Prediction of mechanical properties of micro-alloyed steels via neural networks learned by water wave optimization

Searching optimal parameters for neural networks can be formulated as a multi-modal optimization problem. This paper proposes a novel water wave optimization (WWO)-based memetic algorithm to identify the optimal weights for neural networks. In the proposed water wave optimization-based memetic algor...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computing & applications Ročník 32; číslo 10; s. 5583 - 5598
Hlavní autori: Liu, Ao, Li, Peng, Sun, Weiliang, Deng, Xudong, Li, Weigang, Zhao, Yuntao, Liu, Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.05.2020
Springer Nature B.V
Predmet:
ISSN:0941-0643, 1433-3058
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Searching optimal parameters for neural networks can be formulated as a multi-modal optimization problem. This paper proposes a novel water wave optimization (WWO)-based memetic algorithm to identify the optimal weights for neural networks. In the proposed water wave optimization-based memetic algorithm (WWOMA), we employ WWO to perform global search by both individual improvement and population co-evolution and then employ several local search components to enhance its local refinement ability. Moreover, an effective Meta-Lamarckian learning strategy is utilized to choose a proper local search component to concentrate computational efforts on more promising solutions. We carry out simulation experiments on six well-known neural network designing benchmark problems, both the simulation results and statistical comparisons demonstrate the feasibility, effectiveness and efficiency of applying WWOMA to design neural networks. Furthermore, we apply WWOMA to design neural networks and use well-trained neural networks to predict tensile strength of micro-alloyed steels. Evaluation on a practical industrial case with 2489 sample data shows that, in comparison with other algorithms, WWOMA-based neural networks can obtain notable and robust prediction accuracy, which further demonstrates that WWOMA is a promising and efficient algorithm for designing neural networks. It is worth mentioning that, to the best of our knowledge, this is the first report about applying water wave optimization to train neural networks.
AbstractList Searching optimal parameters for neural networks can be formulated as a multi-modal optimization problem. This paper proposes a novel water wave optimization (WWO)-based memetic algorithm to identify the optimal weights for neural networks. In the proposed water wave optimization-based memetic algorithm (WWOMA), we employ WWO to perform global search by both individual improvement and population co-evolution and then employ several local search components to enhance its local refinement ability. Moreover, an effective Meta-Lamarckian learning strategy is utilized to choose a proper local search component to concentrate computational efforts on more promising solutions. We carry out simulation experiments on six well-known neural network designing benchmark problems, both the simulation results and statistical comparisons demonstrate the feasibility, effectiveness and efficiency of applying WWOMA to design neural networks. Furthermore, we apply WWOMA to design neural networks and use well-trained neural networks to predict tensile strength of micro-alloyed steels. Evaluation on a practical industrial case with 2489 sample data shows that, in comparison with other algorithms, WWOMA-based neural networks can obtain notable and robust prediction accuracy, which further demonstrates that WWOMA is a promising and efficient algorithm for designing neural networks. It is worth mentioning that, to the best of our knowledge, this is the first report about applying water wave optimization to train neural networks.
Author Liu, Ao
Li, Weigang
Liu, Bo
Deng, Xudong
Li, Peng
Sun, Weiliang
Zhao, Yuntao
Author_xml – sequence: 1
  givenname: Ao
  surname: Liu
  fullname: Liu, Ao
  organization: School of Management, Wuhan University of Science and Technology, Center for Service Science and Engineering, Wuhan University of Science and Technology
– sequence: 2
  givenname: Peng
  surname: Li
  fullname: Li, Peng
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 3
  givenname: Weiliang
  surname: Sun
  fullname: Sun, Weiliang
  organization: School of Chemical Engineering and Technology, Tianjin University
– sequence: 4
  givenname: Xudong
  surname: Deng
  fullname: Deng, Xudong
  organization: School of Management, Wuhan University of Science and Technology, Center for Service Science and Engineering, Wuhan University of Science and Technology
– sequence: 5
  givenname: Weigang
  surname: Li
  fullname: Li, Weigang
  organization: School of Information Science and Engineering, Wuhan University of Science and Technology
