An empirical study on the potential of word embedding techniques in bug report management tasks

Context Representing the textual semantics of bug reports is a key component of bug report management (BRM) techniques. Existing studies mainly use classical information retrieval-based (IR-based) approaches, such as the vector space model (VSM) to do semantic extraction. Little attention is paid to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Empirical software engineering : an international journal Ročník 29; číslo 5; s. 122
Hlavní autoři: Chen, Bingting, Zou, Weiqin, Cai, Biyu, Meng, Qianshuang, Liu, Wenjie, Li, Piji, Chen, Lin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.09.2024
Springer Nature B.V
Témata:
ISSN:1382-3256, 1573-7616
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Context Representing the textual semantics of bug reports is a key component of bug report management (BRM) techniques. Existing studies mainly use classical information retrieval-based (IR-based) approaches, such as the vector space model (VSM) to do semantic extraction. Little attention is paid to exploring whether word embedding (WE) models from the natural language process could help BRM tasks. Objective To have a general view of the potential of word embedding models in representing the semantics of bug reports and attempt to provide some actionable guidelines in using semantic retrieval models for BRM tasks. Method We studied the efficacy of five widely recognized WE models for six BRM tasks on 20 widely-used products from the Eclipse and Mozilla foundations. Specifically, we first explored the suitable machine learning techniques under the use of WE models and the suitable WE model for BRM tasks. Then we studied whether WE models performed better than classical VSM. Last, we investigated whether WE models fine-tuned with bug reports outperformed general pre-trained WE models. Key Results The Random Forest (RF) classifier outperformed other typical classifiers under the use of different WE models in semantic extraction.We rarely observed statistically significant performance differences among five WE models in five BRM classification tasks, but we found that small-dimensional WE models performed better than larger ones in the duplicate bug report detection task. Among three BRM tasks (i.e., bug severity prediction, reopened bug prediction, and duplicate bug report detection) that showed statistically significant performance differences, VSM outperformed the studied WE models. We did not find performance improvement after we fine-tuned general pre-trained BERT with bug report data. Conclusion Performance improvements of using pre-trained WE models were not observed in studied BRM tasks. The combination of RF and traditional VSM was found to achieve the best performance in various BRM tasks.
AbstractList Context Representing the textual semantics of bug reports is a key component of bug report management (BRM) techniques. Existing studies mainly use classical information retrieval-based (IR-based) approaches, such as the vector space model (VSM) to do semantic extraction. Little attention is paid to exploring whether word embedding (WE) models from the natural language process could help BRM tasks. Objective To have a general view of the potential of word embedding models in representing the semantics of bug reports and attempt to provide some actionable guidelines in using semantic retrieval models for BRM tasks. Method We studied the efficacy of five widely recognized WE models for six BRM tasks on 20 widely-used products from the Eclipse and Mozilla foundations. Specifically, we first explored the suitable machine learning techniques under the use of WE models and the suitable WE model for BRM tasks. Then we studied whether WE models performed better than classical VSM. Last, we investigated whether WE models fine-tuned with bug reports outperformed general pre-trained WE models. Key Results The Random Forest (RF) classifier outperformed other typical classifiers under the use of different WE models in semantic extraction.We rarely observed statistically significant performance differences among five WE models in five BRM classification tasks, but we found that small-dimensional WE models performed better than larger ones in the duplicate bug report detection task. Among three BRM tasks (i.e., bug severity prediction, reopened bug prediction, and duplicate bug report detection) that showed statistically significant performance differences, VSM outperformed the studied WE models. We did not find performance improvement after we fine-tuned general pre-trained BERT with bug report data. Conclusion Performance improvements of using pre-trained WE models were not observed in studied BRM tasks. The combination of RF and traditional VSM was found to achieve the best performance in various BRM tasks.
ContextRepresenting the textual semantics of bug reports is a key component of bug report management (BRM) techniques. Existing studies mainly use classical information retrieval-based (IR-based) approaches, such as the vector space model (VSM) to do semantic extraction. Little attention is paid to exploring whether word embedding (WE) models from the natural language process could help BRM tasks.ObjectiveTo have a general view of the potential of word embedding models in representing the semantics of bug reports and attempt to provide some actionable guidelines in using semantic retrieval models for BRM tasks.MethodWe studied the efficacy of five widely recognized WE models for six BRM tasks on 20 widely-used products from the Eclipse and Mozilla foundations. Specifically, we first explored the suitable machine learning techniques under the use of WE models and the suitable WE model for BRM tasks. Then we studied whether WE models performed better than classical VSM. Last, we investigated whether WE models fine-tuned with bug reports outperformed general pre-trained WE models.Key ResultsThe Random Forest (RF) classifier outperformed other typical classifiers under the use of different WE models in semantic extraction.We rarely observed statistically significant performance differences among five WE models in five BRM classification tasks, but we found that small-dimensional WE models performed better than larger ones in the duplicate bug report detection task. Among three BRM tasks (i.e., bug severity prediction, reopened bug prediction, and duplicate bug report detection) that showed statistically significant performance differences, VSM outperformed the studied WE models. We did not find performance improvement after we fine-tuned general pre-trained BERT with bug report data.ConclusionPerformance improvements of using pre-trained WE models were not observed in studied BRM tasks. The combination of RF and traditional VSM was found to achieve the best performance in various BRM tasks.
