hybrid-ANN approaches
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.007
– volume: 134
  start-page: 1021
  year: 2008
  end-page: 1024
  ident: CR50
  article-title: Modeling pile capacity using support vector machines and generalized regression neural network
  publication-title: J Geotech Geoenviron Eng
– volume: 23
  start-page: 733
  year: 2013
  end-page: 737
  ident: CR67
  article-title: Application of numerical modeling and genetic programming to estimate rock mass modulus of deformation
  publication-title: Int J Min Sci Technol
– volume: 20
  start-page: 269
  year: 2002
  end-page: 276
  ident: CR107
  article-title: Beware of q2!
  publication-title: J Mol Graph Model
– year: 2016
  ident: CR70
  article-title: Development of a new model for predicting flyrock distance in quarry blasting: a genetic programming technique
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-016-0872-8
– volume: 9
  start-page: 243
  year: 2019
  ident: CR36
  article-title: Stochastic vulnerability assessment of masonry structures: concepts, modeling and restoration aspects
  publication-title: Appl Sci
– volume: 102
  start-page: 11962
  year: 1976
  ident: CR1
  article-title: Bearing capacity and settlemtn of pile foundations
  publication-title: J Geotech Geoenviron Eng
– year: 2015
  ident: CR91
  publication-title: Handbook of genetic programming applications
– volume: 239
  start-page: 119
  year: 2018
  end-page: 125
  ident: CR18
  article-title: Model test on the entrainment phenomenon and energy conversion mechanism of flow-like landslides
  publication-title: Eng Geol
– year: 2019
  ident: CR30
  article-title: Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09519-z
– volume: 146
  start-page: 110
  year: 2019
  end-page: 118
  ident: CR6
  article-title: Computational estimation of lateral pile displacement in layered sand using experimental data
  publication-title: Measurement
– volume: 44
  start-page: 954
  year: 2007
  end-page: 961
  ident: CR62
  article-title: Fuzzy genetic programming method for analysis of ground movements due to underground mining
  publication-title: Int J Rock Mech Min Sci
– volume: 81
  start-page: 112
  year: 2018
  end-page: 120
  ident: CR19
  article-title: Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass
  publication-title: Tunn Undergr Sp Technol
– volume: 30
  start-page: 457
  year: 2019
  end-page: 469
  ident: CR4
  article-title: Behavior of steel storage pallet racking connection—a review
  publication-title: Steel Compos Struct
– volume: 28
  start-page: 439
  year: 2018
  end-page: 447
  ident: CR24
  article-title: Computational investigation of the comparative analysis of cylindrical barns subjected to earthquake
  publication-title: Steel Compos Struct
– volume: 30
  start-page: 4016003
  year: 2016
  ident: CR42
  article-title: Classification of rockburst in underground projects: comparison of ten supervised learning methods
  publication-title: J Comput Civ Eng
– volume: 11
  start-page: 1932
  year: 2011
  end-page: 1937
  ident: CR65
  article-title: Evaluating the strength of intact rocks through genetic programming
  publication-title: Appl Soft Comput
– volume: 36
  start-page: 1434
  year: 2012
  end-page: 1439
  ident: CR77
  article-title: Determination of ultimate capacity of driven piles in cohesionless soil: a multivariate adaptive regression spline approach
  publication-title: Int J Numer Anal Methods Geomech
– volume: 185
  start-page: 20
  year: 2015
  end-page: 32
  ident: CR21
  article-title: A quasi-three-dimensional spring-deformable-block model for runout analysis of rapid landslide motion
  publication-title: Eng Geol
– volume: 69
  start-page: 59
  year: 2014
  end-page: 66
  ident: CR16
  article-title: Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading
  publication-title: Int J Rock Mech Min Sci
– volume: 28
  start-page: 391
  year: 2017
  end-page: 405
  ident: CR75
  article-title: Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles
  publication-title: Neural Comput Appl
– volume: 33
  start-page: 4019024
  year: 2019
  ident: CR40
  article-title: Feasibility of stochastic gradient boosting approach for evaluating seismic liquefaction potential based on SPT and CPT case histories
  publication-title: J Perform Constr Facil
– volume: 29
  start-page: 619
  year: 2018
  end-page: 629
  ident: CR39
  article-title: Airblast prediction through a hybrid genetic algorithm-ANN model
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2598-8
– year: 1992
  ident: CR56
  publication-title: Genetic programming: on the programming of computers by means of natural selection
– year: 2019
  ident: CR90
  article-title: Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-019-01626-8
– volume: 74