– sequence: 6
  givenname: Yuntao
  surname: Zhao
  fullname: Zhao, Yuntao
  organization: School of Information Science and Engineering, Wuhan University of Science and Technology
– sequence: 7
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  email: bliu@amss.ac.cn
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences
BookMark eNp9kE1LAzEQhoMoWKt_wFPA82o-d5OjFL9A0IOeQ3Z3VlO3SU1Spf56YysIHnrJHOZ5MjPvEdr3wQNCp5ScU0Kai0SIZLQiVFdEUKEruocmVHBecSLVPpoQLUq7FvwQHaU0J4SIWskJio8RetdlFzwOA15A92q96-yIlzEsIWYHadNwXQyVHcewhh6nDDAm_OEs9rCKhfaQP0N8S3gEG31B2jX-tBlieT8Ah2V2C_dlf-Yco4PBjglOfusUPV9fPc1uq_uHm7vZ5X3VcapzpYnSA2PWctv0nRRt37SKsLZXVkk-tNJyyURba0noIJrW6mEoqGSq1axWnE_R2fbfcsn7ClI287CKvow0jOtaNopTVSi1pcp9KUUYTOfyZs8crRsNJeYnYbNN2JSEzSZhQ4vK_qnL6BY2rndLfCulAvsXiH9b7bC-Adiukf4
CitedBy_id crossref_primary_10_1007_s00521_021_06242_w
crossref_primary_10_1007_s00521_020_05258_y
crossref_primary_10_1007_s00521_019_04464_7
crossref_primary_10_1155_2021_6683759
crossref_primary_10_1007_s11015_024_01648_y
crossref_primary_10_1007_s12065_020_00562_x
Cites_doi 10.1038/s42256-018-0006-z
10.1109/TCBB.2018.2868088
10.1023/A:1021251113462
10.1109/TPDS.2018.2871189
10.1007/s00521-016-2293-9
10.1016/j.ins.2018.06.045
10.1016/j.msea.2017.01.023
10.1080/0305215X.2011.652103
10.1109/ICCA.2017.8003085
10.1109/ICENCO.2015.7416344
10.1109/TSMCB.2012.2213808
10.1016/j.cor.2014.10.008
10.1109/ICCES.2017.8275392
10.1016/j.chaos.2006.05.070
10.1109/CEC.2016.7743990
10.1023/A:1008202821328
10.1023/A:1022602019183
10.1007/s00500-015-1786-2
10.1016/j.ins.2016.12.024
10.1016/j.matdes.2011.10.011
10.1007/s00521-017-2906-y
10.1016/j.engappai.2016.10.009
10.1109/FSKD.2018.8686939
10.1016/j.neucom.2006.10.018
10.1007/s00521-011-0741-0
10.1007/s00521-017-2844-8
10.1109/CEC.2016.7744029
10.1007/s00170-015-8039-5
10.1007/s00521-016-2714-9
10.1002/srin.201100189
10.1109/TSMC.2015.2416127
10.1109/TPDS.2018.2877359
10.1016/j.swevo.2017.06.001
10.1016/j.matdes.2017.05.027
10.1016/j.patcog.2017.06.031
10.1016/j.knosys.2016.06.019
10.1109/ICNN.1995.488968
10.1007/s00521-013-1346-6
10.1007/s10479-011-0894-3
10.1007/s00521-016-2510-6
10.1080/10426914.2014.984203
10.1016/j.ins.2018.01.041
10.1021/ie4000954
10.1016/j.ins.2018.01.001
10.1109/TSMCB.2006.883272
10.1109/TPDS.2016.2603511
10.1016/j.asoc.2018.05.023
10.1016/j.msea.2017.09.039
10.1080/03019233.2016.1227025
10.1109/TEVC.2016.2555315
10.1007/s11063-017-9733-0
10.1080/10426910701323607
10.1109/TEVC.2003.819944
10.1109/TNNLS.2016.2609437
10.1016/j.jpdc.2017.09.006
10.1109/CEC.2016.7744111
10.1016/j.trb.2016.09.006
10.1109/ICCSE.2018.8468778
10.1007/978-3-642-13495-1_44
10.1109/72.572107
10.1007/978-3-540-37258-5_149
10.1007/978-3-540-72395-0_28
10.21037/jtd.2018.02.57
10.1109/MC.2013.6608208
10.1504/IJBIC.2016.074630
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04149-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 5598
ExternalDocumentID 10_1007_s00521_019_04149_1
GrantInformation_xml – fundername: Key Research Program of Frontier Sciences for Chinese Academy of Sciences
  grantid: QYZDB-SSW-SYS020
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2017CFB427
  funderid: http://dx.doi.org/10.13039/501100003819
– fundername: National Natural Science Foundation of China
  grantid: 51774219
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Humanity and Social Science Youth Foundation of Ministry of Education of China
  grantid: 16YJCZH056
– fundername: Young Scientists Fund
  grantid: 71701156
  funderid: http://dx.doi.org/10.13039/501100010909
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-9089f22aa3a7dc54bd7b802bd8a853fb5a3524b69501f47ba9ff3a7528b926833
IEDL.DBID RSV
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000529745200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Tue Nov 04 23:04:37 EST 2025
Sat Nov 29 02:59:11 EST 2025
Tue Nov 18 22:32:06 EST 2025
Fri Feb 21 02:35:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Meta-Lamarckian learning
Water wave optimization
Neural networks
Prediction of mechanical properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-9089f22aa3a7dc54bd7b802bd8a853fb5a3524b69501f47ba9ff3a7528b926833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2396578318
PQPubID 2043988
PageCount 16
ParticipantIDs proquest_journals_2396578318
crossref_citationtrail_10_1007_s00521_019_04149_1
crossref_primary_10_1007_s00521_019_04149_1
springer_journals_10_1007_s00521_019_04149_1
PublicationCentury 2000
PublicationDate 20200500
2020-5-00
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 5
  year: 2020
  text: 20200500
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Unluturk, Unluturk, Pazir, Kuscu (CR31) 2014; 24
Zhang, Gong, Deng, Wang (CR43) 2017; 685
Shi, Chen, Heng, Zhang (CR59) 2018; 30
Goldberg, Holland (CR11) 1988; 3
Wang, Wang, Zhou, Sun, Zhao, Yu, Cui (CR18) 2017; 382
Liu, Wang, Liu, Wang (CR10) 2011; 186
CR36
Qu, Zhang, Liu, Li (CR7) 2017; 57
Engel (CR15) 1988; 2
Wang, Jin, Jansen (CR60) 2016; 20
Kapanova, Dimov, Sellier (CR38) 2018; 29
CR2
Song, Zheng, Huang, Xu, Sheng, Yang (CR8) 2018; 5
Jha, Pettersson, Dulikravich, Saxen, Chakraborti (CR45) 2015; 30
CR4
Kaushal, Khehra, Sharma (CR23) 2018; 70
Chen, Li, Zhuo, Bilal, Yu, Weng, Li (CR61) 2017; 28
CR3
Chen, Qin, Wan, Wang, Liu (CR70) 2015; 35
Alejandro, Raúl, Félix, Valery, David (CR58) 2018; 117
CR48
Donate, Li, Sánchez, Miguel (CR62) 2013; 22
Yao, Liu (CR34) 1997; 8
García-Lamont, Cervantes, López-Chau (CR55) 2018; 30
Liu, Feng, Deng, Ren, Liu (CR5) 2018; 38
Ganguly, Datta, Chakraborti (CR46) 2007; 22
Rao, Savsani, Balic (CR21) 2012; 44
Chen, Li, Bilal, Metwally, Li, Yu (CR64) 2018
Zheng, Sheng, Sun, Chen (CR67) 2017; 28
Zhang, Li, Zhang, Qin, Feng, Liu (CR9) 2016; 20
Fukasawa, He, Song (CR69) 2016; 94
Sui, Lv (CR41) 2016; 85
Yang, Feng, Xin, Ji, Du, Wang, Zhang, Liu (CR73) 2018
Wang, Wang, Cui, Zhou, Zhao, Li (CR6) 2018; 438
Storn, Price (CR13) 1997; 11
Dawidowicz (CR32) 2018; 30
CR17
Liu, Jia, Kong, Feng, Zhang, Zhang (CR40) 2017; 707
Shafiee, Mishra, Wong (CR53) 2018; 48
CR57
CR12
Čiripová, Hryha, Dudrová, Výrostková (CR42) 2012; 35
CR52
Wang, Wang, Sun, Shahryar (CR19) 2016; 8
CR51
Zheng (CR20) 2015; 55
Hore, Das, Banerjee, Mukherjee (CR39) 2017; 44
Stanley, Clune, Lehman, Miikkulainen (CR54) 2019; 1
Antipov, Baccouche, Berrani, Dugelay (CR56) 2017; 72
Ong, Keane (CR49) 2004; 8
Wang, Liu, Liu, Liu (CR71) 2016; 36
Shafaei, Kisi (CR33) 2017; 28
Ho, Pepyne (CR50) 2002; 115
Wang, Rahnamayan, Sun, Omran (CR14) 2013; 43
Yang, Feng, Chi, Li, Duan, Liu, Liang, Wang, Chen, He, Xing (CR66) 2018; 10
Wang, Zheng (CR74) 2018; 38
CR29
CR28
CR27
Wang, Feng, Lyu, Li, Liu (CR22) 2016; 107
CR26
CR25
CR24
Kumar, Chakrabarti, Chakraborti (CR44) 2012; 83
Wang, Wang (CR72) 2016; 46
Mirjalili, Hashim, Sardroudi (CR37) 2012; 218
CR63
Ye, Qiao, Li, Ruan (CR35) 2007; 70
Chen, Li, Rong, Bilal, Yang, Li (CR65) 2018; 435
Liu, Wang, Jin (CR1) 2007; 37
Liu, Jia, Kong, Guan, Zhang (CR47) 2017; 129
Cartwright, Curteanu (CR30) 2013; 52
Pan, Wang, Liu (CR16) 2008; 35
Chen, Li, Yang, Xiao, Xie, Li (CR68) 2018
L Čiripová (4149_CR42) 2012; 35
JG Chen (4149_CR64) 2018
R Storn (4149_CR13) 1997; 11
S Ganguly (4149_CR46) 2007; 22
S Unluturk (4149_CR31) 2014; 24
4149_CR36
M Shafaei (4149_CR33) 2017; 28
M Kaushal (4149_CR23) 2018; 70
H Wang (4149_CR6) 2018; 438
CZ Zhang (4149_CR43) 2017; 685
T Chen (4149_CR70) 2015; 35
R Jha (4149_CR45) 2015; 30
H Cartwright (4149_CR30) 2013; 52
H Wang (4149_CR14) 2013; 43
JP Donate (4149_CR62) 2013; 22
YX Yang (4149_CR73) 2018
4149_CR63
4149_CR24
Q Song (4149_CR8) 2018; 5
4149_CR25
YJ Zheng (4149_CR67) 2017; 28
B Liu (4149_CR1) 2007; 37
4149_CR28
4149_CR29
4149_CR26
4149_CR27
SY Wang (4149_CR72) 2016; 46
H Pan (4149_CR16) 2008; 35
HJ Zhang (4149_CR9) 2016; 20
YD Chen (4149_CR68) 2018
YD Wang (4149_CR22) 2016; 107
XH Qu (4149_CR7) 2017; 57
JG Chen (4149_CR61) 2017; 28
JG Chen (4149_CR65) 2018; 435
YS Ong (4149_CR49) 2004; 8
4149_CR51
J Engel (4149_CR15) 1988; 2
4149_CR52
4149_CR57
4149_CR12
KG Kapanova (4149_CR38) 2018; 29
4149_CR17
DJ Wang (4149_CR71) 2016; 36
F García-Lamont (4149_CR55) 2018; 30
J Dawidowicz (4149_CR32) 2018; 30
RV Rao (4149_CR21) 2012; 44
Y Ho (4149_CR50) 2002; 115
S Mirjalili (4149_CR37) 2012; 218
J Ye (4149_CR35) 2007; 70
GX Liu (4149_CR40) 2017; 707
MJ Shafiee (4149_CR53) 2018; 48
YJ Zheng (4149_CR20) 2015; 55
MG Alejandro (4149_CR58) 2018; 117
YX Yang (4149_CR66) 2018; 10
L Wang (4149_CR74) 2018; 38
B Liu (4149_CR10) 2011; 186
XY Sui (4149_CR41) 2016; 85
A Kumar (4149_CR44) 2012; 83
GX Liu (4149_CR47) 2017; 129
HD Wang (4149_CR60) 2016; 20
4149_CR4
4149_CR48
S Hore (4149_CR39) 2017; 44
H Wang (4149_CR18) 2017; 382
H Wang (4149_CR19) 2016; 8
DE Goldberg (4149_CR11) 1988; 3
R Fukasawa (4149_CR69) 2016; 94
A Liu (4149_CR5) 2018; 38
G Antipov (4149_CR56) 2017; 72
XY Shi (4149_CR59) 2018; 30
X Yao (4149_CR34) 1997; 8
4149_CR3
KO Stanley (4149_CR54) 2019; 1
4149_CR2
References_xml – volume: 8
  start-page: 33
  issue: 1
  year: 2016
  end-page: 41
  ident: CR19
  article-title: Firefly algorithm with random attraction
  publication-title: Int J Bio Inspir Comput
– volume: 107
  start-page: 261
  issue: C
  year: 2016
  end-page: 270
  ident: CR22
  article-title: Optimal targeting of nonlinear chaotic systems using a novel evolutionary computing strategy
  publication-title: Knowl Based Syst
– volume: 70
  start-page: 875
  issue: 4
  year: 2007
  end-page: 882
  ident: CR35
  article-title: A tabu based neural network learning algorithm
  publication-title: Neurocomputing
– volume: 685
  start-page: 310
  year: 2017
  end-page: 316
  ident: CR43
  article-title: Computational prediction of mechanical properties of a C-Mn weld metal based on the microstructures and micromechanical properties
  publication-title: Mater Sci Eng A
– volume: 83
  start-page: 169