ArticleNumber 122
Author Chen, Bingting
Cai, Biyu
Chen, Lin
Zou, Weiqin
Meng, Qianshuang
Liu, Wenjie
Li, Piji
Author_xml – sequence: 1
  givenname: Bingting
  surname: Chen
  fullname: Chen, Bingting
  organization: Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
– sequence: 2
  givenname: Weiqin
  surname: Zou
  fullname: Zou, Weiqin
  email: weiqin@nuaa.edu.cn
  organization: Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, State Key Lab. for Novel Software Technology, Nanjing University
– sequence: 3
  givenname: Biyu
  surname: Cai
  fullname: Cai, Biyu
  organization: Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
– sequence: 4
  givenname: Qianshuang
  surname: Meng
  fullname: Meng, Qianshuang
  organization: Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
– sequence: 5
  givenname: Wenjie
  surname: Liu
  fullname: Liu, Wenjie
  organization: Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
– sequence: 6
  givenname: Piji
  surname: Li
  fullname: Li, Piji
  organization: Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics
– sequence: 7
  givenname: Lin
  surname: Chen
  fullname: Chen, Lin
  organization: Department of Computer Science and Technology, Nanjing University
BookMark eNp9kEtLAzEUhYMo2Fb_gKuA62ge88gsS_EFBTe6DplMMk3tJGOSQfrvTa0guOjqXu49372HMwfnzjsNwA3BdwTj-j4SXFUFwrRABJcEI3YGZqSsGaorUp3nnnGKGC2rSzCPcYsxbuqinAGxdFAPow1WyR2Maer20DuYNhqOPmmXbB57A7986LKw1V1nXQ-TVhtnPycdoXWwnXoY9OhDgoN0stdDBmGS8SNegQsjd1Ff_9YFeH98eFs9o_Xr08tquUaKkSYhbjQxmptGF6psa97hWrOqIkVX0pYb2uDCSEwp40yxGitqFKPEmLw1SknDFuD2eHcM_mAria2fgssvBcO8KJtM8aziR5UKPsagjVA2yWS9S0HanSBYHOIUxzhFjlP8xClYRuk_dAx2kGF_GmJHKGax63X4c3WC-gbJHIrD
CitedBy_id crossref_primary_10_1016_j_infsof_2025_107675
crossref_primary_10_1007_s10664_025_10694_2
Cites_doi 10.1002/smr.1821
10.1109/ACCESS.2022.3204689
10.1145/3183440.3195078
10.1007/s11390-012-1230-3
10.1109/TSE.2013.24
10.1109/TR.2019.2959624
10.1007/s10664-022-10133-6
10.1145/3576042
10.1007/s10664-008-9064-x
10.1109/WCRE.2012.18
10.1109/TSE.2018.2870414
10.1145/1453101.1453146
10.1109/MSR.2007.11
10.1007/978-3-031-21388-5_46
10.1109/DSA52907.2021.00014
10.1016/j.infsof.2018.03.006
10.1145/2635868.2635874
10.1109/CSMR-WCRE.2014.6747167
10.1109/ICSME.2014.22
10.1109/ICPC.2006.17
10.1145/1368088.1368151
10.1007/s11063-020-10213-y
10.1109/ICSME.2014.39
10.1145/3510003.3510042
10.1109/APSEC.2017.40
10.1109/ACCESS.2019.2909746
10.1109/TR.2022.3193645
10.1145/3319008.3319033
10.1145/3183440.3195092
10.1145/2020390.2020401
10.1109/ASE.2011.6100061
10.1007/978-3-030-32456-8_36
10.18653/v1/P19-1226
10.1109/ICSE.2013.6606654
10.1007/s10664-022-10185-8
10.1145/1718918.1718972
10.1109/ICSME.2017.69
10.1109/TSE.2007.1016
10.1145/1808920.1808933
10.1145/1806799.1806811
10.1109/ICSE.2007.32
10.1016/j.infsof.2018.08.002
10.1109/ICSME52107.2021.00015
10.1109/IC3.2014.6897203
10.1109/MSR.2007.25
10.1080/01621459.1961.10482090
10.1109/MSR.2010.5463284
10.1109/COMPSAC.2014.16
10.1109/TSE.2017.2757480
10.1145/1134285.1134457
10.3115/v1/D14-1162
10.1007/s10664-012-9228-6
10.1109/ICSE-C.2017.90
10.1007/s10664-021-10085-3
10.1145/3377816.3381738
10.15439/2021F100
10.18653/v1/N18-1202
10.1109/WCRE.2008.33
10.1145/2351676.2351687
10.1109/CSMR.2011.31
10.1109/TSE.2015.2479232
10.1109/ICMLA.2013.114
10.1109/QRS51102.2020.00034
10.1109/SANER50967.2021.00045
10.1007/s10664-022-10213-7
10.1109/CSMR.2013.43
10.1016/j.jss.2016.02.034
10.1109/ICSM.2008.4658083
10.1109/TR.2015.2484074
10.1109/WCRE.2010.36
10.1109/EAIS48028.2020.9122781
10.1109/CSMR.2013.42
10.1145/3379597.3387470
10.1162/tacl_a_00051
10.1109/ICSE.2012.6227112
10.1109/ACCESS.2019.2922686
10.1109/ICSM.2013.31
10.1007/s10664-016-9496-7
10.1109/ICSE.2012.6227210
10.1109/CSMR.2012.48
10.1007/s10664-014-9331-y
10.11144/Javeriana.upsy10-2.cdcp
10.1002/widm.1301
10.1016/j.infsof.2018.06.001
10.1109/ISSRE.2016.33
10.1007/s10515-014-0162-2
10.1109/ASE.2013.6693093
10.1109/DSN.2008.4630070
10.1007/s10664-018-9633-6
10.1007/s10664-015-9387-3
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
S0W
DOI 10.1007/s10664-024-10510-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7616
ExternalDocumentID 10_1007_s10664_024_10510_3
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
8FD
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c319t-8fe1fe8f9e4c5b78d07e36614d52b8f2904fa022383c370c2fc321ff52bfccaf3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001276200900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-3256
IngestDate Tue Dec 02 15:57:14 EST 2025
Sat Nov 29 05:37:48 EST 2025
Tue Nov 18 21:53:06 EST 2025
Fri Feb 21 02:39:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Pre-trained models
Bug report
Word embedding
Vector space model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c319t-8fe1fe8f9e4c5b78d07e36614d52b8f2904fa022383c370c2fc321ff52bfccaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3084593708
PQPubID 326341
ParticipantIDs proquest_journals_3084593708
crossref_citationtrail_10_1007_s10664_024_10510_3
crossref_primary_10_1007_s10664_024_10510_3
springer_journals_10_1007_s10664_024_10510_3
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Empirical software engineering : an international journal
PublicationTitleAbbrev Empir Software Eng
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Budhiraja A, Dutta K, Reddy R (2018a) Dwen: deep word embedding network for duplicate bug report detection in software repositories. In: Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings, pp 193–194
IzadiMAkbariKHeydarnooriAPredicting the objective and priority of issue reports in software repositoriesEmpir Softw Eng202227213710.1007/s10664-021-10085-3
Kumar L, Kumar M, Murthy LB et al (2021) An empirical study on application of word embedding techniques for prediction of software defect severity level. In: 2021 16th Conference on Computer Science and Intelligence Systems, IEEE, pp 477–484
HindleAAlipourAStrouliaEA contextual approach towards more accurate duplicate bug report detection and rankingEmpir Softw Eng201621236841010.1007/s10664-015-9387-3
ZouWLoDChenZHow practitioners perceive automated bug report management techniquesIEEE Trans Softw Eng201846883686210.1109/TSE.2018.2870414
Marks L, Zou Y, Hassan AE (2011) Studying the fix-time for bugs in large open source projects. In: Proceedings of the 7th International Conference on Predictive Models in Software Engineering, pp 1–8
BojanowskiPGraveEJoulinAEnriching word vectors with subword informationTrans Assoc for Comput Linguist2017513514610.1162/tacl_a_00051
Ardimento P, Mele C (2020) Using bert to predict bug-fixing time. In: 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems, IEEE, pp 1–7
Huo D, Ding T, McMillan C et al (2014) An empirical study of the effects of expert knowledge on bug reports. In: 2014 IEEE International Conference on Software Maintenance and Evolution, IEEE, pp 1–10
Messaoud MB, Miladi A, Jenhani I et al (2022) Duplicate bug report detection using an attention-based neural language model. IEEE Transactions on Reliability
Budhiraja A, Reddy R, Shrivastava M (2018b) Lwe: Lda refined word embeddings for duplicate bug report detection. In: Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings, pp 165–166