  start-page: 2845
  year: 2015
  end-page: 2860
  ident: CR55
  article-title: Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4305-y
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: CR95
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans Syst Man Cybern
– volume: 20
  start-page: s102
  year: 2016
  end-page: s122
  ident: CR34
  article-title: Prediction of self-compacting concrete strength using artificial neural networks
  publication-title: Eur J Environ Civ Eng
– volume: 50
  start-page: 629
  issue: 4
  year: 2012
  end-page: 644
  ident: CR27
  article-title: Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines
  publication-title: Safe Sci
– volume: 122
  start-page: 492
  year: 1996
  end-page: 495
  ident: CR49
  article-title: Pile driving records reanalyzed using neural networks
  publication-title: J Geotech Eng
– year: 2016
  ident: CR68
  article-title: Genetic programing and non-linear multiple regression techniques to predict backbreak in blasting operation
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0404-3
– year: 2019
  ident: CR58
  article-title: The effects of ABC, ICA, and PSO optimization techniques on prediction of ripping production
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00770-9
– volume: 35
  start-page: 111
  year: 2008
  end-page: 123
  ident: CR63
  article-title: Prediction of compressive and tensile strength of limestone via genetic programming
  publication-title: Expert Syst Appl
– volume: 86
  start-page: 35
  year: 1960
  end-page: 61
  ident: CR82
  article-title: Pile driving analysis by the wave equation
  publication-title: J Soil Mech ASCE
– year: 2012
  ident: CR2
  publication-title: Axial bearing capacity of piles and modelling of distribution of skin resistance with depth
– volume: 88
  start-page: 254
  year: 2016
  end-page: 264
  ident: CR69
  article-title: Genetic programming and gene expression programming for flyrock assessment due to mine blasting
  publication-title: Int J Rock Mech Min Sci
– volume: 9
  start-page: 3715
  year: 2019
  ident: CR14
  article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate
  publication-title: Appl Sci
– volume: 8
  start-page: 9647
  year: 2015
  end-page: 9665
  ident: CR54
  article-title: Application of two intelligent systems in predicting environmental impacts of quarry blasting
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-1908-2
– volume: 80
  start-page: 841
  year: 2010
  end-page: 846
  ident: CR98
  article-title: Adaptive neuro-fuzzy inference system with subtractive clustering: a model to predict fiber and yarn relationship
  publication-title: Text Res J
– volume: 27
  start-page: 707
  year: 2016
  end-page: 725
  ident: CR103
  article-title: An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach
  publication-title: Neural Comput Appl
– volume: 27
  start-page: 302
  year: 2008
  end-page: 313
  ident: CR109
  article-title: On some aspects of variable selection for partial least squares regression models
  publication-title: QSAR Comb Sci
– ident: CR3
– volume: 9
  start-page: 2788
  year: 2019
  ident: CR11
  article-title: Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks
  publication-title: Appl Sci
– volume: 31
  start-page: 409
  year: 2019
  end-page: 424
  ident: CR33
  article-title: Self-compacting concrete strength prediction using surrogate models
  publication-title: Neural Comput Appl
– volume: 2016
  start-page: 20
  year: 2016
  ident: CR10
  article-title: Prediction of the fundamental period of infilled RC frame structures using artificial neural networks
  publication-title: Comput Intell Neurosci
– volume: 74
  start-page: 1301
  year: 2015
  end-page: 1319
  ident: CR51
  article-title: An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite
  publication-title: Bull Eng Geol Environ
– volume: 181
  start-page: 5227
  year: 2011
  end-page: 5239
  ident: CR86
  article-title: Multi-stage genetic programming: a new strategy to nonlinear system modeling
  publication-title: Inf Sci (Ny)
– volume: 81
  start-page: 632
  year: 2018
  end-page: 659
  ident: CR38
  article-title: Evaluation method of rockburst: state-of-the-art literature review
  publication-title: Tunn Undergr Sp Technol
– volume: 19
  start-page: 1041
  year: 2017
  end-page: 1057
  ident: CR105
  article-title: A predictive integrated genetic-based model for supplier evaluation and selection
  publication-title: Int J Fuzzy Syst
– volume: 36
  start-page: 7809
  year: 2009
  end-page: 7817
  ident: CR97
  article-title: An expert system of price forecasting for used cars using adaptive neuro-fuzzy inference
  publication-title: Expert Syst Appl
– volume: 122
  start-page: 50
  year: 2018
  end-page: 61
  ident: CR101
