Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces
In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily sma...
Saved in:
| Published in: | Journal of dynamics and differential equations Vol. 34; no. 4; pp. 2841 - 2865 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.12.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1040-7294, 1572-9222 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results. |
|---|---|
| AbstractList | In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results. |
| Author | Rodrigues, H. M. Caraballo, T. Nakassima, G. K. |
| Author_xml | – sequence: 1 givenname: H. M. surname: Rodrigues fullname: Rodrigues, H. M. organization: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo – sequence: 2 givenname: T. orcidid: 0000-0003-4697-898X surname: Caraballo fullname: Caraballo, T. email: caraball@us.es organization: Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla – sequence: 3 givenname: G. K. surname: Nakassima fullname: Nakassima, G. K. organization: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo |
| BookMark | eNp9kcFqGzEQhkVJoYnbF-hJ0PM2s9LaKx1T100ChoS0PQutPGoU1pKjkSF5jL5xFG8gkENOGsT3_czwn7CjmCIy9rWF7y1Af0otKNU1IKABreZdIz-w43bei0YLIY7qDB00vdDdJ3ZCdAdQMamP2f-bNOypRCTiyfPVw64GxxLsyH8Gd5tK2j7yELnly9FOzDlGzHYMhBt-Nm4TFX6NOaRNcHwdItpcVe8xv-Ss7ve2hBTpOecy-hBDwYpsMVL9rsQPG6275b931iF9Zh-9HQm_vLwz9vfX6s_yollfnV8uz9aNk60ujQbw9Qht-zr0wwY62VuBKMAvtIKhkx7mAFI5t-hgQCFAghr04KyYg9jIGfs25e5yut8jFXOX9rmuQ0b0UkrVL6SqlJoolxNRRm9cKIdzSrZhNC2Y5wLMVICpBZhDAUZWVbxRdzlsbX58X5KTRBWO_zC_bvWO9QTWO5ud |
| CitedBy_id | crossref_primary_10_1002_mma_11204 crossref_primary_10_1007_s00245_025_10284_0 crossref_primary_10_1007_s11785_025_01716_4 |
| Cites_doi | 10.1016/j.na.2010.12.025 10.1007/BFb0089647 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10884-020-09854-3 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1572-9222 |
| EndPage | 2865 |
| ExternalDocumentID | 10_1007_s10884_020_09854_3 |
| GrantInformation_xml | – fundername: Ministerio de Ciencia, Innovación y Universidades grantid: PGC2018-096540-B-I00 funderid: http://dx.doi.org/10.13039/100014440 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 29K 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS JQ2 |
| ID | FETCH-LOGICAL-c319t-900f0099a700f7bd0437a2ee20f6980b43f050038cc640be220308b9bca2502d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538209300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1040-7294 |
| IngestDate | Wed Sep 17 23:57:59 EDT 2025 Tue Nov 18 22:26:42 EST 2025 Sat Nov 29 05:56:08 EST 2025 Fri Feb 21 02:44:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Nonautonomous ordinary differential equations Generalized almost period functions Exponential dichotomy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c319t-900f0099a700f7bd0437a2ee20f6980b43f050038cc640be220308b9bca2502d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4697-898X |
| PQID | 2733387638 |
| PQPubID | 2043775 |
| PageCount | 25 |
