Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces

In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily sma...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dynamics and differential equations Vol. 34; no. 4; pp. 2841 - 2865
Main Authors: Rodrigues, H. M., Caraballo, T., Nakassima, G. K.
Format: Journal Article
Language:English
Published: New York Springer US 01.12.2022
Springer Nature B.V
Subjects:
ISSN:1040-7294, 1572-9222
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results.
AbstractList In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations in infinite dimensional Banach spaces. Some applications are obtained to the case of rapidly oscillating perturbations, with arbitrarily small periods, showing that even in this case the stability is robust. These results extend to infinite dimensions some results given in Coppel (Dichotomies in stability theory. Lecture notes in mathematics, Springer, Berlin, 1970). Based in Rodrigues (Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos, 1970) and in Kloeden and Rodrigues (Nonlinear Anal 74:2695–2719, 2011), Rodrigues et al. (Stability problems in non autonomous linear differential equations in infinite dimensions. arXiv:1906.04642, 2019) we use the class of functions that we call Generalized Almost Periodic Functions that extend the usual class of almost periodic functions and are suitable to model these oscillating perturbations. We also present an infinite dimensional example of the previous results.
Author Rodrigues, H. M.
Caraballo, T.
Nakassima, G. K.
Author_xml – sequence: 1
  givenname: H. M.
  surname: Rodrigues
  fullname: Rodrigues, H. M.
  organization: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo
– sequence: 2
  givenname: T.
  orcidid: 0000-0003-4697-898X
  surname: Caraballo
  fullname: Caraballo, T.
  email: caraball@us.es
  organization: Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla
– sequence: 3
  givenname: G. K.
  surname: Nakassima
  fullname: Nakassima, G. K.
  organization: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo
BookMark eNp9kcFqGzEQhkVJoYnbF-hJ0PM2s9LaKx1T100ChoS0PQutPGoU1pKjkSF5jL5xFG8gkENOGsT3_czwn7CjmCIy9rWF7y1Af0otKNU1IKABreZdIz-w43bei0YLIY7qDB00vdDdJ3ZCdAdQMamP2f-bNOypRCTiyfPVw64GxxLsyH8Gd5tK2j7yELnly9FOzDlGzHYMhBt-Nm4TFX6NOaRNcHwdItpcVe8xv-Ss7ve2hBTpOecy-hBDwYpsMVL9rsQPG6275b931iF9Zh-9HQm_vLwz9vfX6s_yollfnV8uz9aNk60ujQbw9Qht-zr0wwY62VuBKMAvtIKhkx7mAFI5t-hgQCFAghr04KyYg9jIGfs25e5yut8jFXOX9rmuQ0b0UkrVL6SqlJoolxNRRm9cKIdzSrZhNC2Y5wLMVICpBZhDAUZWVbxRdzlsbX58X5KTRBWO_zC_bvWO9QTWO5ud
CitedBy_id crossref_primary_10_1002_mma_11204
crossref_primary_10_1007_s00245_025_10284_0
crossref_primary_10_1007_s11785_025_01716_4
Cites_doi 10.1016/j.na.2010.12.025
10.1007/BFb0089647
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s10884-020-09854-3
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1572-9222
EndPage 2865
ExternalDocumentID 10_1007_s10884_020_09854_3
GrantInformation_xml – fundername: Ministerio de Ciencia, Innovación y Universidades
  grantid: PGC2018-096540-B-I00
  funderid: http://dx.doi.org/10.13039/100014440
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c319t-900f0099a700f7bd0437a2ee20f6980b43f050038cc640be220308b9bca2502d3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538209300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1040-7294
IngestDate Wed Sep 17 23:57:59 EDT 2025
Tue Nov 18 22:26:42 EST 2025
Sat Nov 29 05:56:08 EST 2025