  article-title: Genetic programming for soil-fiber composite assessment
  publication-title: Adv Eng Softw
– volume: 17
  start-page: 914
  year: 2019
  end-page: 923
  ident: CR12
  article-title: Compressive strength of natural hydraulic lime mortars using soft computing techniques
  publication-title: Procedia Struct Integr
– volume: 46
  start-page: 1214
  year: 2009
  end-page: 1222
  ident: CR44
  article-title: Prediction of blast-induced ground vibration using artificial neural network
  publication-title: Int J Rock Mech Min Sci
– volume: 38
  start-page: 5352
  year: 2011
  end-page: 5358
  ident: CR96
  article-title: Prediction of building energy needs in early stage of design by using ANFIS
  publication-title: Expert Syst Appl
– start-page: 26
  year: 2009
  end-page: 33
  ident: CR72
  article-title: Intelligent computing for predicting axial capacity of drilled shafts
  publication-title: International foundation congress and equipment expo (IFCEE’09)
– ident: CR87
– volume: 36
  start-page: 2057
  year: 2018
  end-page: 2076
  ident: CR79
  article-title: Numerical ANFIS-based formulation for prediction of the ultimate axial load bearing capacity of piles through CPT data
  publication-title: Geotech Geol Eng
– volume: 57
  start-page: 122
  year: 2014
  end-page: 131
  ident: CR73
  article-title: Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
  publication-title: Measurement
– volume: 37
  start-page: 1318
  year: 2011
  end-page: 1323
  ident: CR66
  article-title: Function identification for the intrinsic strength and elastic properties of granitic rocks via genetic programming (GP)
  publication-title: Comput Geosci
– volume: 28
  start-page: 242
  year: 2011
  end-page: 274
  ident: CR100
  article-title: A robust data mining approach for formulation of geotechnical engineering systems
  publication-title: Eng Comput
– year: 2019
  ident: CR78
  article-title: Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00752-x
– year: 1970
  ident: CR83
  publication-title: Dynamics studies on the bearing capacity of piles: final report to the Ohio Department of Highways
– volume: 529
  start-page: 1590
  year: 2015
  end-page: 1600
  ident: CR61
  article-title: Estimation of soil cation exchange capacity using genetic expression programming (GEP) and multivariate adaptive regression splines (MARS)
  publication-title: J Hydrol
– volume: 551
  start-page: 504
  year: 2005
  end-page: 527
  ident: CR85
  article-title: Application of genetic programming to high energy physics event selection
  publication-title: Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip
– volume: 33
  start-page: 45
  year: 2017
  end-page: 53
  ident: CR23
  article-title: Classification and regression tree technique in estimating peak particle velocity caused by blasting
  publication-title: Eng Comput
– year: 2017
  ident: CR57
  article-title: Ripping production prediction in different weathering zones according to field data
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-017-0254-4
– year: 1986
  ident: CR104
  publication-title: Probability and statistics in civil engineering
– volume: 28
  start-page: 499
  year: 2017
  end-page: 504
  ident: CR106
  article-title: A hybrid model for supplier selection: integration of AHP and multi expression programming (MEP)
  publication-title: Neural Comput Appl
– volume: 75
  start-page: 739
  year: 2016
  ident: CR26
  article-title: A new model based on gene expression programming to estimate air flow in a single rock joint
  publication-title: Environ Earth Sci
– volume: 17
  start-page: 609
  year: 2017
  end-page: 622
  ident: CR102
  article-title: Detection of fatigue cracking in steel bridge girders: a support vector machine approach
  publication-title: Arch Civ Mech Eng
– volume: 18
  start-page: 1355
  year: 2019
  end-page: 1371
  ident: CR46
  article-title: A spatio-temporal clustering and diagnosis method for concrete arch dams using deformation monitoring data
  publication-title: Struct Heal Monit
– volume: 5
  start-page: 735
  year: 2010
  end-page: 753
  ident: CR89
  article-title: Genetic programming and orthogonal least squares: a hybrid approach to modeling the compressive strength of CFRP-confined concrete cylinders
  publication-title: J Mech Mater Struct
– volume: 48
  start-page: 1
  year: 2007
  end-page: 20
  ident: CR20
  article-title: Micromechanical modeling of dynamic compressive responses of mesoscopic heterogenous brittle rock
  publication-title: Theor Appl Fract Mech
– volume: 124
  start-page: 1177
  year: 1998
  end-page: 1185
  ident: CR71
  article-title: General regression neural networks for driven piles in cohesionless soils
  publication-title: J Geotech Geoenviron Eng
– volume: 34
  start-page: 319
  year: 2018
  end-page: 327
  ident: CR53