| ParticipantIDs | proquest_journals_2733387638 crossref_citationtrail_10_1007_s10884_020_09854_3 crossref_primary_10_1007_s10884_020_09854_3 springer_journals_10_1007_s10884_020_09854_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of dynamics and differential equations |
| PublicationTitleAbbrev | J Dyn Diff Equat |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | DaleckĭiJLKreinMGStability of Solutions of Differential Equations in Banach Space, Translation of Mathematical Monographs1974ProvidenceAmerican Mathematical Society Rodrigues, H.M., Solà-Morales, J., Nakassima, G.K.: Stability problems in non autonomous linear differential equations in infinite dimensions (2019). arXiv:1906.04642 HenryDGeometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics1981BerlinSpringer10.1007/BFb0089647 CarvalhoANLangaJARobinsonJCAttractors of Infinite Dimensional Nonautonomous Dynamical Syustems2011BerlinSpringer KloedenPERodriguesHMDynamics of a class of ODEs more general than almost periodicNonlinear Anal.20117426952719277651910.1016/j.na.2010.12.0251217.34101 Rodrigues, H.M.: Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos (1970) CoppelWADichotomies in Stability Theory1970BerlinSpringer629 D Henry (9854_CR4) 1981 JL Daleckĭi (9854_CR3) 1974 WA Coppel (9854_CR2) 1970 PE Kloeden (9854_CR5) 2011; 74 AN Carvalho (9854_CR1) 2011 9854_CR7 9854_CR6 |
| References_xml | – reference: CarvalhoANLangaJARobinsonJCAttractors of Infinite Dimensional Nonautonomous Dynamical Syustems2011BerlinSpringer – reference: HenryDGeometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics1981BerlinSpringer10.1007/BFb0089647 – reference: KloedenPERodriguesHMDynamics of a class of ODEs more general than almost periodicNonlinear Anal.20117426952719277651910.1016/j.na.2010.12.0251217.34101 – reference: Rodrigues, H.M., Solà-Morales, J., Nakassima, G.K.: Stability problems in non autonomous linear differential equations in infinite dimensions (2019). arXiv:1906.04642 – reference: DaleckĭiJLKreinMGStability of Solutions of Differential Equations in Banach Space, Translation of Mathematical Monographs1974ProvidenceAmerican Mathematical Society – reference: Rodrigues, H.M.: Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos (1970) – reference: CoppelWADichotomies in Stability Theory1970BerlinSpringer629 – volume: 74 start-page: 2695 year: 2011 ident: 9854_CR5 publication-title: Nonlinear Anal. doi: 10.1016/j.na.2010.12.025 – ident: 9854_CR7 – volume-title: Attractors of Infinite Dimensional Nonautonomous Dynamical Syustems year: 2011 ident: 9854_CR1 – start-page: 629 volume-title: Dichotomies in Stability Theory year: 1970 ident: 9854_CR2 – ident: 9854_CR6 – volume-title: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics year: 1981 ident: 9854_CR4 doi: 10.1007/BFb0089647 – volume-title: Stability of Solutions of Differential Equations in Banach Space, Translation of Mathematical Monographs year: 1974 ident: 9854_CR3 |
| SSID | ssj0009839 |
| Score | 2.3031855 |
| Snippet | In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2841 |
| SubjectTerms | Applications of Mathematics Banach spaces Dichotomies Differential equations Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Periodic functions Perturbation Robustness (mathematics) Stability |
| Title | Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces |
| URI | https://link.springer.com/article/10.1007/s10884-020-09854-3 https://www.proquest.com/docview/2733387638 |
| Volume | 34 |
| WOSCitedRecordID | wos000538209300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1572-9222 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009839 issn: 1040-7294 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F1lRy8aSFNs7Y5-ljRgyK-8FbSpMGC2662iv4M_7Ez2dZVUUFvhSZDm0lmviEz3xCyaVhiZNdyTxvBPOEr40kDxtCG4L4TywKrmGs2EZ6eRjc38qwuCiubbPfmStJZ6g_FblEkPAx3mIy6wgvGyQS4uwgbNpxfXI-odiPXP8x3uXJcirpU5nsZn93RCGN-uRZ13uZw9n_fOUdmanRJd4fbYZ6MpfkCmT55p2YtF8nreZE8lhVaOFpY2nseFDlmDMG0gwwLsor-C81yqqjrl4ljamrqrEwN3b3rF2VFz2DjFibTFGJZOCswddhnxcnp3Q_5w0uUc5zbDHEtDOljsjwif7qncqVv6cUAE8KWyNVh73L_yKv7MngaDmzlScYsIksVwkOYGKRHUjxNObM7oI5EBJZ18cpR6x3BkpRzJMVJZKIVAC5ugmXSyuHfVggNI22NhJgqYEIoI5USnBvfN9woBUipTfxGPbGuScuxd8ZdPKJbxuWOYbljt9xx0CZb73MGQ8qOX0d3Gq3H9fEtY8B0ELqD6Y3aZLvR8uj1z9JW_zZ8jUxxLKdw6TEd0qoeHtN1Mqmfqqx82HDb-g1X4PGd |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RQCocoLQgttDWB25tJMfxkvjIYxGosEJAK26RY8ciEpssJCD6M_qPO-NNWKhapPYWKeNR4sfMN_LMNwBblmdW9Z0IjJU8kKG2gbJoDF2M7jtzPHKa-2YT8XCYXF6q07YorO6y3bsrSW-pnxS7JYkMKNzhKunLIHoFcxI9FjHmn51_n1LtJr5_WOhz5YSSbanMn3U8d0dTjPnbtaj3NgfL__edb2CpRZdsZ7IdVmAmL9_C4skjNWv9Dn6eVdld3ZCFY5Vjg4dxVVLGEA7bL6ggqxr9YEXJNPP9MkmmpaYu6tyynetRVTfsFDduZQvDMJbFs4JDJ31WvJ7BzYQ_vCY9R6UrCNeiyIiS5Qn5s11danPFzseUELYK3w4GF3uHQduXITB4YJtAce4IWeoYH-LMEj2SFnkuuNtWCc9k5HifrhyN2ZY8y4UgUpxMZUYj4BI2WoPZEv9tHVicGGcVxlQRl1JbpbUUwoahFVZrREo9CLvlSU1LWk69M67TKd0yTXeK05366U6jHnx-HDOeUHa8KL3ZrXraHt86RUyHoTua3qQHX7pVnr7-u7b3_yb-CV4fXpwcp8dHw68bsCCotMKnymzCbHN7l3-AeXPfFPXtR7_FfwGy1PSB |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED7BmCZ4GIwNUTaGH3gb0RzHbeLHjbViGlQV29DeIseOtUhrUpoMwc_gH-_OSdcNARLiLVLOp-R8tu_k774DeGt5ZlXficBYyQMZahsoi5uhi_H4zhyPnOa-2UQ8HicXF2pyp4rfo90XV5JtTQOxNJXN_sy6_TuFb0kiA0p9uEr6MogewiNJQHrK10-_LGl3E99LLPS4OaFkVzbzex33j6ZlvPnLFak_eUZP__-bn8F6F3Wyg9ZNNuBBXj6HJ59uKVvrTfj5ucqu64Z2PlY5Nvw-q0pCEuGwo4IKtarpD1aUTDPfR5NkOsrqos4tO7iaVnXDJujQlS0MwxwX1xAObfuveD3Dry2veE16jktXULyLIlMC0VNGwA51qc0lO50RUGwLzkfDs_cfgq5fQ2BwITeB4txRxKljfIgzS7RJWuS54G6gEp7JyPE-XUUaM5A8y4UgspxMZUZjICZs9AJWSvy3l8DixDirMNeKuJTaKq2lEDYMrbBaYwTVg3AxVanpyMypp8ZVuqRhJnOnaO7UmzuNerB3O2bWUnn8VXpn4QFpt6zrFGM9TOlxS0568G4x48vXf9b26t_E38Da5GiUfjwen2zDY0EVFx5BswMrzfw6fw2r5ltT1PNd7-03PA39ZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+of+Exponential+Dichotomy+in+a+Class+of+Generalised+Almost+Periodic+Linear+Differential+Equations+in+Infinite+Dimensional+Banach+Spaces&rft.jtitle=Journal+of+dynamics+and+differential+equations&rft.au=Rodrigues%2C+H.+M.&rft.au=Caraballo%2C+T.&rft.au=Nakassima%2C+G.+K.&rft.date=2022-12-01&rft.pub=Springer+US&rft.issn=1040-7294&rft.eissn=1572-9222&rft.volume=34&rft.issue=4&rft.spage=2841&rft.epage=2865&rft_id=info:doi/10.1007%2Fs10884-020-09854-3&rft.externalDocID=10_1007_s10884_020_09854_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7294&client=summon |