Fri Feb 21 02:44:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Nonautonomous ordinary differential equations
Generalized almost period functions
Exponential dichotomy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-900f0099a700f7bd0437a2ee20f6980b43f050038cc640be220308b9bca2502d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4697-898X
PQID 2733387638
PQPubID 2043775
PageCount 25
ParticipantIDs proquest_journals_2733387638
crossref_citationtrail_10_1007_s10884_020_09854_3
crossref_primary_10_1007_s10884_020_09854_3
springer_journals_10_1007_s10884_020_09854_3
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of dynamics and differential equations
PublicationTitleAbbrev J Dyn Diff Equat
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DaleckĭiJLKreinMGStability of Solutions of Differential Equations in Banach Space, Translation of Mathematical Monographs1974ProvidenceAmerican Mathematical Society
Rodrigues, H.M., Solà-Morales, J., Nakassima, G.K.: Stability problems in non autonomous linear differential equations in infinite dimensions (2019). arXiv:1906.04642
HenryDGeometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics1981BerlinSpringer10.1007/BFb0089647
CarvalhoANLangaJARobinsonJCAttractors of Infinite Dimensional Nonautonomous Dynamical Syustems2011BerlinSpringer
KloedenPERodriguesHMDynamics of a class of ODEs more general than almost periodicNonlinear Anal.20117426952719277651910.1016/j.na.2010.12.0251217.34101
Rodrigues, H.M.: Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos (1970)
CoppelWADichotomies in Stability Theory1970BerlinSpringer629
D Henry (9854_CR4) 1981
JL Daleckĭi (9854_CR3) 1974
WA Coppel (9854_CR2) 1970
PE Kloeden (9854_CR5) 2011; 74
AN Carvalho (9854_CR1) 2011
9854_CR7
9854_CR6
References_xml – reference: CarvalhoANLangaJARobinsonJCAttractors of Infinite Dimensional Nonautonomous Dynamical Syustems2011BerlinSpringer
– reference: HenryDGeometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics1981BerlinSpringer10.1007/BFb0089647
– reference: KloedenPERodriguesHMDynamics of a class of ODEs more general than almost periodicNonlinear Anal.20117426952719277651910.1016/j.na.2010.12.0251217.34101
– reference: Rodrigues, H.M., Solà-Morales, J., Nakassima, G.K.: Stability problems in non autonomous linear differential equations in infinite dimensions (2019). arXiv:1906.04642
– reference: DaleckĭiJLKreinMGStability of Solutions of Differential Equations in Banach Space, Translation of Mathematical Monographs1974ProvidenceAmerican Mathematical Society
– reference: Rodrigues, H.M.: Invariância para sistemas de equações diferenciais com retardamento e aplicações, Tese de Mestrado, Universidade de São Paulo, São Carlos (1970)
– reference: CoppelWADichotomies in Stability Theory1970BerlinSpringer629
– volume: 74
  start-page: 2695
  year: 2011
  ident: 9854_CR5
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2010.12.025
– ident: 9854_CR7
– volume-title: Attractors of Infinite Dimensional Nonautonomous Dynamical Syustems
  year: 2011
  ident: 9854_CR1
– start-page: 629
  volume-title: Dichotomies in Stability Theory
  year: 1970
  ident: 9854_CR2
– ident: 9854_CR6
– volume-title: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics
  year: 1981
  ident: 9854_CR4
  doi: 10.1007/BFb0089647
– volume-title: Stability of Solutions of Differential Equations in Banach Space, Translation of Mathematical Monographs
  year: 1974
  ident: 9854_CR3
SSID ssj0009839
Score 2.3032808
Snippet In this paper we study the robustness of the exponential dichotomy in nonautonomous linear ordinary differential equations under integrally small perturbations...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2841
SubjectTerms Applications of Mathematics
Banach spaces
Dichotomies
Differential equations
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Periodic functions
Perturbation
Robustness (mathematics)
Stability
Title Robustness of Exponential Dichotomy in a Class of Generalised Almost Periodic Linear Differential Equations in Infinite Dimensional Banach Spaces
URI https://link.springer.com/article/10.1007/s10884-020-09854-3
https://www.proquest.com/docview/2733387638
Volume 34
WOSCitedRecordID wos000538209300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9222
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009839
  issn: 1040-7294
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gcIADb8RgoBy4QaU-MpoeBwzBAYR4iVuVpI2otLWDdgh-Bv8YO21XQIAEp1WaHbVJ7HxW7M-E7AIk6EYmL0xzCFA85VmBH0uLacF9JWxHetI0m_AvLvj9fXBZFYXldbZ7fSVpPPWHYjfOmYXhjh3wLrO8aTIDxx1Hc7y6vmuodrnpH-aYXDk3YFWpzPdjfD6OGoz55VrUnDYni_97zyWyUKFL2iu3wzKZitMVMn8-oWbNV8nbVSbHeYEejmaa9l9GWYoZQ6B2nGBBVjZ8pUlKBTX9MlGmoqZO8jiivcEwywt6CRs3ixJFIZYFWwHVss-KGaf_WPKH5zjOWaoTxLUgMsRkeUT-9FCkQj3Q6xEmhK2R25P-zdGpVfVlsBQYbGEFtq0RWQofHnwZIT2ScOPYtfVBwG3JPG138cpRqQNmy9h1kRRHBlIJAFxu5K2TVgrftkGo4witeABeN2JMR1JoH35YJDSPOfiGNnHq5QlVRVqOvTMGYUO3jNMdwnSHZrpD0Nmb6IxKyo5fpTv1qoeV-eYhYDoI3cH18jbZr1e5-fvn0Tb_Jr5F5lwspzDpMR3SKp7G8TaZVc9Fkj_tmG39DnyN8dI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58gXrwLT6q7sGbBvLYms2xakWxFrFVvIXdTRYDNqkmiv4M_7Ez26RVUUFPDXRmSPYx-w078w0huwAJ6pHJC9McAhRPeVbgx9JiWnBfCduRnjTNJvx2m9_eBpdlUVheZbtXV5LGU38oduOcWRju2AGvM8sbJ5MMTixM5Lvq3IyodrnpH-aYXDk3YGWpzPc2Ph9HI4z55VrUnDYn8_97zwUyV6JL2hgsh0UyFqdLZPZiSM2aL5O3q0w-5QV6OJpp2nzpZylmDIHacYIFWVnvlSYpFdT0y0SZkpo6yeOINu57WV7QS1i4WZQoCrEs7BVQHfRZMXaaDwP-8BztnKU6QVwLIj1MlkfkTw9FKtQd7fQxIWyFXJ80u0enVtmXwVKwYQsrsG2NyFL48ODLCOmRhBvHrq0PAm5L5mm7jleOSh0wW8aui6Q4MpBKAOByI2-VTKTwbWuEOo7QigfgdSPGdCSF9uGHRULzmINvWCdONT2hKknLsXfGfTiiW8bhDmG4QzPcIejsDXX6A8qOX6Vr1ayH5fbNQ8B0ELqD6-XrZL-a5dHfP1vb-Jv4Dpk-7V60wtZZ-3yTzLhYWmFSZWpkonh8irfIlHoukvxx2yzxd9n99LY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-wwDI7Y9AQHtvcQOzlwg4ouGZoeWWYEAkYjNnGrsjR6lWbagRYEP4N_jJ12GECAhDi1Um2rSRzHVuzPhGyCS9DQNi_McAhQAhU4UZhIhxnBQyVcTwbSNpsI221-cxN13lTx22z3wZVkVdOAKE1ZudPXZudN4RvnzMHQx414gznBKBln2DQI4_WL6yHsLre9xDybN-dHrC6b-VzG-6Np6G9-uCK1J09r5vf_PEuma6-T7lVqMkdGkmyeTJ29QrYWf8nzeS7vixItH80NbT728wwziYDtMMVCrbz3RNOMCmr7aCJNDVmdFomme91eXpS0Awqd61RRiHFhDwFr1X_FymneVrjiBco5zkyK_i6Q9DCJHiMCui8yof7Tiz4miv0jV63m5cGRU_drcBRs5NKJXNegxylCeAmlRtgk4SeJ75rdiLuSBcZt4FWkUrvMlYnvI1iOjKQS4Ij5OlggYxmMbZFQzxNG8QissWbMaClMCA-mheEJB5uxRLzBUsWqBjPHnhrdeAjDjNMdw3THdrpj4Nl65elXUB7fUq8ONCCut3URg68HIT2YZL5EtgcrPvz8tbTln5FvkD-dw1Z8etw-WSGTPlZc2AyaVTJW3t0na2RCPZRpcbdutf0FV4X9mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+of+Exponential+Dichotomy+in+a+Class+of+Generalised+Almost+Periodic+Linear+Differential+Equations+in+Infinite+Dimensional+Banach+Spaces&rft.jtitle=Journal+of+dynamics+and+differential+equations&rft.au=Rodrigues%2C+H.+M.&rft.au=Caraballo%2C+T.&rft.au=Nakassima%2C+G.+K.&rft.date=2022-12-01&rft.issn=1040-7294&rft.eissn=1572-9222&rft.volume=34&rft.issue=4&rft.spage=2841&rft.epage=2865&rft_id=info:doi/10.1007%2Fs10884-020-09854-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10884_020_09854_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7294&client=summon