  article-title: Prediction of bearing capacity of thin-walled foundation: a simulation approach
  publication-title: Eng Comput
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: CR92
  article-title: Equation of state calculations by fast computing machines
  publication-title: J Chem Phys
– year: 2019
  ident: CR76
  article-title: A new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00849-3
– year: 2018
  ident: CR28
  article-title: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3253-3
– volume: 50
  start-page: 2177
  year: 2018
  end-page: 2191
  ident: CR41
  article-title: Multi-planar detection optimization algorithm for the interval charging structure of large-diameter longhole blasting design based on rock fragmentation aspects
  publication-title: Eng Optim
– year: 2008
  ident: CR81
  publication-title: The engineering of foundations
– volume: 13
  start-page: 354
  year: 2013
  end-page: 369
  ident: CR94
  article-title: An empirical model for shear capacity of RC deep beams using genetic-simulated annealing
  publication-title: Arch Civ Mech Eng
– volume: 220
  start-page: 671
  issue: 80-
  year: 1983
  end-page: 680
  ident: CR93
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 74
  start-page: 548
  year: 2013
  end-page: 555
  ident: CR99
  article-title: A novel machine learning approach for estimation of electricity demand: an empirical evidence from Thailand
  publication-title: Energy Convers Manag
– volume: 1
  start-page: 49
  year: 1984
  end-page: 55
  ident: CR84
  article-title: Wave equation analysis and dynamic monitoring
  publication-title: Deep Found J
– volume: 63
  start-page: 159
  year: 2013
  end-page: 169
  ident: CR64
  article-title: Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks
  publication-title: Int J Rock Mech Min Sci
– volume: 46
  start-page: 1214
  year: 2013
  end-page: 1222
  ident: CR22
  article-title: Prediction of blast-induced ground vibration using artificial neural network
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.03.004
– volume: 49
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR25
  article-title: Risk assessment and prediction of flyrock distance by combined multiple regression analysis and monte carlo simulation of quarry blasting
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1015-z
– volume: 38
  start-page: 281
  year: 2011
  end-page: 286
  ident: CR108
  article-title: Empirical modeling of plate load test moduli of soil via gene expression programming
  publication-title: Comput Geotech
– volume: 9
  start-page: 1042
  year: 2019
  ident: CR13
  article-title: Assessing dynamic conditions of the retaining wall: developing two hybrid intelligent models
  publication-title: Appl Sci
– volume: 26
  start-page: 1146
  issue: 13
  year: 2018
  end-page: 1153
  ident: CR32
  article-title: Krill herd algorithm-based neural network in structural seismic reliability evaluation
  publication-title: Mech Adv Mater Struct
– ident: CR48
– volume: 23
  start-page: 248
  year: 2010
  end-page: 263
  ident: CR88
  article-title: Nonlinear genetic-based models for prediction of flow number of asphalt mixtures
  publication-title: J Mater Civ Eng
– volume: 46
  start-page: 2109
  year: 2013
  end-page: 2119
  ident: CR112
  article-title: An evolutionary approach for modeling of shear strength of RC deep beams
  publication-title: Mater Struct
– volume: 79
  start-page: 291
  issue: 1
  year: 2015
  end-page: 316
  ident: CR29
  article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction
  publication-title: Natural Hazards
– year: 2019
  ident: CR43
  article-title: The use of new intelligent techniques in designing retaining walls
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-00700-1
– volume: 17
  start-page: 1344
  year: 2017
  ident: CR8
  article-title: Feed-forward neural network prediction of the mechanical properties of sandcrete materials
  publication-title: Sensors
– volume: 35
  start-page: 33
  year: 2008
  end-page: 46
  ident: CR52
  article-title: Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models
  publication-title: Comput Geotech
– volume: 7
  start-page: 94692
  year: 2019
  end-page: 94700
  ident: CR45
  article-title: Improving performance of retaining walls under dynamic conditions developing an optimized ANN based on ant colony optimization technique
  publication-title: IEEE Access
– volume: 24
  start-page: 329
  year: 2019
  end-page: 345
  ident: CR37
  article-title: Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars
  publication-title: Comput Concr
– year: 2018
  ident: CR80
  article-title: Application of improved ANFIS approaches to estimate bearing capacity of piles
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3517-y
– year: 2017