Saha RK, Lease M, Khurshid S et al (2013) Improving bug localization using structured information retrieval. In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering, IEEE, pp 345–355
Alenezi M, Banitaan S (2013) Bug reports prioritization: Which features and classifier to use? In: 2013 12th International Conference on Machine Learning and Applications, IEEE, pp 112–116
Lamkanfi A, Demeyer S (2013) Predicting reassignments of bug reports-an exploratory investigation. In: Proceedings of the 2013 17th European Conference on Software Maintenance and Reengineering, IEEE, pp 327–330
Bertram D, Voida A, Greenberg S (2010) Communication, collaboration, and bugs: the social nature of issue tracking in small, collocated teams. In: Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, pp 291–300
HewettRKijsanayothinPOn modeling software defect repair timeEmpir Softw Eng20091416518610.1007/s10664-008-9064-x
YeXBunescuRLiuCMapping bug reports to relevant files: A ranking model, a fine-grained benchmark, and feature evaluationIEEE Trans Softw Eng201542437940210.1109/TSE.2015.2479232
Yang A, Wang Q, Liu J et al (2019) Enhancing pre-trained language representations with rich knowledge for machine reading comprehension. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 2346–2357
Shihab E, Ihara A, Kamei Y et al (2010) Predicting re-opened bugs: A case study on the eclipse project. In: 2010 17th Working Conference on Reverse Engineering, IEEE, pp 249–258
Han D, Zhang C, Fan X et al (2012) Understanding android fragmentation with topic analysis of vendor-specific bugs. In: 2012 19th Working Conference on Reverse Engineering, IEEE, pp 83–92
RamayWYUmerQYinXCDeep neural network-based severity prediction of bug reportsIEEE Access20197468464685710.1109/ACCESS.2019.2909746
Islam MS, Hamou-Lhadj A, Sabor KK et al (2021) Enhmm: On the use of ensemble hmms and stack traces to predict the reassignment of bug report fields. In: Proceedings of the 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering, IEEE, pp 411–421
Yuan W, Xiong Y, Sun H et al (2021) Incorporating multiple features to predict bug fixing time with neural networks. In: 2021 IEEE international conference on software maintenance and evolution (ICSME), IEEE, pp 93–103
ShihabEIharaAKameiYStudying re-opened bugs in open source softwareEmpir Softw Eng20131851005104210.1007/s10664-012-9228-6
ZhangTChenJYangGTowards more accurate severity prediction and fixer recommendation of software bugsJ Syst Softw201611716618410.1016/j.jss.2016.02.034
TantithamthavornCAbebeSLHassanAEThe impact of ir-based classifier configuration on the performance and the effort of method-level bug localizationInf Softw Technol201810216017410.1016/j.infsof.2018.06.001
Chawla I, Singh SK (2014) Automatic bug labeling using semantic information from lsi. In: 2014 Seventh International Conference on Contemporary Computing, IEEE, pp 376–381
Van Nguyen T, Nguyen AT, Phan HD et al (2017) Combining word2vec with revised vector space model for better code retrieval. In: 2017 IEEE/ACM 39th International Conference on Software Engineering Companion, IEEE, pp 183–185
ZhangTYuYMaoXFense: A feature-based ensemble modeling approach to cross-project just-in-time defect predictionEmpir Softw Eng202227714110.1007/s10664-022-10185-8
Tian Y, Lo D, Sun C (2013) Drone: Predicting priority of reported bugs by multi-factor analysis. In: 2013 IEEE International Conference on Software Maintenance, IEEE, pp 200–209
Aggarwal K, Timbers F, Rutgers T et al (2017) Detecting duplicate bug reports with software engineering domain knowledge. J Softw Evolution Process 29(3):e1821
Lamkanfi A, Demeyer S, Giger E et al (2010) Predicting the severity of a reported bug. In: 2010 7th IEEE Working Conference on Mining Software Repositories), IEEE, pp 1–10
TianYLoDXiaXAutomated prediction of bug report priority using multi-factor analysisEmpir Softw Eng2015201354138310.1007/s10664-014-9331-y
UmerQLiuHIllahiICnn-based automatic prioritization of bug reportsIEEE Trans Reliab20196941341135410.1109/TR.2019.2959624
ZhouXZhangYCuiLEvaluating commonsense in pre-trained language modelsProc AAAI Conf Artif Intell20203497339740
KimDTaoYKimSWhere should we fix this bug? a two-phase recommendation modelIEEE Trans Softw Eng201339111597161010.1109/TSE.2013.24
Cheng S, Yan X, Khan AA (2020) A similarity integration method based information retrieval and word embedding in bug localization. (2020) IEEE 20th Int Conf Software Qual. Reliability and Security, IEEE, pp 180–187
Deshmukh J, Annervaz K, Podder S et al (2017) Towards accurate duplicate bug retrieval using deep learning techniques. In: 2017 IEEE International Conference on Software Maintenance and Evolution, IEEE, pp 115–124
Weiss C, Premraj R, Zimmermann T et al (2007) How long will it take to fix this bug? In: Fourth International Workshop on Mining Software Repositories (MSR’07: ICSE Workshops 2007), IEEE, pp 1–1
Menzies T, Marcus A (2008) Automated severity assessment of software defect reports. In: 2008 IEEE International Conference on Software Maintenance, IEEE, pp 346–355
Zimmermann T, Nagappan N, Guo PJ et al (2012) Characterizing and predicting which bugs get reopened. In: 2012 34th International Conference on Software Engineering, IEEE, pp 1074–1083
KimJYangGBug severity prediction algorithm using topic-based feature selection and cnn-lstm algorithmIEEE Access202210946439465110.1109/ACCESS.2022.3204689
Yang X, Lo D, Xia X et al (2016) Combining word embedding with information retrieval to recommend similar bug reports. In: 2016 IEEE 27Th International Symposium on Software Reliability Engineering, IEEE, pp 127–137
Anvik J (2006) Automating bug report assignment. In: Proceedings of the 28th International Conference on Software Engineering, pp 937–940
Tian Y, Sun C, Lo D (2012) Improved duplicate bug report identification. In: 2012 16th European Conference on Software Maintenance and Reengineering, IEEE, pp 385–390
KanwalJMaqboolOBug prioritization to facilitate bug report triageJ Comput Sci Technol20122739741210.1007/s11390-012-1230-3
Xia X, Lo D, Wen M et al (2014) An empirical study of bug report field reassignment. In: 2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), IEEE, pp 174–183
Probst P, Wright MN, Boulesteix AL (2019) Hyperparameters and tuning strategies for random forest. Wiley Interdiscip Rev data mining knowl disc 9(3):e1301
Bettenburg N, Just S, Schröter A (2008) What makes a good bug report? In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, pp 308–318
GuoSZhangXYangXDeveloper activity motivated bug triaging: via convolutional neural networkNeural Process Lett20205132589260610.1007/s11063-020-10213-y
Mikolov T, Sutskever I, Chen K et al (2013b) Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems 26
XiaXLoDShihabEAutomated bug report field reassignment and refinement predictionIEEE Trans Reliab20156531094111310.1109/TR.2015.2484074
Peters ME, Neumann M, Iyyer M et al (2018) Deep contextualized word representations. arXiv:1802.05365
LiuGLuYShiKMapping bug reports to relevant source code files based on the vector space model and word embeddingIEEE Access20197788707888110.1109/ACCESS.2019.2922686
Xiao Y, Keung J, Mi Q et al (2017) Improving bug localization with an enhanced convolutional neural network. In: 2017 24th Asia-Pacific Software Engineering Conference, IEEE, pp 338–347
ZhangTHanDVinayakaraoVDuplicate bug report detection: How far are we?ACM Trans Softw Eng Methodol202332413210.1145/3576042
Ye X, Bunescu R, Liu C (2014) Learning to rank relevant files for bug reports using domain knowledge. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp 689–699
Jia Y, Chen X, Xu S et al (202
10510_CR63
10510_CR61
10510_CR62
10510_CR60
10510_CR67
10510_CR68
10510_CR65
A Tagra (10510_CR69) 2022; 27
J Demšar (10510_CR17) 2006; 7
RG Vieira (10510_CR76) 2022; 27
10510_CR75
10510_CR72
R Hewett (10510_CR25) 2009; 14
E Shihab (10510_CR66) 2013; 18
10510_CR71
10510_CR78
10510_CR79
10510_CR77
10510_CR41
T Zhang (10510_CR95) 2023; 32
10510_CR49
10510_CR47
10510_CR48
10510_CR45
10510_CR43
10510_CR44
T Zhang (10510_CR94) 2022; 27
C Tantithamthavorn (10510_CR70) 2018; 102
10510_CR52
10510_CR53
10510_CR50
10510_CR51
10510_CR9
WY Ramay (10510_CR58) 2019; 7
10510_CR59
10510_CR57
G Liu (10510_CR40) 2019; 7
Q Mi (10510_CR46) 2018; 99
P Bojanowski (10510_CR10) 2017; 5
X Xia (10510_CR82) 2015; 65
KE Bennin (10510_CR7) 2019; 24
G Macbeth (10510_CR42) 2011; 10
Y Xiao (10510_CR85) 2019; 105
10510_CR28
D Kim (10510_CR34) 2013; 39
10510_CR24
10510_CR21
10510_CR3
10510_CR4
Y Tian (10510_CR73) 2015; 20
10510_CR1
10510_CR2
10510_CR8
M Habayeb (10510_CR23) 2017; 44
10510_CR5
10510_CR18
10510_CR6
10510_CR19
X Xia (10510_CR83) 2015; 22
10510_CR31
S Guo (10510_CR22) 2020; 51
10510_CR38
10510_CR39
10510_CR36
OJ Dunn (10510_CR20) 1961; 56
10510_CR37
10510_CR32
X Zhou (10510_CR98) 2020; 34
10510_CR29
Q Umer (10510_CR74) 2019; 69
P Probst (10510_CR55) 2018; 18
W Zou (10510_CR100) 2018; 46
10510_CR86
10510_CR84
10510_CR81
R Sepahvand (10510_CR64) 2020; 14
10510_CR80
X Ye (10510_CR90) 2015; 42
A Hindle (10510_CR26) 2016; 21
10510_CR89
P Probst (10510_CR56) 2019; 20
10510_CR87
10510_CR88
M Choetkiertikul (10510_CR15) 2017; 22
GE Hinton (10510_CR27) 1986; 1
D Poshyvanyk (10510_CR54) 2007; 33
10510_CR96
10510_CR97
J Kanwal (10510_CR33) 2012; 27
10510_CR92
10510_CR91
10510_CR16
10510_CR14
10510_CR12
10510_CR13
10510_CR11
10510_CR99
M Izadi (10510_CR30) 2022; 27
J Kim (10510_CR35) 2022; 10
T Zhang (10510_CR93) 2016; 117
References_xml – reference: ProbstPBoulesteixALBischlBTunability: Importance of hyperparameters of machine learning algorithmsJ Mach Learn Res201920531323911408
– reference: Van Nguyen T, Nguyen AT, Phan HD et al (2017) Combining word2vec with revised vector space model for better code retrieval. In: 2017 IEEE/ACM 39th International Conference on Software Engineering Companion, IEEE, pp 183–185
– reference: Islam MS, Hamou-Lhadj A, Sabor KK et al (2021) Enhmm: On the use of ensemble hmms and stack traces to predict the reassignment of bug report fields. In: Proceedings of the 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering, IEEE, pp 411–421
– reference: LiuGLuYShiKMapping bug reports to relevant source code files based on the vector space model and word embeddingIEEE Access20197788707888110.1109/ACCESS.2019.2922686
– reference: Ardimento P, Mele C (2020) Using bert to predict bug-fixing time. In: 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems, IEEE, pp 1–7
– reference: Han D, Zhang C, Fan X et al (2012) Understanding android fragmentation with topic analysis of vendor-specific bugs. In: 2012 19th Working Conference on Reverse Engineering, IEEE, pp 83–92
– reference: ZhouXZhangYCuiLEvaluating commonsense in pre-trained language modelsProc AAAI Conf Artif Intell20203497339740
– reference: BenninKEKeungJWMondenAOn the relative value of data resampling approaches for software defect predictionEmpir Softw Eng201924260263610.1007/s10664-018-9633-6
– reference: Yuan W, Xiong Y, Sun H et al (2021) Incorporating multiple features to predict bug fixing time with neural networks. In: 2021 IEEE international conference on software maintenance and evolution (ICSME), IEEE, pp 93–103
– reference: Sun C, Lo D, Khoo SC et al (2011) Towards more accurate retrieval of duplicate bug reports. In: 2011 26th IEEE/ACM International Conference on Automated Software Engineering, IEEE, pp 253–262
– reference: RamayWYUmerQYinXCDeep neural network-based severity prediction of bug reportsIEEE Access20197468464685710.1109/ACCESS.2019.2909746
– reference: Shihab E, Ihara A, Kamei Y et al (2010) Predicting re-opened bugs: A case study on the eclipse project. In: 2010 17th Working Conference on Reverse Engineering, IEEE, pp 249–258
– reference: Zhang W, Challis C (2020) Automatic bug priority prediction using dnn based regression. In: Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery: Volume 1, Springer, pp 333–340
– reference: Saha RK, Lease M, Khurshid S et al (2013) Improving bug localization using structured information retrieval. In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering, IEEE, pp 345–355
– reference: Bertram D, Voida A, Greenberg S (2010) Communication, collaboration, and bugs: the social nature of issue tracking in small, collocated teams. In: Proceedings of the 2010 ACM Conference on Computer Supported Cooperative Work, pp 291–300
– reference: Xia X, Lo D, Wang X et al (2013) A comparative study of supervised learning algorithms for re-opened bug prediction. In: 2013 17th European conference on software maintenance and reengineering, IEEE, pp 331–334
– reference: Budhiraja A, Reddy R, Shrivastava M (2018b) Lwe: Lda refined word embeddings for duplicate bug report detection. In: Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings, pp 165–166
– reference: SepahvandRAkbariRHashemiSPredicting the bug fixing time using word embedding and deep long short term memoriesInst Eng Technol Softw2020143203212
– reference: Xiao Y, Keung J, Mi Q et al (2017) Improving bug localization with an enhanced convolutional neural network. In: 2017 24th Asia-Pacific Software Engineering Conference, IEEE, pp 338–347
– reference: Zhang H, Gong L, Versteeg S (2013) Predicting bug-fixing time: an empirical study of commercial software projects. In: 2013 35th International Conference on Software Engineering (ICSE), IEEE, pp 1042–1051
– reference: DemšarJStatistical comparisons of classifiers over multiple data setsJ Mach Learn Res200671302274360
– reference: Lamkanfi A, Demeyer S, Giger E et al (2010) Predicting the severity of a reported bug. In: 2010 7th IEEE Working Conference on Mining Software Repositories), IEEE, pp 1–10
– reference: Giger E, Pinzger M, Gall H (2010) Predicting the fix time of bugs. In: Proceedings of the 2nd International Workshop on Recommendation Systems for Software Engineering, pp 52–56
– reference: UmerQLiuHIllahiICnn-based automatic prioritization of bug reportsIEEE Trans Reliab20196941341135410.1109/TR.2019.2959624
– reference: Mikolov T, Sutskever I, Chen K et al (2013b) Distributed representations of words and phrases and their compositionality. Advances in Neural Information Processing Systems 26
– reference: Yang X, Lo D, Xia X et al (2016) Combining word embedding with information retrieval to recommend similar bug reports. In: 2016 IEEE 27Th International Symposium on Software Reliability Engineering, IEEE, pp 127–137
– reference: HindleAAlipourAStrouliaEA contextual approach towards more accurate duplicate bug report detection and rankingEmpir Softw Eng201621236841010.1007/s10664-015-9387-3
– reference: Chawla I, Singh SK (2014) Automatic bug labeling using semantic information from lsi. In: 2014 Seventh International Conference on Contemporary Computing, IEEE, pp 376–381
– reference: Nguyen AT, Nguyen TT, Nguyen TN et al (2012) Duplicate bug report detection with a combination of information retrieval and topic modeling. In: 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, IEEE, pp 70–79
– reference: TantithamthavornCAbebeSLHassanAEThe impact of ir-based classifier configuration on the performance and the effort of method-level bug localizationInf Softw Technol201810216017410.1016/j.infsof.2018.06.001
– reference: Yang G, Zhang T, Lee B (2014) Towards semi-automatic bug triage and severity prediction based on topic model and multi-feature of bug reports. In: 2014 IEEE 38th Annual Computer Software and Applications Conference, IEEE, pp 97–106
– reference: Devlin J, Chang MW, Lee K et al (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805
– reference: Panjer LD (2007) Predicting eclipse bug lifetimes. In: Fourth international workshop on mining software repositories (MSR’07: ICSE workshops 2007), IEEE, pp 29–29
– reference: Rodrigues IM, Aloise D, Fernandes ER et al (2020) A soft alignment model for bug deduplication. In: Proceedings of the 17th International Conference on Mining Software Repositories, pp 43–53
– reference: ZhangTChenJYangGTowards more accurate severity prediction and fixer recommendation of software bugsJ Syst Softw201611716618410.1016/j.jss.2016.02.034
– reference: Wang S, Lo D, Lawall J (2014) Compositional vector space models for improved bug localization. In: 2014 IEEE International Conference on Software Maintenance and Evolution, IEEE, pp 171–180
– reference: IzadiMAkbariKHeydarnooriAPredicting the objective and priority of issue reports in software repositoriesEmpir Softw Eng202227213710.1007/s10664-021-10085-3
– reference: Peters ME, Neumann M, Iyyer M et al (2018) Deep contextualized word representations. arXiv:1802.05365
– reference: Weiss C, Premraj R, Zimmermann T et al (2007) How long will it take to fix this bug? In: Fourth International Workshop on Mining Software Repositories (MSR’07: ICSE Workshops 2007), IEEE, pp 1–1
– reference: Cheng S, Yan X, Khan AA (2020) A similarity integration method based information retrieval and word embedding in bug localization. (2020) IEEE 20th Int Conf Software Qual. Reliability and Security, IEEE, pp 180–187
– reference: DunnOJMultiple comparisons among meansJ Am Stat Assoc196156293526412495210.1080/01621459.1961.10482090
– reference: Huo D, Ding T, McMillan C et al (2014) An empirical study of the effects of expert knowledge on bug reports. In: 2014 IEEE International Conference on Software Maintenance and Evolution, IEEE, pp 1–10
– reference: Poshyvanyk D, Marcus A, Rajlich V et al (2006) Combining probabilistic ranking and latent semantic indexing for feature identification. In: 14th IEEE International Conference on Program Comprehension, IEEE, pp 137–148
– reference: Kumar L, Kumar M, Murthy LB et al (2021) An empirical study on application of word embedding techniques for prediction of software defect severity level. In: 2021 16th Conference on Computer Science and Intelligence Systems, IEEE, pp 477–484
– reference: Alenezi M, Banitaan S (2013) Bug reports prioritization: Which features and classifier to use? In: 2013 12th International Conference on Machine Learning and Applications, IEEE, pp 112–116
– reference: BojanowskiPGraveEJoulinAEnriching word vectors with subword informationTrans Assoc for Comput Linguist2017513514610.1162/tacl_a_00051
– reference: Jalbert N, Weimer W (2008) Automated duplicate detection for bug tracking systems. In: 2008 IEEE International Conference on Dependable Systems and Networks With FTCS and DCC, IEEE, pp 52–61
– reference: Budhiraja A, Dutta K, Reddy R (2018a) Dwen: deep word embedding network for duplicate bug report detection in software repositories. In: Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings, pp 193–194
– reference: Ciborowska A, Damevski K (2022) Fast changeset-based bug localization with bert. In: Proceedings of the 44th International Conference on Software Engineering, pp 946–957
– reference: Pennington J, Socher R, Manning CD (2014) Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing, pp 1532–1543
– reference: KanwalJMaqboolOBug prioritization to facilitate bug report triageJ Comput Sci Technol20122739741210.1007/s11390-012-1230-3
– reference: PoshyvanykDGueheneucYGMarcusAFeature location using probabilistic ranking of methods based on execution scenarios and information retrievalIEEE Trans Softw Eng200733642043210.1109/TSE.2007.1016
– reference: Marks L, Zou Y, Hassan AE (2011) Studying the fix-time for bugs in large open source projects. In: Proceedings of the 7th International Conference on Predictive Models in Software Engineering, pp 1–8
– reference: ProbstPBoulesteixALTo tune or not to tune the number of trees in random forestJ Mach Learn Res2018181811183827069
– reference: ZouWLoDChenZHow practitioners perceive automated bug report management techniquesIEEE Trans Softw Eng201846883686210.1109/TSE.2018.2870414
– reference: Runeson P, Alexandersson M, Nyholm O (2007) Detection of duplicate defect reports using natural language processing. In: 29th International Conference on Software Engineering (ICSE’07), IEEE, pp 499–510
– reference: Deshmukh J, Annervaz K, Podder S et al (2017) Towards accurate duplicate bug retrieval using deep learning techniques. In: 2017 IEEE International Conference on Software Maintenance and Evolution, IEEE, pp 115–124
– reference: Tian Y, Sun C, Lo D (2012) Improved duplicate bug report identification. In: 2012 16th European Conference on Software Maintenance and Reengineering, IEEE, pp 385–390
– reference: Wang X, Zhang L, Xie T et al (2008) An approach to detecting duplicate bug reports using natural language and execution information. In: Proceedings of the 30th international conference on Software engineering, pp 461–470
– reference: Yang A, Wang Q, Liu J et al (2019) Enhancing pre-trained language representations with rich knowledge for machine reading comprehension. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp 2346–2357
– reference: XiaXLoDShihabEAutomated bug report field reassignment and refinement predictionIEEE Trans Reliab20156531094111310.1109/TR.2015.2484074
– reference: ZhangTHanDVinayakaraoVDuplicate bug report detection: How far are we?ACM Trans Softw Eng Methodol202332413210.1145/3576042
– reference: Lamkanfi A, Demeyer S, Soetens QD et al (2011) Comparing mining algorithms for predicting the severity of a reported bug. In: 2011 15th European Conference on Software Maintenance and Reengineering, IEEE, pp 249–258
– reference: MiQKeungJHuoYNot all bug reopens are negative: A case study on eclipse bug reportsInf Softw Technol201899939710.1016/j.infsof.2018.03.006
– reference: Messaoud MB, Miladi A, Jenhani I et al (2022) Duplicate bug report detection using an attention-based neural language model. IEEE Transactions on Reliability
– reference: Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? more accurate information retrieval-based bug localization based on bug reports. In: 2012 34th International Conference on Software Engineering, IEEE, pp 14–24
– reference: VieiraRGMattosCLCRochaLSThe role of bug report evolution in reliable fixing estimationEmpir Softw Eng202227716410.1007/s10664-022-10213-7
– reference: Xia X, Lo D, Wen M et al (2014) An empirical study of bug report field reassignment. In: 2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), IEEE, pp 174–183
– reference: TagraAZhangHRajbahadurGKRevisiting reopened bugs in open source software systemsEmpir Softw Eng20222749210.1007/s10664-022-10133-6
– reference: Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent dirichlet allocation. In: 2008 15Th Working Conference on Reverse Engineering, IEEE, pp 155–164
– reference: XiaoYKeungJBenninKEImproving bug localization with word embedding and enhanced convolutional neural networksInf Softw Technol2019105172910.1016/j.infsof.2018.08.002
– reference: ShihabEIharaAKameiYStudying re-opened bugs in open source softwareEmpir Softw Eng20131851005104210.1007/s10664-012-9228-6
– reference: HabayebMMurtazaSSMiranskyyAOn the use of hidden markov model to predict the time to fix bugsIEEE Trans Softw Eng201744121224124410.1109/TSE.2017.2757480
– reference: Menzies T, Marcus A (2008) Automated severity assessment of software defect reports. In: 2008 IEEE International Conference on Software Maintenance, IEEE, pp 346–355
– reference: TianYLoDXiaXAutomated prediction of bug report priority using multi-factor analysisEmpir Softw Eng2015201354138310.1007/s10664-014-9331-y
– reference: Jia Y, Chen X, Xu S et al (2021) Ekd-bsp: Bug report severity prediction by extracting keywords from description. In: 2021 8th International Conference on Dependable Systems and Their Applications, IEEE, pp 42–53
– reference: HewettRKijsanayothinPOn modeling software defect repair timeEmpir Softw Eng20091416518610.1007/s10664-008-9064-x
– reference: Sun C, Lo D, Wang X et al (2010) A discriminative model approach for accurate duplicate bug report retrieval. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 1, pp 45–54
– reference: ZhangTYuYMaoXFense: A feature-based ensemble modeling approach to cross-project just-in-time defect predictionEmpir Softw Eng202227714110.1007/s10664-022-10185-8
– reference: MacbethGRazumiejczykELedesmaRDCliff’s delta calculator: A non-parametric effect size program for two groups of observationsUniv Psychol201110254555510.11144/Javeriana.upsy10-2.cdcp
– reference: HintonGELearning distributed representations of conceptsProc Eighth Ann Conf Cogn Sci Soc Amherst MA19861112
– reference: Mikolov T, Chen K, Corrado G et al (2013a) Efficient estimation of word representations in vector space. arXiv:1301.3781
– reference: Ye X, Bunescu R, Liu C (2014) Learning to rank relevant files for bug reports using domain knowledge. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp 689–699
– reference: Probst P, Wright MN, Boulesteix AL (2019) Hyperparameters and tuning strategies for random forest. Wiley Interdiscip Rev data mining knowl disc 9(3):e1301
– reference: Ardimento P (2022) Predicting bug-fixing time: Distilbert versus google bert. In: International Conference on Product-Focused Software Process Improvement, Springer, pp 610–620
– reference: Tian Y, Lo D, Sun C (2013) Drone: Predicting priority of reported bugs by multi-factor analysis. In: 2013 IEEE International Conference on Software Maintenance, IEEE, pp 200–209
– reference: Lamkanfi A, Demeyer S (2013) Predicting reassignments of bug reports-an exploratory investigation. In: Proceedings of the 2013 17th European Conference on Software Maintenance and Reengineering, IEEE, pp 327–330
– reference: Roy NKS, Rossi B (2014) Towards an improvement of bug severity classification. In: 2014 40th EUROMICRO Conference on Software Engineering and Advanced Applications, IEEE, pp 269–276
– reference: ChoetkiertikulMDamHKTranTPredicting the delay of issues with due dates in software projectsEmpir Softw Eng20172231223126310.1007/s10664-016-9496-7
– reference: KimDTaoYKimSWhere should we fix this bug? a two-phase recommendation modelIEEE Trans Softw Eng201339111597161010.1109/TSE.2013.24
– reference: Arokiam J, Bradbury JS (2020) Automatically predicting bug severity early in the development process. In: 2020 IEEE/ACM 42nd International Conference on Software Engineering: New Ideas and Emerging Results, pp 17–20
– reference: KimJYangGBug severity prediction algorithm using topic-based feature selection and cnn-lstm algorithmIEEE Access202210946439465110.1109/ACCESS.2022.3204689
– reference: Aggarwal K, Timbers F, Rutgers T et al (2017) Detecting duplicate bug reports with software engineering domain knowledge. J Softw Evolution Process 29(3):e1821
– reference: Bettenburg N, Just S, Schröter A (2008) What makes a good bug report? In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering, pp 308–318
– reference: XiaXLoDShihabEAutomatic, high accuracy prediction of reopened bugsAutom Softw Eng2015227510910.1007/s10515-014-0162-2
– reference: GuoSZhangXYangXDeveloper activity motivated bug triaging: via convolutional neural networkNeural Process Lett20205132589260610.1007/s11063-020-10213-y
– reference: Anvik J (2006) Automating bug report assignment. In: Proceedings of the 28th International Conference on Software Engineering, pp 937–940
– reference: Zimmermann T, Nagappan N, Guo PJ et al (2012) Characterizing and predicting which bugs get reopened. In: 2012 34th International Conference on Software Engineering, IEEE, pp 1074–1083
– reference: Sahin SE, Tosun A (2019) A conceptual replication on predicting the severity of software vulnerabilities. In: Proceedings of the 23rd International Conference on Evaluation and Assessment in Software Engineering, pp 244–250
– reference: YeXBunescuRLiuCMapping bug reports to relevant files: A ranking model, a fine-grained benchmark, and feature evaluationIEEE Trans Softw Eng201542437940210.1109/TSE.2015.2479232
– ident: 10510_CR1
  doi: 10.1002/smr.1821
– ident: 10510_CR48
– volume: 10
  start-page: 94643
  year: 2022
  ident: 10510_CR35
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3204689
– ident: 10510_CR12
  doi: 10.1145/3183440.3195078
– ident: 10510_CR19
– volume: 27
  start-page: 397
  year: 2012
  ident: 10510_CR33
  publication-title: J Comput Sci Technol
  doi: 10.1007/s11390-012-1230-3
– volume: 39
  start-page: 1597
  issue: 11
  year: 2013
  ident: 10510_CR34
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2013.24
– volume: 69
  start-page: 1341
  issue: 4
  year: 2019
  ident: 10510_CR74
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2019.2959624
– volume: 27
  start-page: 92
  issue: 4
  year: 2022
  ident: 10510_CR69
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-022-10133-6
– volume: 32
  start-page: 1
  issue: 4
  year: 2023
  ident: 10510_CR95
  publication-title: ACM Trans Softw Eng Methodol
  doi: 10.1145/3576042
– volume: 14
  start-page: 165
  year: 2009
  ident: 10510_CR25
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-008-9064-x
– ident: 10510_CR24
  doi: 10.1109/WCRE.2012.18
– volume: 46
  start-page: 836
  issue: 8
  year: 2018
  ident: 10510_CR100
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2018.2870414
– ident: 10510_CR9
  doi: 10.1145/1453101.1453146
– ident: 10510_CR79
  doi: 10.1109/MSR.2007.11
– ident: 10510_CR4
  doi: 10.1007/978-3-031-21388-5_46
– ident: 10510_CR32
  doi: 10.1109/DSA52907.2021.00014
– volume: 99
  start-page: 93
  year: 2018
  ident: 10510_CR46
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2018.03.006
– ident: 10510_CR89
  doi: 10.1145/2635868.2635874
– ident: 10510_CR81
  doi: 10.1109/CSMR-WCRE.2014.6747167
– ident: 10510_CR28
  doi: 10.1109/ICSME.2014.22
– volume: 14
  start-page: 203
  issue: 3
  year: 2020
  ident: 10510_CR64
  publication-title: Inst Eng Technol Softw
– ident: 10510_CR53
  doi: 10.1109/ICPC.2006.17
– volume: 34
  start-page: 9733
  year: 2020
  ident: 10510_CR98
  publication-title: Proc AAAI Conf Artif Intell
– ident: 10510_CR78
  doi: 10.1145/1368088.1368151
– volume: 51
  start-page: 2589
  issue: 3
  year: 2020
  ident: 10510_CR22
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-020-10213-y
– ident: 10510_CR77
  doi: 10.1109/ICSME.2014.39
– ident: 10510_CR16
  doi: 10.1145/3510003.3510042
– ident: 10510_CR84
  doi: 10.1109/APSEC.2017.40
– volume: 7
  start-page: 46846
  year: 2019
  ident: 10510_CR58
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2909746
– ident: 10510_CR45
  doi: 10.1109/TR.2022.3193645
– ident: 10510_CR63
  doi: 10.1145/3319008.3319033
– ident: 10510_CR11
  doi: 10.1145/3183440.3195092
– ident: 10510_CR43
  doi: 10.1145/2020390.2020401
– ident: 10510_CR68
  doi: 10.1109/ASE.2011.6100061
– ident: 10510_CR96
  doi: 10.1007/978-3-030-32456-8_36
– ident: 10510_CR86
  doi: 10.18653/v1/P19-1226
– ident: 10510_CR92
  doi: 10.1109/ICSE.2013.6606654
– volume: 27
  start-page: 1
  issue: 7
  year: 2022
  ident: 10510_CR94
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-022-10185-8
– ident: 10510_CR8
  doi: 10.1145/1718918.1718972
– ident: 10510_CR18
  doi: 10.1109/ICSME.2017.69
– volume: 33
  start-page: 420
  issue: 6
  year: 2007
  ident: 10510_CR54
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2007.1016
– ident: 10510_CR21
  doi: 10.1145/1808920.1808933
– ident: 10510_CR67
  doi: 10.1145/1806799.1806811
– ident: 10510_CR47
– ident: 10510_CR61
  doi: 10.1109/ICSE.2007.32
– volume: 105
  start-page: 17
  year: 2019
  ident: 10510_CR85
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2018.08.002
– ident: 10510_CR91
  doi: 10.1109/ICSME52107.2021.00015
– ident: 10510_CR13
  doi: 10.1109/IC3.2014.6897203
– ident: 10510_CR50
  doi: 10.1109/MSR.2007.25
– volume: 56
  start-page: 52
  issue: 293
  year: 1961
  ident: 10510_CR20
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1961.10482090
– ident: 10510_CR38
  doi: 10.1109/MSR.2010.5463284
– ident: 10510_CR87
  doi: 10.1109/COMPSAC.2014.16
– volume: 44
  start-page: 1224
  issue: 12
  year: 2017
  ident: 10510_CR23
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2017.2757480
– ident: 10510_CR3
  doi: 10.1145/1134285.1134457
– ident: 10510_CR51
  doi: 10.3115/v1/D14-1162
– volume: 1
  start-page: 1
  year: 1986
  ident: 10510_CR27
  publication-title: Proc Eighth Ann Conf Cogn Sci Soc Amherst MA
– volume: 18
  start-page: 1005
  issue: 5
  year: 2013
  ident: 10510_CR66
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-012-9228-6
– ident: 10510_CR75
  doi: 10.1109/ICSE-C.2017.90
– volume: 7
  start-page: 1
  year: 2006
  ident: 10510_CR17
  publication-title: J Mach Learn Res
– volume: 27
  start-page: 1
  issue: 2
  year: 2022
  ident: 10510_CR30
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-021-10085-3
– ident: 10510_CR6
  doi: 10.1145/3377816.3381738
– ident: 10510_CR36
  doi: 10.15439/2021F100
– ident: 10510_CR52
  doi: 10.18653/v1/N18-1202
– volume: 20
  start-page: 1
  issue: 53
  year: 2019
  ident: 10510_CR56
  publication-title: J Mach Learn Res
– ident: 10510_CR41
  doi: 10.1109/WCRE.2008.33
– ident: 10510_CR49
  doi: 10.1145/2351676.2351687
– ident: 10510_CR39
  doi: 10.1109/CSMR.2011.31
– volume: 42
  start-page: 379
  issue: 4
  year: 2015
  ident: 10510_CR90
  publication-title: IEEE Trans Softw Eng
  doi: 10.1109/TSE.2015.2479232
– ident: 10510_CR2
  doi: 10.1109/ICMLA.2013.114
– ident: 10510_CR14
  doi: 10.1109/QRS51102.2020.00034
– ident: 10510_CR29
  doi: 10.1109/SANER50967.2021.00045
– volume: 27
  start-page: 164
  issue: 7
  year: 2022
  ident: 10510_CR76
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-022-10213-7
– ident: 10510_CR80
  doi: 10.1109/CSMR.2013.43
– volume: 117
  start-page: 166
  year: 2016
  ident: 10510_CR93
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2016.02.034
– ident: 10510_CR44
  doi: 10.1109/ICSM.2008.4658083
– volume: 65
  start-page: 1094
  issue: 3
  year: 2015
  ident: 10510_CR82
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2015.2484074
– ident: 10510_CR65
  doi: 10.1109/WCRE.2010.36
– ident: 10510_CR5
  doi: 10.1109/EAIS48028.2020.9122781
– ident: 10510_CR37
  doi: 10.1109/CSMR.2013.42
– ident: 10510_CR59
  doi: 10.1145/3379597.3387470
– volume: 18
  start-page: 1
  issue: 181
  year: 2018
  ident: 10510_CR55
  publication-title: J Mach Learn Res
– volume: 5
  start-page: 135
  year: 2017
  ident: 10510_CR10
  publication-title: Trans Assoc for Comput Linguist
  doi: 10.1162/tacl_a_00051
– ident: 10510_CR99
  doi: 10.1109/ICSE.2012.6227112
– volume: 7
  start-page: 78870
  year: 2019
  ident: 10510_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2922686
– ident: 10510_CR72
  doi: 10.1109/ICSM.2013.31
– volume: 22
  start-page: 1223
  issue: 3
  year: 2017
  ident: 10510_CR15
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-016-9496-7
– ident: 10510_CR97
  doi: 10.1109/ICSE.2012.6227210
– ident: 10510_CR71
  doi: 10.1109/CSMR.2012.48
– volume: 20
  start-page: 1354
  year: 2015
  ident: 10510_CR73
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-014-9331-y
– volume: 10
  start-page: 545
  issue: 2
  year: 2011
  ident: 10510_CR42
  publication-title: Univ Psychol
  doi: 10.11144/Javeriana.upsy10-2.cdcp
– ident: 10510_CR57
  doi: 10.1002/widm.1301
– volume: 102
  start-page: 160
  year: 2018
  ident: 10510_CR70
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2018.06.001
– ident: 10510_CR88
  doi: 10.1109/ISSRE.2016.33
– volume: 22
  start-page: 75
  year: 2015
  ident: 10510_CR83
  publication-title: Autom Softw Eng
  doi: 10.1007/s10515-014-0162-2
– ident: 10510_CR62
  doi: 10.1109/ASE.2013.6693093
– ident: 10510_CR31
  doi: 10.1109/DSN.2008.4630070
– ident: 10510_CR60
– volume: 24
  start-page: 602
  issue: 2
  year: 2019
  ident: 10510_CR7
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-018-9633-6
– volume: 21
  start-page: 368
  issue: 2
  year: 2016
  ident: 10510_CR26
  publication-title: Empir Softw Eng
  doi: 10.1007/s10664-015-9387-3
SSID ssj0009745
Score 2.3880482
Snippet Context Representing the textual semantics of bug reports is a key component of bug report management (BRM) techniques. Existing studies mainly use classical...
ContextRepresenting the textual semantics of bug reports is a key component of bug report management (BRM) techniques. Existing studies mainly use classical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122
SubjectTerms Compilers
Computer Science
Debugging
Embedding
Information retrieval
Interpreters
Machine learning
Natural language processing
Programming Languages
Semantics
Software Engineering/Programming and Operating Systems
Vector spaces
Words (language)
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgMLBQPkWhIA9sYJHETuNMqEJUDKhC4kPdrMSxUQVNSpPC3-fsOo1AogtrnFhJ3vne2T6_Q-gcGFaHkiZEU8YI05KSmIU-ibwsprHyVM_qdL_cR8MhH43iB7fgVrq0ytonWkedFdKskV9Rj7MQuNTj19MPYqpGmd1VV0JjHW0YlQTfpu49NqK7kS1SbGT2CAVud4dm3NG5Xo8RYChwRKHxRT-JqYk2f22QWt4ZtP_7xjto20WcuL8wkV20pvI91K6rOWA3uPeR6OdYTaZjqxmCrewsLnIMASKeFpVJKoLLhcZfMF2FG1OVGdrDSxHYEo9znM5f8WIbAk-WiTW4Ssq38gA9D26fbu6IK79AJIzLinCtfK24jhWTYRrxzIsUNXSehUHKdRB7TCcQAsAcV8JXygCADnytoVWDXWh6iFp5kasjhFMIczKPJjA7SxlXYcoTX8UZhB9aejyRHeTX_15Ip01uSmS8i0ZV2eAlAC9h8RK0gy6Wz0wXyhwr7-7WIAk3SkvRINRBlzXMTfPfvR2v7u0EbQXGsmwqWhe1qtlcnaJN-VmNy9mZtdFv24jr5A
  priority: 102
  providerName: ProQuest
Title An empirical study on the potential of word embedding techniques in bug report management tasks
URI https://link.springer.com/article/10.1007/s10664-024-10510-3
https://www.proquest.com/docview/3084593708
Volume 29
WOSCitedRecordID wos001276200900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7616
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009745
  issn: 1382-3256
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED4BZWDhjSiPygMbWHJip3FGQEUMqKpaQIglShwbVdC0IgH-Pmc3aQEBEiwZYseK7uHvrDt_B3CECGsCxRNquBBUGMVpJAKPhiyLeKSZbjue7tursNuVd3dRr7oUVtTV7nVK0u3UHy67tduCIqbg1hHY3WMRGgh30jZs6A9u51S7oWtNbMn1KEdEr67KfL_GZziax5hf0qIObS7W_vef67BaRZfkdGoOG7Cg801Yqzs3kMqRtyA-zYkeTYaOH4Q4ilkyzgkGg2QyLm0BEb4eG_KGR1OcmOrMQhyZEb4WZJiT9OWBTFMOZDQroiFlUjwW23Bz0bk-v6RVqwWq0AdLKo32jJYm0kIFaSgzFmpuoTsL_FQaP2LCJAj3eJ5VPGTKR6X6njE4atAGDN-BpXyc610gKYY0GeMJnsRSIXWQysTTUYahhlFMJqoJXi3xWFU85LYdxlM8Z1C2EoxRgrGTYMybcDz7ZjJl4fh19kGtyLjyyCLmTIoAYzEmm3BSK24-_PNqe3-bvg8rvtW9K0M7gKXy-UUfwrJ6LYfFcwsaZ51ur9-yJaYDfPaC-5az3ndOt-U8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFH7aBtJ2YfyaVijgA5yYRRI7jXOYpgmYWq1USGzTbiZxbFRBk7Ckm_in9jfu2U0aMYneeuAaO04cf37fc_z8PYC3yLAmVCyhhnFOuVGMxjz0aeRlMYu1pwdOp_tiHE0m4vIy_roBt-1ZGBtW2dpEZ6izQtl_5B-YJ3iIXOqJo_I3tVmj7O5qm0JjAYtT_ecGl2zV4egTju-7IDj5fPZxSJusAlQh3GoqjPaNFibWXIVpJDIv0syyVBYGqTBB7HGTILPh0k3h41SA7x_4xmCpwe4ahu1uwgPsZBC7UMFvnchv5JIiW1k_ytCXaA7pNEf1BgNOkRHR8IXW9v1NhJ13e29D1vHcye7_9oUew6PGoybHiynwBDZ0_hR222wVpDFez0Ae50TPyqnTRCFOVpcUOUEHmJRFbYOm8HJhiH1zrJjqzNI6WYrcVmSak3T-gyy2WchsGThE6qT6WT2H87V0cw-28iLX-0BSdOMyjyW4-ky50GEqEl_HGbpXRnkiUT3w27GWqtFetylAfslONdriQyI-pMOHZD14v7ynXCiPrKzdb0EhGytUyQ4RPThoYdUV_7u1F6tbewPbw7MvYzkeTU5fwk5gUe3C7vqwVV_N9St4qK7raXX12s0PAt_XDbc7M45KUg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB0BRYgLlC-xlBYf6KlYJLGzcQ4IocIKBFrtoa0QF5M4drUqmywkgPrX-HWMvclGRSo3Dlxjx4nj53njePwGYBcZ1oSKJdQwzik3itGYhz6NvCxmsfZ01-l0_7qI-n1xeRkPZuCpOQtjwyobm-gMdVYo-498n3mCh8ilntg3dVjE4Lh3OL6lNoOU3Wlt0mlMIHKu_z7i8q08ODvGsf4aBL2TH99PaZ1hgCqEXkWF0b7RwsSaqzCNROZFmlnGysIgFSaIPW4SZDlcxil8tAqwL4FvDJYa7Lph2O4sfIhwjWnDCQfhVSv4G7kEyVbijzL0K-oDO_WxvW6XU2RHNIKhtYP_kmLr6b7YnHWc11t-z1_rIyzVnjY5mkyNFZjR-SosN1ksSG3U1kAe5USPxkOnlUKc3C4pcoKOMRkXlQ2mwsuFIfbNsWKqM0v3ZCp-W5JhTtL732Sy_UJG04AiUiXln3Idfr5JNzdgLi9yvQkkRfcu81iCq9KUCx2mIvF1nKHbZZQnEtUBvxl3qWpNdpsa5Ea2atIWKxKxIh1WJOvAt-k944kiyau1txuAyNo6lbJFRwf2Goi1xf9vbev11nZgAVEmL876559gMbAAd9F42zBX3d3rzzCvHqpheffFTRUC12-NtmfF4lMr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+study+on+the+potential+of+word+embedding+techniques+in+bug+report+management+tasks&rft.jtitle=Empirical+software+engineering+%3A+an+international+journal&rft.au=Chen%2C+Bingting&rft.au=Zou%2C+Weiqin&rft.au=Cai%2C+Biyu&rft.au=Meng%2C+Qianshuang&rft.date=2024-09-01&rft.issn=1382-3256&rft.eissn=1573-7616&rft.volume=29&rft.issue=5&rft_id=info:doi/10.1007%2Fs10664-024-10510-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10664_024_10510_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-3256&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-3256&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-3256&client=summon