  issue: 2
  year: 2012
  end-page: 174
  ident: CR44
  article-title: Data-driven pareto optimization for microalloyed steels using genetic algorithms
  publication-title: Steel Res Int
– volume: 55
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR20
  article-title: Water wave optimization: a new nature-inspired metaheuristic
  publication-title: Comput Oper Res
– ident: CR4
– ident: CR51
– ident: CR12
– volume: 1
  start-page: 24
  issue: 1
  year: 2019
  end-page: 35
  ident: CR54
  article-title: Designing neural networks through neuroevolution
  publication-title: Nature Mach Intell
  doi: 10.1038/s42256-018-0006-z
– volume: 20
  start-page: 939
  issue: 6
  year: 2016
  end-page: 952
  ident: CR60
  article-title: Data-driven surrogate-assisted multiobjective evolutionary optimization of a trauma system
  publication-title: IEEE Trans Evolut Comput
– volume: 28
  start-page: 2911
  issue: 12
  year: 2017
  end-page: 2923
  ident: CR67
  article-title: Airline passenger profiling based on fuzzy deep machine learning
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: CR29
– volume: 72
  start-page: 15
  year: 2017
  end-page: 26
  ident: CR56
  article-title: Effective training of convolutional neural networks for face-based gender and age prediction
  publication-title: Pattern Recognit
– ident: CR25
– volume: 30
  start-page: 871
  issue: 3
  year: 2018
  end-page: 889
  ident: CR55
  article-title: Human mimic color perception for segmentation of color images using a three-layered self-organizing map previously trained to classify color chromaticity
  publication-title: Neural Comput Appl
– volume: 117
  start-page: 180
  year: 2018
  end-page: 191
  ident: CR58
  article-title: Evodeep: a new evolutionary approach for automatic deep neural networks parametrisation
  publication-title: J Parallel Distrib Comput
– volume: 29
  start-page: 1481
  issue: 5
  year: 2018
  end-page: 1492
  ident: CR38
  article-title: A genetic approach to automatic neural network architecture optimization
  publication-title: Neural Comput Appl
– volume: 94
  start-page: 61
  year: 2016
  end-page: 79
  ident: CR69
  article-title: A disjunctive convex programming approach to the pollution-routing problem
  publication-title: Transp Res Part B Methodol
– volume: 438
  start-page: 95
  year: 2018
  end-page: 106
  ident: CR6
  article-title: A new dynamic firefly algorithm for demand estimation of water resources
  publication-title: Inf Sci
– volume: 30
  start-page: 3317
  issue: 11
  year: 2018
  end-page: 3326
  ident: CR59
  article-title: Tracking topology structure adaptively with deep neural networks
  publication-title: Neural Comput Appl
– volume: 8
  start-page: 99
  issue: 2
  year: 2004
  end-page: 110
  ident: CR49
  article-title: Meta-lamarckian learning in memetic algorithms
  publication-title: IEEE Trans Evolut Comput
– volume: 22
  start-page: 11
  issue: 1
  year: 2013
  end-page: 20
  ident: CR62
  article-title: Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm
  publication-title: Neural Comput Appl
– volume: 38
  start-page: 2874
  issue: 11
  year: 2018
  end-page: 2884
  ident: CR5
  article-title: A discrete fireworks algorithm for solving no-idle permutation flow shop problem
  publication-title: Syst Eng Theory Pract
– volume: 30
  start-page: 2531
  issue: 8
  year: 2018
  end-page: 2538
  ident: CR32
  article-title: Evaluation of a pressure head and pressure zones in water distribution systems by artificial neural networks
  publication-title: Neural Comput Appl
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  ident: CR13
  article-title: Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J Glob Optim
– volume: 218
  start-page: 11125
  issue: 22
  year: 2012
  end-page: 11137
  ident: CR37
  article-title: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
  publication-title: Appl Math Comput
– volume: 24
  start-page: 1221
  issue: 5
  year: 2014
  end-page: 1228
  ident: CR31
  article-title: Discrimination of bio-crystallogram images using neural networks
  publication-title: Neural Comput Appl
– ident: CR57
– volume: 35
  start-page: 888
  issue: 5
  year: 2008
  end-page: 894
  ident: CR16
  article-title: Chaotic annealing with hypothesis test for function optimization in noisy environments
  publication-title: Chaos Solitons Fractals
– volume: 57
  start-page: 1
  year: 2017
  end-page: 15
  ident: CR7
  article-title: An improved TLBO based memetic algorithm for aerodynamic shape optimization
  publication-title: Eng Appl Artif Intell
– ident: CR36
– volume: 36
  start-page: 779
  issue: 3
  year: 2016
  end-page: 786
  ident: CR71
  article-title: Priority rule-based complex identical parallel machines scheduling
  publication-title: Syst Eng Theory Pract
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  end-page: 99
  ident: CR11
  article-title: Genetic algorithms and machine learning
  publication-title: Mach Learn
– volume: 30
  start-page: 488
  issue: 4
  year: 2015
  end-page: 510
  ident: CR45
  article-title: Evolutionary design of Nickel-based superalloys using data-driven genetic algorithms and related strategies
  publication-title: Mater Manuf Process
– ident: CR26
– volume: 28
  start-page: 15
  issue: 1
  year: 2017
  end-page: 28
  ident: CR33
  article-title: Predicting river daily flow using wavelet-artificial neural networks based on regression analyses in comparison with artificial neural networks and support vector machine models
  publication-title: Neural Comput Appl
– volume: 48
  start-page: 603
  issue: 1
  year: 2018
  end-page: 613
  ident: CR53
  article-title: Deep learning with darwin: evolutionary synthesis of deep neural networks
  publication-title: Neural Process Lett
– volume: 186
  start-page: 231
  issue: 1
  year: 2011
  end-page: 262
  ident: CR10
  article-title: A unified framework for population-based metaheuristics
  publication-title: Ann Oper Res
– volume: 37
  start-page: 18
  issue: 1
  year: 2007
  end-page: 27
  ident: CR1
  article-title: An effective PSO-based memetic algorithm for flow shop scheduling
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
– ident: CR2
– volume: 85
  start-page: 1395
  issue: 5
  year: 2016
  end-page: 1403
  ident: CR41
  article-title: Prediction of the mechanical properties of hot rolling products by using attribute reduction ELM
  publication-title: Int J Adv Manuf Technol
– volume: 382
  start-page: 374
  year: 2017
  end-page: 387
  ident: CR18
  article-title: Firefly algorithm with neighborhood attraction
  publication-title: Inf Sci
– volume: 435
  start-page: 124
  year: 2018
  end-page: 149
  ident: CR65
  article-title: A disease diagnosis and treatment recommendation system based on big data mining and cloud computing
  publication-title: Inf Sci
– volume: 35
  start-page: 1187
  issue: 5
  year: 2015
  end-page: 1201
  ident: CR70
  article-title: Re-entrant flexible scheduling: models, algorithms and applications
  publication-title: Syst Eng Theory Pract
– volume: 5
  start-page: 1
  issue: 4
  year: 2018
  end-page: 10
  ident: CR8
  article-title: Emergency drug procurement planning based on big-data driven morbidity prediction
  publication-title: IEEE Trans Ind Inform
– volume: 52
  start-page: 12673
  issue: 36
  year: 2013
  end-page: 12688
  ident: CR30
  article-title: Neural networks applied in chemistry. II. Neuro-evolutionary techniques in process modeling and optimization
  publication-title: Ind Eng Chem Res
– volume: 43
  start-page: 634
  issue: 2
  year: 2013
  end-page: 647
  ident: CR14
  article-title: Gaussian bare-bones differential evolution
  publication-title: IEEE Trans Cybern
– year: 2018
  ident: CR64
  article-title: Parallel protein community detection in large-scale PPI networks based on multi-source learning
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2018.2868088
– volume: 10
  start-page: S867
  issue: 7
  year: 2018
  end-page: S875
  ident: CR66
  article-title: Deep learning aided decision support for pulmonary nodules diagnosing: a review
  publication-title: J Thoracic Dis
– volume: 115
  start-page: 549
  issue: 3
  year: 2002
  end-page: 570
  ident: CR50
  article-title: Simple explanation of the no-free-lunch theorem and its implications
  publication-title: J Optim Theory Appl
  doi: 10.1023/A:1021251113462
– ident: CR63
– ident: CR27
– volume: 22
  start-page: 650
  issue: 5
  year: 2007
  end-page: 658
  ident: CR46
  article-title: Genetic algorithms in optimization of strength and ductility of low-carbon steels
  publication-title: Mater Manuf Process
– volume: 20
  start-page: 4965
  issue: 12
  year: 2016
  end-page: 4980
  ident: CR9
  article-title: Parameter estimation of nonlinear chaotic system by improved TLBO strategy
  publication-title: Soft Comput
– ident: CR48
– ident: CR3
– volume: 8
  start-page: 694
  issue: 3
  year: 1997
  end-page: 713
  ident: CR34
  article-title: A new evolutionary system for evolving artificial neural networks
  publication-title: IEEE Trans Neural Netw
– ident: CR52
– ident: CR17
– volume: 28
  start-page: 919
  issue: 4
  year: 2017
  end-page: 933
  ident: CR61
  article-title: A parallel random forest algorithm for big data in Spark cloud computing environment
  publication-title: IEEE Trans Parallel Distrib Syst
– volume: 38
  start-page: 54
  year: 2018
  end-page: 63
  ident: CR74
  article-title: A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problem
  publication-title: Swarm Evolut Comput
– year: 2018
  ident: CR73
  publication-title: Particle swarm optimization based memetic algorithms framework for scheduling of central planned and distributed flowshops, swarm intelligence: applications
– volume: 2
  start-page: 641
  issue: 6
  year: 1988
  end-page: 648
  ident: CR15
  article-title: Teaching feed-forward neural networks by simulated annealing
  publication-title: Complex Syst
– volume: 35
  start-page: 619
  year: 2012
  end-page: 625
  ident: CR42
  article-title: Prediction of mechanical properties of Fe–Cr–Mo sintered steel in relationship with microstructure
  publication-title: Mater Des
– volume: 44
  start-page: 656
  issue: 9
  year: 2017
  end-page: 665
  ident: CR39
  article-title: An adaptive neuro-fuzzy inference system-based modelling to predict mechanical properties of hot-rolled trip steel
  publication-title: Ironmak Steelmak
– year: 2018
  ident: CR68
  article-title: Performance-aware model for sparse matrix-matrix multiplication on the sunway TaihuLight supercomputer
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2018.2871189
– volume: 44
  start-page: 1447
  issue: 12
  year: 2012
  end-page: 1462
  ident: CR21
  article-title: Teaching-learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problems
  publication-title: Eng Optim
– volume: 70
  start-page: 423
  year: 2018
  end-page: 464
  ident: CR23
  article-title: Soft computing based object detection and tracking approaches: state-of-the-art survey
  publication-title: Appl Soft Comput
– ident: CR28
– ident: CR24
– volume: 129
  start-page: 210
  year: 2017
  end-page: 218
  ident: CR47
  article-title: Artificial neural network application to study quantitative relationship between silicide and fracture toughness of Nb–Si alloys
  publication-title: Mater Des
– volume: 707
  start-page: 452
  year: 2017
  end-page: 458
  ident: CR40
  article-title: Artificial neural network application to microstructure design of Nb–Si alloy to improve ultimate tensile strength
  publication-title: Mater Sci Eng A
– volume: 46
  start-page: 139
  issue: 1
  year: 2016
  end-page: 149
  ident: CR72
  article-title: An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem
  publication-title: IEEE Trans Syst Man Cybern Syst
– volume: 28
  start-page: 15
  issue: 1
  year: 2017
  ident: 4149_CR33
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2293-9
– ident: 4149_CR63
  doi: 10.1016/j.ins.2018.06.045
– volume: 685
  start-page: 310
  year: 2017
  ident: 4149_CR43
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2017.01.023
– volume: 5
  start-page: 1
  issue: 4
  year: 2018
  ident: 4149_CR8
  publication-title: IEEE Trans Ind Inform
– volume: 44
  start-page: 1447
  issue: 12
  year: 2012
  ident: 4149_CR21
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2011.652103
– ident: 4149_CR26
  doi: 10.1109/ICCA.2017.8003085
– ident: 4149_CR28
  doi: 10.1109/ICENCO.2015.7416344
– volume: 43
  start-page: 634
  issue: 2
  year: 2013
  ident: 4149_CR14
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2213808
– volume: 55
  start-page: 1
  year: 2015
  ident: 4149_CR20
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2014.10.008
– ident: 4149_CR29
  doi: 10.1109/ICCES.2017.8275392
– volume: 35
  start-page: 888
  issue: 5
  year: 2008
  ident: 4149_CR16
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.05.070
– ident: 4149_CR2
  doi: 10.1109/CEC.2016.7743990
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 4149_CR13
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 4149_CR11
  publication-title: Mach Learn
  doi: 10.1023/A:1022602019183
– ident: 4149_CR3
– volume-title: Particle swarm optimization based memetic algorithms framework for scheduling of central planned and distributed flowshops, swarm intelligence: applications
  year: 2018
  ident: 4149_CR73
– volume: 20
  start-page: 4965
  issue: 12
  year: 2016
  ident: 4149_CR9
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1786-2
– volume: 382
  start-page: 374
  year: 2017
  ident: 4149_CR18
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.12.024
– volume: 35
  start-page: 619
  year: 2012
  ident: 4149_CR42
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2011.10.011
– volume: 30
  start-page: 3317
  issue: 11
  year: 2018
  ident: 4149_CR59
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2906-y
– volume: 57
  start-page: 1
  year: 2017
  ident: 4149_CR7
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2016.10.009
– ident: 4149_CR48
  doi: 10.1109/FSKD.2018.8686939
– volume: 1
  start-page: 24
  issue: 1
  year: 2019
  ident: 4149_CR54
  publication-title: Nature Mach Intell
  doi: 10.1038/s42256-018-0006-z
– volume: 35
  start-page: 1187
  issue: 5
  year: 2015
  ident: 4149_CR70
  publication-title: Syst Eng Theory Pract
– volume: 36
  start-page: 779
  issue: 3
  year: 2016
  ident: 4149_CR71
  publication-title: Syst Eng Theory Pract
– volume: 70
  start-page: 875
  issue: 4
  year: 2007
  ident: 4149_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.10.018
– volume: 22
  start-page: 11
  issue: 1
  year: 2013
  ident: 4149_CR62
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0741-0
– volume: 30
  start-page: 2531
  issue: 8
  year: 2018
  ident: 4149_CR32
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2844-8
– ident: 4149_CR25
  doi: 10.1109/CEC.2016.7744029
– volume: 85
  start-page: 1395
  issue: 5
  year: 2016
  ident: 4149_CR41
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-015-8039-5
– volume: 30
  start-page: 871
  issue: 3
  year: 2018
  ident: 4149_CR55
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2714-9
– volume: 83
  start-page: 169
  issue: 2
  year: 2012
  ident: 4149_CR44
  publication-title: Steel Res Int
  doi: 10.1002/srin.201100189
– volume: 38
  start-page: 2874
  issue: 11
  year: 2018
  ident: 4149_CR5
  publication-title: Syst Eng Theory Pract
– volume: 46
  start-page: 139
  issue: 1
  year: 2016
  ident: 4149_CR72
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2015.2416127
– year: 2018
  ident: 4149_CR64
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2018.2868088
– ident: 4149_CR57
  doi: 10.1109/TPDS.2018.2877359
– volume: 38
  start-page: 54
  year: 2018
  ident: 4149_CR74
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2017.06.001
– volume: 129
  start-page: 210
  year: 2017
  ident: 4149_CR47
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2017.05.027
– volume: 72
  start-page: 15
  year: 2017
  ident: 4149_CR56
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.06.031
– volume: 2
  start-page: 641
  issue: 6
  year: 1988
  ident: 4149_CR15
  publication-title: Complex Syst
– volume: 107
  start-page: 261
  issue: C
  year: 2016
  ident: 4149_CR22
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2016.06.019
– ident: 4149_CR12
  doi: 10.1109/ICNN.1995.488968
– volume: 24
  start-page: 1221
  issue: 5
  year: 2014
  ident: 4149_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-013-1346-6
– volume: 186
  start-page: 231
  issue: 1
  year: 2011
  ident: 4149_CR10
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-011-0894-3
– volume: 29
  start-page: 1481
  issue: 5
  year: 2018
  ident: 4149_CR38
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2510-6
– volume: 30
  start-page: 488
  issue: 4
  year: 2015
  ident: 4149_CR45
  publication-title: Mater Manuf Process
  doi: 10.1080/10426914.2014.984203
– volume: 438
  start-page: 95
  year: 2018
  ident: 4149_CR6
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.01.041
– volume: 52
  start-page: 12673
  issue: 36
  year: 2013
  ident: 4149_CR30
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie4000954
– volume: 435
  start-page: 124
  year: 2018
  ident: 4149_CR65
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.01.001
– volume: 37
  start-page: 18
  issue: 1
  year: 2007
  ident: 4149_CR1
  publication-title: IEEE Trans Syst Man Cybern Part B (Cybern)
  doi: 10.1109/TSMCB.2006.883272
– volume: 28
  start-page: 919
  issue: 4
  year: 2017
  ident: 4149_CR61
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2016.2603511
– volume: 70
  start-page: 423
  year: 2018
  ident: 4149_CR23
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.05.023
– year: 2018
  ident: 4149_CR68
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2018.2871189
– volume: 707
  start-page: 452
  year: 2017
  ident: 4149_CR40
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2017.09.039
– volume: 44
  start-page: 656
  issue: 9
  year: 2017
  ident: 4149_CR39
  publication-title: Ironmak Steelmak
  doi: 10.1080/03019233.2016.1227025
– volume: 20
  start-page: 939
  issue: 6
  year: 2016
  ident: 4149_CR60
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2016.2555315
– volume: 48
  start-page: 603
  issue: 1
  year: 2018
  ident: 4149_CR53
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-017-9733-0
– volume: 22
  start-page: 650
  issue: 5
  year: 2007
  ident: 4149_CR46
  publication-title: Mater Manuf Process
  doi: 10.1080/10426910701323607
– volume: 8
  start-page: 99
  issue: 2
  year: 2004
  ident: 4149_CR49
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2003.819944
– volume: 28
  start-page: 2911
  issue: 12
  year: 2017
  ident: 4149_CR67
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2609437
– volume: 117
  start-page: 180
  year: 2018
  ident: 4149_CR58
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2017.09.006
– ident: 4149_CR4
  doi: 10.1109/CEC.2016.7744111
– volume: 94
  start-page: 61
  year: 2016
  ident: 4149_CR69
  publication-title: Transp Res Part B Methodol
  doi: 10.1016/j.trb.2016.09.006
– ident: 4149_CR27
  doi: 10.1109/ICCSE.2018.8468778
– ident: 4149_CR17
  doi: 10.1007/978-3-642-13495-1_44
– volume: 8
  start-page: 694
  issue: 3
  year: 1997
  ident: 4149_CR34
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.572107
– ident: 4149_CR52
  doi: 10.1007/978-3-540-37258-5_149
– ident: 4149_CR36
  doi: 10.1007/978-3-540-72395-0_28
– volume: 218
  start-page: 11125
  issue: 22
  year: 2012
  ident: 4149_CR37
  publication-title: Appl Math Comput
– ident: 4149_CR24
– volume: 115
  start-page: 549
  issue: 3
  year: 2002
  ident: 4149_CR50
  publication-title: J Optim Theory Appl
  doi: 10.1023/A:1021251113462
– volume: 10
  start-page: S867
  issue: 7
  year: 2018
  ident: 4149_CR66
  publication-title: J Thoracic Dis
  doi: 10.21037/jtd.2018.02.57
– ident: 4149_CR51
  doi: 10.1109/MC.2013.6608208
– volume: 8
  start-page: 33
  issue: 1
  year: 2016
  ident: 4149_CR19
  publication-title: Int J Bio Inspir Comput
  doi: 10.1504/IJBIC.2016.074630
SSID ssj0004685
Score 2.2825658
Snippet Searching optimal parameters for neural networks can be formulated as a multi-modal optimization problem. This paper proposes a novel water wave optimization...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5583
SubjectTerms Advances in Parallel and Distributed Computing for Neural Computing
Algorithms
Alloying
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer simulation
Data Mining and Knowledge Discovery
High strength low alloy steels
Image Processing and Computer Vision
Mechanical properties
Microalloying
Neural networks
Optimization
Probability and Statistics in Computer Science
Searching
Tensile strength
Water waves
SummonAdditionalLinks – databaseName: ProQuest advanced technologies & aerospace journals
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAc2sGjsJE4mhBAVU9UBpIolspNYqkTTkpRW_ffcuU4LSHRh9sWJ8p19Pt_jI-RaGREpLkIGti9kfqBgHzR5yKRvgzQwrLUlm5C9XjQYxH134Va5tMp6T7QbdTZO8Y78jos4BO0CFbyffDBkjcLoqqPQ2CY72CUBqRv6wdu3ukhLyQkeDGb3-MIVzdjSObwPRUcaQwPgJTDvp2FanzZ_BUit3ek2__vFB2TfnTjpw1JFDslWXhyRZs3mQN3iPiZlv8SgDQJFx4aOcqwJRgjpBC_sS-y8agcwhY9hvH6RZxSUBKwrnQ0VxdaYIF0sE8sragkpQEQv6Fzhq-ZqltMx7FEjV_x5Ql67Ty-Pz8wxMrAUluqUYZDQcK6UUDJLA19nUkcdrrNIgdk3OlBwnvN1GAcdz_hSq9gYEA14pGMeRkKckkYxLvIzQjtciSxK4fQoI19IqaWJVRBnmQ8OJPy6FvFqOJLUtStH1oz3ZNVo2UKYAISJhTDxWuRm9cxk2axjo3S7xi1xC7dK1qC1yG2N_Hr479nON892QfY4euo2VbJNGtPyM78ku-lsOqzKK6u2X8B08qM
  priority: 102
  providerName: ProQuest
Title Prediction of mechanical properties of micro-alloyed steels via neural networks learned by water wave optimization
URI https://link.springer.com/article/10.1007/s00521-019-04149-1
https://www.proquest.com/docview/2396578318
Volume 32
WOSCitedRecordID wos000529745200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LSsNAcNDWgxfrE6u17MGbBtrdJJscVVo8leKL4iXsJlko2AdJbenfO7NN6gMV9LyT3bDz3nkBnCsjAsWF76Du8x3XUygHTeo70rVBGlzW2g6bkL1eMBiE_aIoLC-z3cuQpJXU62I3esEk15ce89Gud9DnqXrUbYZ89PunD9WQdhAn-i2U0-OKolTm-z0-q6N3G_NLWNRqm27tf_-5CzuFdcmuVuSwBxvpeB9q5eQGVjDyAWT9jAI0hBQ2MWyUUv0voYtN6XE-oy6rdoHS9RyKzS_ThCFBoCZl86Fi1AYTocerJPKc2eETCKKXbKHoqIWap2yC8mhUFHoewmO383Bz6xTTF5wY2XLmUEDQcK6UUDKJPVcnUgctrpNAoYo32lNou7naD71W27hSq9AYBPV4oEPuB0IcQWU8GafHwFpciSSI0VKUgSuk1NKEyguTxEVnkYuwDu0SCVFctCanCRkv0bqpsr3UCC81spcatetwsf5mumrM8St0o8RtVDBpHuHJPgoslGp1uCxx-b78824nfwM_hW1OXrpNk2xAZZa9pmewFc9nwzxrQvW60-vfNWGz7z03LSm_AXQo6vM
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT9tAFH5CAam9sHQRaQPMgZ7aUePx2GMfEGKLQNAoqlIpN3fG9khIkKROmih_it_IexObtEjklgPneR7Lnm_evgAcautHWvghR9kXchlo5IM2D7mSLkiDy8a4YROq3Y56vbizBg9VLQylVVY80THqbJCSj_y78OMQ0YUQPB7-4TQ1iqKr1QiNOSyu89kUTbbR0dU5nu8XIVoX3bNLXk4V4CnCbcwp0GWF0NrXKksDaTJloqYwWaRRdFkTaNRJpAnjoOlZqYyOrUXSQEQmFmFEDlBk-evSl2FQg_XTi3bn5z-VmG4IKNpMlE8k_bJMxxXrkQeWTHcKRqBdwr3_ReFCv30WknWSrrX12v7RNmyWOjU7mV-CHVjL--9gq5pXwUr29R6KTkFhKYIiG1h2n1PVM4GUDSkkUVBvWbdASYqcMhJmecbwGqD-wCa3mlHzT6Tuz1PnR8yN3EASM2NTTa-a6knOBsiF78vy1g_wayVf_hFq_UE_3wXWFNrPohT1YxVJXymjbKyDOMskmsh4VHXwquNP0rIhO80FuUueWkk7yCQImcRBJvHq8PXpmeG8HclS6kaFk6RkTaNkAZI6fKuQtlh-ebdPy3c7gDeX3R83yc1V-_ozvBXkl3CJoQ2ojYu_-R5spJPx7ajYLy8Ng9-rxuAj5FRQFw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yRXxxfuJ0ah5807ItSZv2UdShKGP4xd5K0jYwcN3o5sb-e--ydpuigvica1JyyX3k7ndHyJky3FeMew7oPs8RrgI5aBLPkcIGaWBYa9tsQrZafqcTtJdQ_DbbvQhJzjANWKUpHdUGsanNgW_4moluMD7sg43vgP-zKsCTwaSux6fXJWSkbcoJPgzm9wiew2a-n-OzalrYm19CpFbzNMv__-ctsplbnfRydky2yUqS7pBy0dGB5hd8l2TtDAM3yCzaN7SXIC4Y2UgH-GifYfVVO4BpfA7G7KdJTOGggIal466iWB4TqNNZcvmQ2qYUQKKndKJwqYkaJ7QPcqqXA0D3yEvz5vnq1sm7MjgRXNeRg4FCw5hSXMk4coWOpfbrTMe-AtVvtKvAphPaC9x6wwipVWAMkLrM1wHzfM73SSntp8kBoXWmeOxHYEFKX3AptTSBcoM4FuBEMh5USKNgSBjlJcuxc8ZbOC-2bDc1hE0N7aaGjQo5n38zmBXs-JW6WvA5zC_vMISVPRBkIO0q5KLg62L459kO_0Z-Stbb183w4a51f0Q2GDryNpOySkqj7D05JmvReNQdZif2TH8AK3n0IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+mechanical+properties+of+micro-alloyed+steels+via+neural+networks+learned+by+water+wave+optimization&rft.jtitle=Neural+computing+%26+applications&rft.au=Liu%2C+Ao&rft.au=Li%2C+Peng&rft.au=Sun%2C+Weiliang&rft.au=Deng%2C+Xudong&rft.date=2020-05-01&rft.pub=Springer+London&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=10&rft.spage=5583&rft.epage=5598&rft_id=info:doi/10.1007%2Fs00521-019-04149-1&rft.externalDocID=10_1007_s00521_019_04149_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon