Multi-objective heuristics algorithm for dynamic resource scheduling in the cloud computing environment

Cloud infrastructure provides resources needed for tasks for resource scheduling. This work uses a genetic algorithm based on encoded chromosome (GEC-DRP) to manage dynamic resource scheduling. However, the existing scheduling algorithm estimates the number of required physical machines (PM) needed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing Jg. 77; H. 8; S. 8252 - 8280
Hauptverfasser: Devi, K. Lalitha, Valli, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2021
Springer Nature B.V
Schlagworte:
ISSN:0920-8542, 1573-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud infrastructure provides resources needed for tasks for resource scheduling. This work uses a genetic algorithm based on encoded chromosome (GEC-DRP) to manage dynamic resource scheduling. However, the existing scheduling algorithm estimates the number of required physical machines (PM) needed for the client in the future. This developed scheduling algorithm schedules the tasks on cloud by calculating the number of virtual machines needed in the near future along with their predicted CPU and memory requirements, which is the main contribution of the work. K-means algorithm clusters the tasks based on CPU and memory usage as parameters. The future arrival of tasks for every cluster is predicted and accordingly, the required number of VMs is created. The incoming requests known as tasks are scheduled on the appropriate VM using the genetic algorithm (GA). Based on the workload prediction results, a cost-optimized resource scheduling strategy in cloud computing environment is proposed aiming at minimizing the total cost of rental virtual machines from the central cloud. Finally, a genetic algorithm is used to solve the resource scheduling strategy. The developed algorithms are evaluated by the workload prediction accuracy, the total cost of the cluster and the algorithm’s consuming time for solving the resource scheduling problems through the experiments. Finally, the effective of workload prediction algorithm based on SES and cost-optimized resource scheduling strategy is verified by simulation.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-020-03606-2