Multi-objective heuristics algorithm for dynamic resource scheduling in the cloud computing environment

Cloud infrastructure provides resources needed for tasks for resource scheduling. This work uses a genetic algorithm based on encoded chromosome (GEC-DRP) to manage dynamic resource scheduling. However, the existing scheduling algorithm estimates the number of required physical machines (PM) needed...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 77; no. 8; pp. 8252 - 8280
Main Authors: Devi, K. Lalitha, Valli, S.
Format: Journal Article
Language:English
Published: New York Springer US 01.08.2021
Springer Nature B.V
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cloud infrastructure provides resources needed for tasks for resource scheduling. This work uses a genetic algorithm based on encoded chromosome (GEC-DRP) to manage dynamic resource scheduling. However, the existing scheduling algorithm estimates the number of required physical machines (PM) needed for the client in the future. This developed scheduling algorithm schedules the tasks on cloud by calculating the number of virtual machines needed in the near future along with their predicted CPU and memory requirements, which is the main contribution of the work. K-means algorithm clusters the tasks based on CPU and memory usage as parameters. The future arrival of tasks for every cluster is predicted and accordingly, the required number of VMs is created. The incoming requests known as tasks are scheduled on the appropriate VM using the genetic algorithm (GA). Based on the workload prediction results, a cost-optimized resource scheduling strategy in cloud computing environment is proposed aiming at minimizing the total cost of rental virtual machines from the central cloud. Finally, a genetic algorithm is used to solve the resource scheduling strategy. The developed algorithms are evaluated by the workload prediction accuracy, the total cost of the cluster and the algorithm’s consuming time for solving the resource scheduling problems through the experiments. Finally, the effective of workload prediction algorithm based on SES and cost-optimized resource scheduling strategy is verified by simulation.
AbstractList Cloud infrastructure provides resources needed for tasks for resource scheduling. This work uses a genetic algorithm based on encoded chromosome (GEC-DRP) to manage dynamic resource scheduling. However, the existing scheduling algorithm estimates the number of required physical machines (PM) needed for the client in the future. This developed scheduling algorithm schedules the tasks on cloud by calculating the number of virtual machines needed in the near future along with their predicted CPU and memory requirements, which is the main contribution of the work. K-means algorithm clusters the tasks based on CPU and memory usage as parameters. The future arrival of tasks for every cluster is predicted and accordingly, the required number of VMs is created. The incoming requests known as tasks are scheduled on the appropriate VM using the genetic algorithm (GA). Based on the workload prediction results, a cost-optimized resource scheduling strategy in cloud computing environment is proposed aiming at minimizing the total cost of rental virtual machines from the central cloud. Finally, a genetic algorithm is used to solve the resource scheduling strategy. The developed algorithms are evaluated by the workload prediction accuracy, the total cost of the cluster and the algorithm’s consuming time for solving the resource scheduling problems through the experiments. Finally, the effective of workload prediction algorithm based on SES and cost-optimized resource scheduling strategy is verified by simulation.
Author Devi, K. Lalitha
Valli, S.
Author_xml – sequence: 1
  givenname: K. Lalitha
  orcidid: 0000-0003-0284-3522
  surname: Devi
  fullname: Devi, K. Lalitha
  email: lalithavelu10@gmail.com
  organization: Department of Computer Science and Engineering, College of Engineering, Guindy Campus, Anna University
– sequence: 2
  givenname: S.
  surname: Valli
  fullname: Valli, S.