  ident: CR60
  article-title: Applications of particle swarm optimization in geotechnical engineering: a comprehensive review
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-017-0356-z
– volume: 78
  start-page: 981
  year: 2019
  end-page: 990
  ident: CR17
  article-title: A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-017-1116-2
– ident: CR59
– volume: 9
  start-page: 4650
  year: 2019
  ident: CR9
  article-title: A gene expression programming model for predicting tunnel convergence
  publication-title: Appl Sci
– volume: 34
  start-page: 347
  year: 2018
  end-page: 356
  ident: CR74
  article-title: Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil
  publication-title: Eng Comput
– volume: 124
  start-page: 529
  year: 2018
  end-page: 538
  ident: CR5
  article-title: Experimental and intelligent techniques to estimate bearing capacity of cohesive soft soils reinforced with soil-cement columns
  publication-title: Measurement
– volume: 75
  start-page: 289
  year: 2015
  end-page: 297
  ident: CR7
  article-title: Feasibility of indirect determination of blast induced ground vibration based on support vector machine
  publication-title: Measurement
– volume: 9
  start-page: 1042
  year: 2019
  ident: 932_CR13
  publication-title: Appl Sci
  doi: 10.3390/app9061042
– volume-title: Probability and statistics in civil engineering
  year: 1986
  ident: 932_CR104
– volume: 2016
  start-page: 20
  year: 2016
  ident: 932_CR10
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2016/5104907
– volume: 23
  start-page: 733
  year: 2013
  ident: 932_CR67
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2013.08.018
– volume: 19
  start-page: 1041
  year: 2017
  ident: 932_CR105
  publication-title: Int J Fuzzy Syst
  doi: 10.1007/s40815-017-0324-z
– volume: 18
  start-page: 1355
  year: 2019
  ident: 932_CR46
  publication-title: Struct Heal Monit
  doi: 10.1177/1475921718797949
– volume: 46
  start-page: 2109
  year: 2013
  ident: 932_CR112
  publication-title: Mater Struct
  doi: 10.1617/s11527-013-0039-z
– volume: 35
  start-page: 33
  year: 2008
  ident: 932_CR52
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2007.03.001
– volume: 79
  start-page: 291
  issue: 1
  year: 2015
  ident: 932_CR29
  publication-title: Natural Hazards
  doi: 10.1007/s11069-015-1842-3
– volume: 181
  start-page: 5227
  year: 2011
  ident: 932_CR86
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2011.07.026
– volume: 102
  start-page: 11962
  year: 1976
  ident: 932_CR1
  publication-title: J Geotech Geoenviron Eng
– volume: 23
  start-page: 248
  year: 2010
  ident: 932_CR88
  publication-title: J Mater Civ Eng
  doi: 10.1061/(ASCE)MT.1943-5533.0000154
– volume: 220
  start-page: 671
  issue: 80-
  year: 1983
  ident: 932_CR93
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 185
  start-page: 20
  year: 2015
  ident: 932_CR21
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2014.11.016
– volume: 74
  start-page: 120
  year: 2014
  ident: 932_CR110
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2014.05.010
– volume: 63
  start-page: 159
  year: 2013
  ident: 932_CR64
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2013.08.004
– volume: 69
  start-page: 59
  year: 2014
  ident: 932_CR16
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.03.003
– volume: 9
  start-page: 243
  year: 2019
  ident: 932_CR36
  publication-title: Appl Sci
  doi: 10.3390/app9020243
– volume-title: Dynamics studies on the bearing capacity of piles: final report to the Ohio Department of Highways
  year: 1970
  ident: 932_CR83
– ident: 932_CR3
– volume: 7
  start-page: 94692
  year: 2019
  ident: 932_CR45
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927632
– year: 2019
  ident: 932_CR90
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-019-01626-8
– year: 2019
  ident: 932_CR30
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09519-z
– year: 2019
  ident: 932_CR78
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00752-x
– volume: 11
  start-page: 1932
  year: 2011
  ident: 932_CR65
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.06.009
– volume: 75
  start-page: 739
  year: 2016
  ident: 932_CR26
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-016-5524-6
– volume: 46
  start-page: 1214
  year: 2013
  ident: 932_CR22
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.03.004
– volume: 31
  start-page: 409
  year: 2019
  ident: 932_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3007-7
– volume: 118
  start-page: 505
  year: 2019
  ident: 932_CR31
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2019.05.046
– volume-title: Genetic programming: on the programming of computers by means of natural selection
  year: 1992
  ident: 932_CR56
– volume: 34
  start-page: 319
  year: 2018
  ident: 932_CR53
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0542-x
– volume: 74
  start-page: 1301
  year: 2015
  ident: 932_CR51
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-014-0687-4
– volume: 33
  start-page: 45
  year: 2017
  ident: 932_CR23
  publication-title: Eng Comput
  doi: 10.1007/s00366-016-0455-0
– year: 2019
  ident: 932_CR76
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00849-3
– volume: 50
  start-page: 2177
  year: 2018
  ident: 932_CR41
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2018.1439943
– volume: 8
  start-page: 9647
  year: 2015
  ident: 932_CR54
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-1908-2
– year: 2016
  ident: 932_CR70
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-016-0872-8
– ident: 932_CR48
– volume: 20
  start-page: s102
  year: 2016
  ident: 932_CR34
  publication-title: Eur J Environ Civ Eng
  doi: 10.1080/19648189.2016.1246693
– volume: 75
  start-page: 289
  year: 2015
  ident: 932_CR7
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.07.019
– year: 2018
  ident: 932_CR28
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3253-3
– year: 2019
  ident: 932_CR58
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00770-9
– volume: 24
  start-page: 469
  year: 2019
  ident: 932_CR35
  publication-title: Comput Concr
– volume: 35
  start-page: 111
  year: 2008
  ident: 932_CR63
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.06.006
– volume: 86
  start-page: 35
  year: 1960
  ident: 932_CR82
  publication-title: J Soil Mech ASCE
– ident: 932_CR59
– volume: 9
  start-page: 2788
  year: 2019
  ident: 932_CR11
  publication-title: Appl Sci
  doi: 10.3390/app9142788
– volume: 13
  start-page: 354
  year: 2013
  ident: 932_CR94
  publication-title: Arch Civ Mech Eng
  doi: 10.1016/j.acme.2013.02.007
– volume-title: The engineering of foundations
  year: 2008
  ident: 932_CR81
– volume: 49
  start-page: 1
  year: 2016
  ident: 932_CR25
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1015-z
– volume: 46
  start-page: 1214
  year: 2009
  ident: 932_CR44
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.03.004
– volume: 37
  start-page: 1318
  year: 2011
  ident: 932_CR66
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2010.09.002
– volume: 48
  start-page: 1
  year: 2007
  ident: 932_CR20
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2007.04.008
– volume: 24
  start-page: 329
  year: 2019
  ident: 932_CR37
  publication-title: Comput Concr
– volume: 26
  start-page: 1146
  issue: 13
  year: 2018
  ident: 932_CR32
  publication-title: Mech Adv Mater Struct
  doi: 10.1080/15376494.2018.1430874
– volume: 50
  start-page: 629
  issue: 4
  year: 2012
  ident: 932_CR27
  publication-title: Safe Sci
  doi: 10.1016/j.ssci.2011.08.065
– volume: 122
  start-page: 492
  year: 1996
  ident: 932_CR49
  publication-title: J Geotech Eng
  doi: 10.1061/(ASCE)0733-9410(1996)122:6(492)
– volume: 122
  start-page: 50
  year: 2018
  ident: 932_CR101
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2018.04.004
– volume: 36
  start-page: 1434
  year: 2012
  ident: 932_CR77
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.1076
– volume: 551
  start-page: 504
  year: 2005
  ident: 932_CR85
  publication-title: Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip
  doi: 10.1016/j.nima.2005.05.069
– volume-title: Axial bearing capacity of piles and modelling of distribution of skin resistance with depth
  year: 2012
  ident: 932_CR2
– volume: 74
  start-page: 548
  year: 2013
  ident: 932_CR99
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.06.031
– volume: 57
  start-page: 122
  year: 2014
  ident: 932_CR73
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.08.007
– year: 2019
  ident: 932_CR47
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.007
– volume: 81
  start-page: 112
  year: 2018
  ident: 932_CR19
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2018.07.023
– volume: 74
  start-page: 2845
  year: 2015
  ident: 932_CR55
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-015-4305-y
– volume: 33
  start-page: 4019024
  year: 2019
  ident: 932_CR40
  publication-title: J Perform Constr Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001292
– volume: 78
  start-page: 981
  year: 2019
  ident: 932_CR17
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-017-1116-2
– volume: 44
  start-page: 954
  year: 2007
  ident: 932_CR62
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2007.02.003
– volume: 38
  start-page: 5352
  year: 2011
  ident: 932_CR96
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.10.021
– year: 2017
  ident: 932_CR60
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-017-0356-z
– volume: 80
  start-page: 841
  year: 2010