  organization: Department of Computer Science and Engineering, College of Engineering, Guindy Campus, Anna University
BookMark eNp9kE9LAzEQxYNUsK1-AU8Bz6uTZNvdPUrxHyhe9ByS7KRN2U1qkhX67d1aQfDgaWDm_eY93oxMfPBIyCWDawZQ3STGOK8K4FCAWMKy4CdkyhaVKKCsywmZQjOe6kXJz8gspS0AlKISU7J-GbrsiqC3aLL7RLrBIbqUnUlUdesQXd701IZI271XvTM0YgpDNEiT2WA7dM6vqfM0b5CaLgwtNaHfDfmwRv_pYvA9-nxOTq3qEl78zDl5v797Wz0Wz68PT6vb58II1uSiAQaC17xZCqaYEqUFtAiGoRUaobJtraC1ZWNEYy3noFvFtdUadakb1GJOro5_dzF8DJiy3I5p_Wgp-WLBeV2PFqOqPqpMDClFtNK4rLILPkflOslAHmqVx1rlWKv8rlXyEeV_0F10vYr7_yFxhNIo9muMv6n-ob4ADVePfQ
CitedBy_id crossref_primary_10_1002_nem_2318
crossref_primary_10_1016_j_compeleceng_2025_110080
crossref_primary_10_1186_s13638_023_02253_4
crossref_primary_10_3390_en16062900
crossref_primary_10_1049_tje2_12420
crossref_primary_10_1007_s10586_023_04018_6
crossref_primary_10_1002_smr_2433
crossref_primary_10_2478_cait_2024_0023
crossref_primary_10_1109_ACCESS_2025_3529839
crossref_primary_10_1007_s11227_023_05571_y
crossref_primary_10_1007_s11277_024_11465_w
crossref_primary_10_3233_JIFS_238427
crossref_primary_10_1049_ntw2_12033
crossref_primary_10_1002_cpe_7606
crossref_primary_10_1080_01605682_2024_2386364
crossref_primary_10_1007_s10586_022_03663_7
crossref_primary_10_1109_ACCESS_2024_3472212
crossref_primary_10_1016_j_procs_2025_04_200
Cites_doi 10.1016/j.future.2016.02.016
10.1109/TPDS.2012.283
10.1109/12.817403
10.1177/0020720919894199
10.1016/j.asoc.2014.01.036
10.1109/TNSM.2015.2436408
10.1016/j.cor.2013.06.012
10.1016/j.jnca.2019.06.006
10.1016/j.ins.2014.02.122
10.3844/jcssp.2011.877.883
10.1002/dac.4596
10.1109/TNSM.2013.051913.120278
10.1007/s11227-018-2669-y
10.1016/j.jnca.2018.03.028
10.1109/TASE.2017.2693688
10.1109/TCC.2014.2306427
10.1371/journal.pone.0176321
10.1109/ACCESS.2019.2948704
10.1016/j.jss.2016.07.006
10.1007/s11227-019-03134-8
10.1007/s11227-019-02748-2ci
10.1109/TPDS.2015.2446459
10.1007/s11227-020-03163-8
10.1007/s11227-020-03305-y
10.1109/ICEEOT.2016.7755364
10.1109/ICECA.2019.8822020
10.1109/CICN.2014.128
10.1109/CCIS.2011.6045063
10.1145/2391229.2391236
10.6084/m9.figshare.4877438.v2
10.1145/2656075.2656095
10.1109/CICN.2014.220
10.1109/DCABES.2014.18
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-020-03606-2
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 8280
ExternalDocumentID 10_1007_s11227_020_03606_2
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-901032829631a1a34f0efe0c1ef3be07fd8a0df49c39ff220bda2bfbbeb4b9eb3
IEDL.DBID RSV
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608655000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 00:55:39 EDT 2025
Tue Nov 18 21:41:57 EST 2025
Sat Nov 29 04:27:39 EST 2025
Fri Feb 21 02:48:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Task scheduling
Cloud computing
Genetic algorithm
Data clustering
Workload prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-901032829631a1a34f0efe0c1ef3be07fd8a0df49c39ff220bda2bfbbeb4b9eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0284-3522
PQID 2552288901
PQPubID 2043774
PageCount 29
ParticipantIDs proquest_journals_2552288901
crossref_citationtrail_10_1007_s11227_020_03606_2
crossref_primary_10_1007_s11227_020_03606_2
springer_journals_10_1007_s11227_020_03606_2
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Tsai, Fang, Chou (CR4) 2013; 40
Al-Maytami, Fan, Hussain, Baker, Liatsis (CR1) 2019; 7
Yao, Wang (CR28) 2020
CR39
CR38
CR36
CR34
CR32
Xiao, Song, Chen (CR16) 2013; 24
CR31
Hartigan, Wong (CR26) 1979; 28
CR30
Hu, Li, Hu, Chen, Ge, Li, Chang (CR21) 2018; 114
Madni, Latiff, Abdullahi, Usman (CR33) 2017; 12
Jiang, Perng, Li, Chang (CR37) 2013; 10
Nashaat, Ashry, Rizk (CR15) 2019; 75
Arianyan, Maleki, Yari, Arianyan (CR8) 2012; 2012
Zhu, Zhang, Li, Liu (CR23) 2015; 27
Kurdi, Alfaries, Al-Anazi, Alkharji, Addegaither, Altoaimy, Ahmed (CR35) 2019; 75
Zhang, Zhou (CR41) 2017; 15
CR2
CR3
Suresh Kumar, Jagadeesh Kannan (CR18) 2020
Cai, Zhu, Bai, Lin, Zhou, Li (CR40) 2020; 76
Duan, Chen, Min, Wu (CR17) 2017; 74
Li, Bai, Luo (CR13) 2020
Liang, Dong, Wang, Zhang (CR14) 2020
CR29
Dabbagh, Hamdaoui, Guizani, Rayes (CR5) 2015; 12
CR27
Kumar, Sharma, Goel, Singh (CR12) 2019; 143
CR25
CR24
Xu, Li, Hu, Li (CR19) 2014; 270
Zhang, Zhani, Boutaba, Hellerstein (CR11) 2014; 2
CR22
Mehdi, Mamat, Ibrahim, Subramaniam (CR7) 2011; 7
CR20
Iverson, Ozguner, Potter (CR10) 1999; 48
Keshanchi, Souri, Navimipour (CR6) 2017; 124
Tao, Feng, Zhang, Liao (CR9) 2014; 19
H Duan (3606_CR17) 2017; 74
3606_CR29
B Keshanchi (3606_CR6) 2017; 124
MA Iverson (3606_CR10) 1999; 48
3606_CR25
3606_CR27
SHH Madni (3606_CR33) 2017; 12
BA Al-Maytami (3606_CR1) 2019; 7
3606_CR22
D Suresh Kumar (3606_CR18) 2020
3606_CR24
M Kumar (3606_CR12) 2019; 143
Z Zhu (3606_CR23) 2015; 27
3606_CR20
C Li (3606_CR13) 2020
B Liang (3606_CR14) 2020
W Cai (3606_CR40) 2020; 76
P Zhang (3606_CR41) 2017; 15
M Dabbagh (3606_CR5) 2015; 12
H Kurdi (3606_CR35) 2019; 75
Q Zhang (3606_CR11) 2014; 2
JT Tsai (3606_CR4) 2013; 40
Z Xiao (3606_CR16) 2013; 24
H Nashaat (3606_CR15) 2019; 75
3606_CR36
JA Hartigan (3606_CR26) 1979; 28
3606_CR38
3606_CR39
3606_CR32
3606_CR34
F Tao (3606_CR9) 2014; 19
3606_CR30
NA Mehdi (3606_CR7) 2011; 7
Y Xu (3606_CR19) 2014; 270
3606_CR31
E Arianyan (3606_CR8) 2012; 2012
3606_CR3
3606_CR2
H Hu (3606_CR21) 2018; 114
Y Yao (3606_CR28) 2020
Y Jiang (3606_CR37) 2013; 10
References_xml – volume: 74
  start-page: 142
  year: 2017
  end-page: 150
  ident: CR17
  article-title: Energy-aware scheduling of virtual machines in heterogeneous cloud computing systems
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2016.02.016
– ident: CR22
– volume: 24
  start-page: 1107
  issue: 6
  year: 2013
  end-page: 1117
  ident: CR16
  article-title: Dynamic resource allocation using virtual machines for cloud computing environment
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2012.283
– volume: 48
  start-page: 1374
  issue: 12
  year: 1999
  end-page: 1379
  ident: CR10
  article-title: Statistical prediction of task execution times through analytic benchmarking for scheduling in a heterogeneous environment
  publication-title: IEEE Trans Comput
  doi: 10.1109/12.817403
– ident: CR39
– ident: CR2
– year: 2020
  ident: CR18
  article-title: Reinforcement learning-based controller for adaptive workflow scheduling in multi-tenant cloud computing
  publication-title: Int J Electr Eng Educ
  doi: 10.1177/0020720919894199
– ident: CR30
– volume: 19
  start-page: 264
  issue: 2014
  year: 2014
  end-page: 279
  ident: CR9
  article-title: CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.01.036
– volume: 12
  start-page: 377
  issue: 3
  year: 2015
  end-page: 391
  ident: CR5
  article-title: Energy-efficient resource allocation and provisioning framework for cloud data centers
  publication-title: IEEE Trans Netw Serv Manage
  doi: 10.1109/TNSM.2015.2436408
– volume: 40
  start-page: 3045
  issue: 12
  year: 2013
  end-page: 3055
  ident: CR4
  article-title: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2013.06.012
– ident: CR29
– volume: 143
  start-page: 1
  year: 2019
  end-page: 33
  ident: CR12
  article-title: A comprehensive survey for scheduling techniques in cloud computing
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2019.06.006
– volume: 270
  start-page: 255
  year: 2014
  end-page: 287
  ident: CR19
  article-title: A genetic algorithm for task scheduling on heterogeneous computing systems using multiple priority queues
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.122
– volume: 7
  start-page: 877
  issue: 6
  year: 2011
  ident: CR7
  article-title: Impatient task mapping in elastic cloud using genetic algorithm
  publication-title: J Comput Sci
  doi: 10.3844/jcssp.2011.877.883
– year: 2020
  ident: CR28
  article-title: Privacy information antistealing control method of medical system based on cloud computing
  publication-title: Int J Commun Syst
  doi: 10.1002/dac.4596
– ident: CR25
– ident: CR27
– volume: 10
  start-page: 312
  issue: 3
  year: 2013
  end-page: 325
  ident: CR37
  article-title: Cloud analytics for capacity planning and instant vm provisioning
  publication-title: IEEE Trans Netw Serv Manage
  doi: 10.1109/TNSM.2013.051913.120278
– volume: 75
  start-page: 3534
  issue: 7
  year: 2019
  end-page: 3554
  ident: CR35
  article-title: A lightweight trust management algorithm based on subjective logic for interconnected cloud computing environments
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2669-y
– volume: 114
  start-page: 108
  year: 2018
  end-page: 122
  ident: CR21
  article-title: Multi-objective scheduling for scientific workflow in multicloud environment
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2018.03.028
– volume: 15
  start-page: 772
  issue: 2
  year: 2017
  end-page: 783
  ident: CR41
  article-title: Dynamic cloud task scheduling based on a two-stage strategy
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2017.2693688
– volume: 2012
  start-page: 566
  year: 2012
  end-page: 570
  ident: CR8
  article-title: November. Efficient resource allocation in cloud data centers through genetic algorithm
  publication-title: IEEE Sixth Int Symp Telecommun (IST)
– volume: 2
  start-page: 14
  issue: 1
  year: 2014
  end-page: 28
  ident: CR11
  article-title: Dynamic heterogeneity-aware resource provisioning in the cloud