  ident: 932_CR98
  publication-title: Text Res J
  doi: 10.1177/0040517509355344
– volume: 27
  start-page: 302
  year: 2008
  ident: 932_CR109
  publication-title: QSAR Comb Sci
  doi: 10.1002/qsar.200710043
– volume-title: Handbook of genetic programming applications
  year: 2015
  ident: 932_CR91
  doi: 10.1007/978-3-319-20883-1
– volume: 34
  start-page: 347
  year: 2018
  ident: 932_CR74
  publication-title: Eng Comput
  doi: 10.1007/s00366-017-0545-7
– volume: 36
  start-page: 2057
  year: 2018
  ident: 932_CR79
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0445-7
– volume: 17
  start-page: 609
  year: 2017
  ident: 932_CR102
  publication-title: Arch Civ Mech Eng
  doi: 10.1016/j.acme.2016.11.005
– volume: 9
  start-page: 4650
  year: 2019
  ident: 932_CR9
  publication-title: Appl Sci
  doi: 10.3390/app9214650
– year: 2019
  ident: 932_CR43
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-00700-1
– start-page: 26
  volume-title: International foundation congress and equipment expo (IFCEE’09)
  year: 2009
  ident: 932_CR72
– volume: 17
  start-page: 924
  year: 2019
  ident: 932_CR15
  publication-title: Procedia Struct Integr
  doi: 10.1016/j.prostr.2019.08.123
– volume: 30
  start-page: 457
  year: 2019
  ident: 932_CR4
  publication-title: Steel Compos Struct
– volume: 30
  start-page: 4016003
  year: 2016
  ident: 932_CR42
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000553
– volume: 23
  start-page: 665
  year: 1993
  ident: 932_CR95
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– volume: 28
  start-page: 439
  year: 2018
  ident: 932_CR24
  publication-title: Steel Compos Struct
– volume: 28
  start-page: 242
  year: 2011
  ident: 932_CR100
  publication-title: Eng Comput
  doi: 10.1108/02644401111118132
– volume: 38
  start-page: 281
  year: 2011
  ident: 932_CR108
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2010.11.008
– volume: 124
  start-page: 529
  year: 2018
  ident: 932_CR5
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.04.057
– volume: 1
  start-page: 49
  year: 1984
  ident: 932_CR84
  publication-title: Deep Found J
– volume: 124
  start-page: 1177
  year: 1998
  ident: 932_CR71
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(1998)124:12(1177)
– volume: 20
  start-page: 269
  year: 2002
  ident: 932_CR107
  publication-title: J Mol Graph Model
  doi: 10.1016/S1093-3263(01)00123-1
– volume: 29
  start-page: 619
  year: 2018
  ident: 932_CR39
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2598-8
– volume: 239
  start-page: 119
  year: 2018
  ident: 932_CR18
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2018.03.023
– volume: 9
  start-page: 3715
  year: 2019
  ident: 932_CR14
  publication-title: Appl Sci
  doi: 10.3390/app9183715
– ident: 932_CR87
  doi: 10.1007/978-1-84628-663-6_3
– year: 2017
  ident: 932_CR57
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-017-0254-4
– year: 2016
  ident: 932_CR68
  publication-title: Eng Comput
  doi: 10.1007/s00366-015-0404-3
– volume: 63
  start-page: 29
  year: 2017
  ident: 932_CR111
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2016.12.009
– volume: 28
  start-page: 499
  year: 2017
  ident: 932_CR106
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2078-6
– volume: 17
  start-page: 1344
  year: 2017
  ident: 932_CR8
  publication-title: Sensors
  doi: 10.3390/s17061344
– volume: 17
  start-page: 914
  year: 2019
  ident: 932_CR12
  publication-title: Procedia Struct Integr
  doi: 10.1016/j.prostr.2019.08.122
– volume: 21
  start-page: 1087
  year: 1953
  ident: 932_CR92
  publication-title: J Chem Phys
  doi: 10.1063/1.1699114
– volume: 81
  start-page: 632
  year: 2018
  ident: 932_CR38
  publication-title: Tunn Undergr Sp Technol
  doi: 10.1016/j.tust.2018.08.029
– volume: 529
  start-page: 1590
  year: 2015
  ident: 932_CR61
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.08.025
– volume: 146
  start-page: 110
  year: 2019
  ident: 932_CR6
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.04.081
– year: 2018
  ident: 932_CR80
  publication-title: Soft Comput
  doi: 10.1007/s00500-018-3517-y
– volume: 28
  start-page: 391
  year: 2017
  ident: 932_CR75
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-2072-z
– volume: 27
  start-page: 707
  year: 2016
  ident: 932_CR103
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1890-3
– volume: 88
  start-page: 254
  year: 2016
  ident: 932_CR69
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2016.07.028
– volume: 36
  start-page: 7809
  year: 2009
  ident: 932_CR97
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.11.019
– volume: 134
  start-page: 1021
  year: 2008
  ident: 932_CR50
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2008)134:7(1021)
– volume: 5
  start-page: 735
  year: 2010
  ident: 932_CR89
  publication-title: J Mech Mater Struct
  doi: 10.2140/jomms.2010.5.735
SSID ssj0013009
Score 2.5083134
Snippet The aim of this research is to develop three soft-computing techniques, including adaptive-neuro-fuzzy inference system (ANFIS), genetic-programming (GP)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2111
SubjectTerms Area
CAE) and Design
Calculus of Variations and Optimal Control; Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Cross-sections
Driven piles
Drop hammers
Estimation
Fuzzy logic
Genetic algorithms
Machine learning
Math. Applications in Chemistry
Mathematical and Computational Engineering
Original Article
Performance indices
Pile bearing capacities
Prediction models
Predictions
Sensitivity analysis
Simulated annealing
Systems Theory
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFH9R8KAHUdSIX-nBmzayUrb2ZNRAPBFiNPG2dF0XSRSQTRL_e98bBdRELp7bNUve1-_Xvg-Ac2u1DKSTHLE2EhQhFDcuaHNjTCuUiRTWJOWwiajXU8_Puu8v3HKfVjn3iaWjTkeW7sivkMgoTXgmvB6_c5oaRa-rfoTGOlSpUxnqefW20-s_LN8RmrMkjyCiJK8w8mUzZfEctWIhNq050XrB9c_QtMSbv55Iy8jTrf33n3dg22NOdjNTkl1Yc8M61Dz-ZN668zpsfWtOuAfTG4aQm718Uk0XywdvNOgL9xv0zIaK2DlFwJShBlIhJPOZXm-4whadYVkxwgV6DCoYQk1G6YuIkR1L0MJop8VgbZEJsFHGxuih8n146nYe7-65n9LALZpvwXXTBlGmlJVGo2itCRNpsySLqEa3rdLAqSzBEIg8PNNNZYNUpjpKJRIVFWrk8gdQGY6G7hBYSwQ2cy5zyNGkMBhGVLNl2sIJhboThg0I5gKKrW9hTpM0XuNF8-VSqDEKNS6FGusGXCy-Gc8aeKzcfTKXZOyNOY-XYmzA5VwXlst_n3a0-rRj2BSUIVMm_55ApZh8uFPYsNNikE_OvCp_AaDI-qE
  priority: 102
  providerName: ProQuest
Title A new hybrid simulated annealing-based genetic programming technique to predict the ultimate bearing capacity of piles
URI https://link.springer.com/article/10.1007/s00366-019-00932-9
https://www.proquest.com/docview/2548900996
Volume 37
WOSCitedRecordID wos000574106600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1435-5663
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013009
  issn: 0177-0667
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4B5WF7WKEMwWCVH3hjlhrXSexHQFSTJlXVOhDiJXIcR1SCtmoyJP5Nf0t_GXep0zLEkLaXPNiOZdln33267-4ATqzVMpBOcrS1EaAIobhxQciNMd1IplJYk1bFJuJ-X93c6IEPCitqtnvtkqxe6lWwG6VOIfSrOcFwwfUmNELKNkMYfXi99h10lsSOICZiVxT7UJm35_hTHa1tzFdu0Urb9Jr_t84d-OStS3a2FIdd2HDjFjS9pcn8PS6wqS7mULe14OOLzIR78HTG0N5md08U0LWYF6MHKvOFcxh8lw2FsHPSfxlD-aMwyMXcE70esIutEsOycsKmM_IFlQwtTUbsRTSR3WKe4g2joRaVtUUkwCY5m-ILVXyGq97lr4vv3Fdp4Bavb8l1xwZxrpSVRuPRWhOl0uZpHlOMbqiywKk8RRWIODzXHWWDTGY6ziQCFRVpxPL7sDWejN0BsK4IbO5c7hCjSWFQjahO14TCCYWyE0WHENSHlVifwpwqadwnq-TL1eYnuPlJtfmJPoTT1T_TZQKPd0cf1zKQ-MtcJIihlSZTGhfwrT7zdfffZ_vyb8OP4IMgxkxFBj6GrXL2232FbftYjopZGxrnl_3BzzZs_oh5mziqQ_wOwtt2Jf7PurD9tA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xScCBHVFWH-AEFo3rJvYBIcQiUKHiABK34DiOqARtIQHET_GNzKRJC0hw48DZjhU5b5aX2QA2rdXSk05y9LWRoAihuHFenRtjar6MpLAmyodNBM2murnRl0PwXtbCUFplqRNzRR13LP0j30UiozT5M_5-95HT1CiKrpYjNHqwaLi3V6Rs6d7ZEX7fLSFOjq8OT3kxVYBbhFvGddV6QaKUlUbjq1jjR9ImURJQTWldxZ5TSYQqG3ljoqvKerGMdRBLdKyVr5F74rnDMCpryieJagR8ELWo9lJKvIBSyvygKNLJS_Wo8Qtxd83pJ4Lg-qshHHi33wKyuZ07mf5vNzQDU4VHzQ56IjALQ649B9OFd80K3ZXOweSn1ovz8HLAkFCwuzeqWGNp64HGmOF-g3bHUIk-J_seM5QvKvNkRR7bA66wft9blnVwgUJdGUNHmlFyJjIAxyK8Btpp0RWxyHNYJ2Fd1L_pAlz_yV0swki703ZLwGrCs4lziUMGKoVBI6mqNVMXTiiUDN-vgFcCIrRFg3aaE3If9ltL5yAKEURhDqJQV2C7_0y3157k192rJXLCQlWl4QA2FdgpsTdY_vm05d9P24Dx06uL8_D8rNlYgQlBuUB5mvMqjGRPz24NxuxL1kqf1nMhYnD715j8ADDDVbc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHULjQGEfolvZfGAnsNa4bmIfJlTYqk1FVYVA2i1zHFtMYm1Zwqb9a_x1vJc6LUxitx12tmNFzu99_PK-AN5aq2UkneToayNBEUJx46IeN8Z0Y5lJYU1WDZtIRiN1dqbHK_C7roWhtMpaJ1aKOp9a-kd-gERGafJn4gMf0iLGR4MPs5-cJkhRpLUepzGHyNDd3iB9Kw5Pj_Bb7wsxOP766YSHCQPcIvRKrjs2SrxSVhqNr2VNnEnrM59QfWlP5ZFTPkP1jRzS646yUS5zneQSnWwVa-SheO4TWE26SHoasPrxeDT-soxhdOYJJlFCCWZxEkp2qsI9agNDTF5z-qUguP7XLC593Tvh2crqDZqP-b5ewovga7P-XDhewYqbrEMz-N0saLViHZ7_1ZRxA677DKkG-35LtWysuLikAWe436BFMlS8z8ny5wwljwpAWchwu8QVtuiIy8opLlAQrGToYjNK20Ru4FiG10A7LTopFhkQm3o2Q81cbMK3B7mLLWhMphP3GlhXRNY75x1yUykMmk_V6ZqecEKhzMRxC6IaHKkNrdtpgsiPdNF0ugJUioBKK0ClugXvFs_M5o1L7t3drlGUBiVWpEsIteB9jcPl8v9P277_tD14hlBMP5-OhjuwJihJqMp_bkOjvPrl3sBTe11eFFe7QaIYnD80KP8AHL9gCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid%C2%A0simulated+annealing-based+genetic%C2%A0programming+technique+to+predict+the+ultimate%C2%A0bearing+capacity+of+piles&rft.jtitle=Engineering+with+computers&rft.au=Yong%2C+Weixun&rft.au=Zhou%2C+Jian&rft.au=Jahed+Armaghani%2C+Danial&rft.au=Tahir%2C+M.+M.&rft.date=2021-07-01&rft.pub=Springer+London&rft.issn=0177-0667&rft.eissn=1435-5663&rft.volume=37&rft.issue=3&rft.spage=2111&rft.epage=2127&rft_id=info:doi/10.1007%2Fs00366-019-00932-9&rft.externalDocID=10_1007_s00366_019_00932_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-0667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-0667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-0667&client=summon