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2014.2306427
– volume: 12
  start-page: e0176321
  issue: 5
  year: 2017
  ident: CR33
  article-title: Performance comparison of heuristic algorithms for task scheduling in IaaS cloud computing environment
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0176321
– volume: 7
  start-page: 160916
  year: 2019
  end-page: 160926
  ident: CR1
  article-title: A task scheduling algorithm with improved makespan based on prediction of tasks computation time algorithm for cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948704
– volume: 124
  start-page: 1
  year: 2017
  end-page: 21
  ident: CR6
  article-title: An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2016.07.006
– ident: CR3
– ident: CR38
– ident: CR31
– year: 2020
  ident: CR13
  article-title: Efficient resource scaling based on load fluctuation in edge-cloud computing environment
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-03134-8
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  end-page: 108
  ident: CR26
  article-title: Algorithm AS 136: a k-means clustering algorithm
  publication-title: J R Stat Soc Ser C (Applied Statistics)
– ident: CR32
– ident: CR34
– ident: CR36
– volume: 75
  start-page: 3842
  issue: 7
  year: 2019
  end-page: 3865
  ident: CR15
  article-title: Smart elastic scheduling algorithm for virtual machine migration in cloud computing
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-02748-2ci
– volume: 27
  start-page: 1344
  issue: 5
  year: 2015
  end-page: 1357
  ident: CR23
  article-title: Evolutionary multi-objective workflow scheduling in cloud
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2446459
– year: 2020
  ident: CR14
  article-title: A low-power task scheduling algorithm for heterogeneous cloud computing
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03163-8
– ident: CR24
– ident: CR20
– volume: 76
  start-page: 6113
  year: 2020
  end-page: 6139
  ident: CR40
  article-title: A cost saving and load balancing task scheduling model for computational biology in heterogeneous cloud datacenters
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03305-y
– volume: 12
  start-page: e0176321
  issue: 5
  year: 2017
  ident: 3606_CR33
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0176321
– year: 2020
  ident: 3606_CR18
  publication-title: Int J Electr Eng Educ
  doi: 10.1177/0020720919894199
– volume: 76
  start-page: 6113
  year: 2020
  ident: 3606_CR40
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03305-y
– ident: 3606_CR31
– volume: 10
  start-page: 312
  issue: 3
  year: 2013
  ident: 3606_CR37
  publication-title: IEEE Trans Netw Serv Manage
  doi: 10.1109/TNSM.2013.051913.120278
– volume: 124
  start-page: 1
  year: 2017
  ident: 3606_CR6
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2016.07.006
– ident: 3606_CR22
  doi: 10.1109/ICEEOT.2016.7755364
– ident: 3606_CR3
– ident: 3606_CR2
  doi: 10.1109/ICECA.2019.8822020
– ident: 3606_CR20
  doi: 10.1109/CICN.2014.128
– ident: 3606_CR25
  doi: 10.1109/CCIS.2011.6045063
– year: 2020
  ident: 3606_CR13
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-03134-8
– ident: 3606_CR29
  doi: 10.1145/2391229.2391236
– volume: 7
  start-page: 160916
  year: 2019
  ident: 3606_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2948704
– volume: 19
  start-page: 264
  issue: 2014
  year: 2014
  ident: 3606_CR9
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.01.036
– volume: 143
  start-page: 1
  year: 2019
  ident: 3606_CR12
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2019.06.006
– volume: 75
  start-page: 3842
  issue: 7
  year: 2019
  ident: 3606_CR15
  publication-title: J Supercomput
  doi: 10.1007/s11227-019-02748-2ci
– volume: 7
  start-page: 877
  issue: 6
  year: 2011
  ident: 3606_CR7
  publication-title: J Comput Sci
  doi: 10.3844/jcssp.2011.877.883
– ident: 3606_CR27
– volume: 2012
  start-page: 566
  year: 2012
  ident: 3606_CR8
  publication-title: IEEE Sixth Int Symp Telecommun (IST)
– volume: 48
  start-page: 1374
  issue: 12
  year: 1999
  ident: 3606_CR10
  publication-title: IEEE Trans Comput
  doi: 10.1109/12.817403
– year: 2020
  ident: 3606_CR14
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03163-8
– volume: 2
  start-page: 14
  issue: 1
  year: 2014
  ident: 3606_CR11
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2014.2306427
– ident: 3606_CR39
  doi: 10.6084/m9.figshare.4877438.v2
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 3606_CR26
  publication-title: J R Stat Soc Ser C (Applied Statistics)
– volume: 24
  start-page: 1107
  issue: 6
  year: 2013
  ident: 3606_CR16
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2012.283
– volume: 74
  start-page: 142
  year: 2017
  ident: 3606_CR17
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2016.02.016
– ident: 3606_CR30
– ident: 3606_CR32
– volume: 75
  start-page: 3534
  issue: 7
  year: 2019
  ident: 3606_CR35
  publication-title: J Supercomput
  doi: 10.1007/s11227-018-2669-y
– ident: 3606_CR38
  doi: 10.1145/2656075.2656095
– volume: 27
  start-page: 1344
  issue: 5
  year: 2015
  ident: 3606_CR23
  publication-title: IEEE Trans Parallel Distrib Syst
  doi: 10.1109/TPDS.2015.2446459
– year: 2020
  ident: 3606_CR28
  publication-title: Int J Commun Syst
  doi: 10.1002/dac.4596
– volume: 40
  start-page: 3045
  issue: 12
  year: 2013
  ident: 3606_CR4
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2013.06.012
– volume: 270
  start-page: 255
  year: 2014
  ident: 3606_CR19
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.122
– ident: 3606_CR34
  doi: 10.1109/CICN.2014.220
– volume: 12
  start-page: 377
  issue: 3
  year: 2015
  ident: 3606_CR5
  publication-title: IEEE Trans Netw Serv Manage
  doi: 10.1109/TNSM.2015.2436408
– ident: 3606_CR36
  doi: 10.1109/DCABES.2014.18
– ident: 3606_CR24
– volume: 15
  start-page: 772
  issue: 2
  year: 2017
  ident: 3606_CR41
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2017.2693688
– volume: 114
  start-page: 108
  year: 2018
  ident: 3606_CR21
  publication-title: J Netw Comput Appl
  doi: 10.1016/j.jnca.2018.03.028
SSID ssj0004373
Score 2.4015453
Snippet Cloud infrastructure provides resources needed for tasks for resource scheduling. This work uses a genetic algorithm based on encoded chromosome (GEC-DRP) to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8252
SubjectTerms Central processing units
Cloud computing
Clusters
Compilers
Computer memory
Computer Science
CPUs
Genetic algorithms
Interpreters
Multiple objective analysis
Processor Architectures
Programming Languages
Resource scheduling
Schedules
Scheduling
Task scheduling
Virtual environments
Workload
Workloads
Title Multi-objective heuristics algorithm for dynamic resource scheduling in the cloud computing environment
URI https://link.springer.com/article/10.1007/s11227-020-03606-2
https://www.proquest.com/docview/2552288901
Volume 77
WOSCitedRecordID wos000608655000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG_M9ODF-Rmn0_TgTUmglEGPxrh4Woxf2a2hpd1mJiyM-ff7WoqoURO9Qlvgte-L937vIXTGBloHYMZ6msQGkqOoJwQIw4hFWZJKUDGxsM0m4tEoGY_ZrQOFLZts9yYkaSV1C3YLCIk94-6A1AU_GATvuileYvoW3N0_tWjIsI4rMxiZRJQ4qMz3a3xWR62N-SUsarXNsPu_99xGW866xJf1cdhBayrfRd2mcwN2jLyHJhZ36xXiuZZ3eKpWrmQzTueTopxV0xcM9izO6o71uHS_-TF4w6CdDIgdz3IM5iOW82KVYWkfYi5_wM7to8fh9cPVjedaLngSeLGyyRqhCa4OwiAN0pBqX2nly0DpUCg_1rCBfqYpkyHTmhBfZCkRWgglqGDgmB-gTl7k6hBhU9stM_JUMEGBzxNKoxTsAyoFXBqQHgoaynPp6pGbthhz3lZSNpTkQEluKclhzvn7nEVdjePX0f1mQ7njzCUHF4qQJIEP7aGLZgPb2z-vdvS34cdok5j0F5sr2EedqlypE7QhX6vZsjy1J_YN4ErlhA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT4MwEG_MNNEX52ecTu2Db0oCpQx4NMZlxrkYnWZvhJZ2m5lgGPPv91qKqFETfYW2wLX3xd3vDqGTsCOlA2asJYmvIDmCWoyBMPRCLwliDirGZ7rZhD8YBKNReGtAYfMq270KSWpJXYPdHEJ8S7k7IHXBDwbBu0yJ46pzfXf_WKMh3TKuHMLIwKPEQGW-X-OzOqptzC9hUa1tus3_vecGWjfWJT4vj8MmWhLpFmpWnRuwYeRtNNa4WytjT6W8wxOxMCWbcTwbZ_m0mDxjsGdxUnasx7n5zY_BGwbtpEDseJpiMB8xn2WLBHP9EHX5A3ZuBz10L4cXPcu0XLA48GKhkzVcFVztuE7sxC6VtpDC5o6QLhO2L2ED7UTSkLuhlITYLIkJk4wJRlkIjvkuaqRZKvYQVrXdEiVPWcgo8HlAqReDfUA5g0sd0kJORfmIm3rkqi3GLKorKStKRkDJSFMygjmn73Neymocv45uVxsaGc6cR-BCERIE8KEtdFZtYH3759X2_zb8GK32hjf9qH81uD5Aa0Slwui8wTZqFPlCHKIV_lpM5_mRPr1vqsDoaA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT4MwEG-MGuOL8zNOp_bBNyWDUgY8GnXRaJYlfmRvDS3tNjNhYcy_32sBmUZNjK_QFuj1vrj73SF0GnaUcsCMtRTxNSRHUotzEIZe6MVBJEDF-Nw0m_B7vWAwCPsLKH6T7V6FJAtMg67SlOTtaazaNfDNIcS3tOsDEhh8YhDCK1RXQ9P--sNzjYx0ixhzCCMDj5ISNvP9Gp9VU21vfgmRGs3Tbfz_nTfRRml14ovimGyhJZlso0bV0QGXDL6DhgaPa6X8pZCDeCTnZSlnHE2GaTbOR68Y7FwcF53scVb-_sfgJYPW0uB2PE4wmJVYTNJ5jIV5iL68gKnbRU_d68fLG6tsxWAJ4NHcJHG4OujacZ3IiVyqbKmkLRypXC5tXwFh7VjRULihUoTYPI4IV5xLTnkIDvseWk7SRO4jrGu-xVrO8pBT4P-AUi8Cu4EKDpc6pImcigpMlHXKdbuMCasrLOudZLCTzOwkgzlnH3OmRZWOX0e3KuKykmNnDFwrQoIAPrSJziti1rd_Xu3gb8NP0Fr_qsvub3t3h2id6AwZk07YQst5NpdHaFW85eNZdmwO8jvYnPFM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+heuristics+algorithm+for+dynamic+resource+scheduling+in+the+cloud+computing+environment&rft.jtitle=The+Journal+of+supercomputing&rft.au=Lalitha%2C+Devi+K&rft.au=Valli%2C+S&rft.date=2021-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=77&rft.issue=8&rft.spage=8252&rft.epage=8280&rft_id=info:doi/10.1007%2Fs11227-020-03606-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon